Skip to main content
Log in

Three-dimensional analysis of the titanosaurian limb skeleton: implications for systematic analysis

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

The titanosaurian appendicular skeleton exhibits morphological similarities among different clades and its osteological information is usually less taxonomically meaningful than those of other regions of the skeleton. There is a probable morphological convergence due to morphofunctional similarities between members of different titanosaurian groups. In addition, higher intraspecific variability has hindered the assessment of similar forms such as the Late Cretaceous titanosaurians of the Ibero-Armorican domain. The use of 3D-geometric morphometrics and discriminant analyses on an abundant sample of titanosaurian limb elements from the Lo Hueco site and other titanosaurian taxa has been able to characterize the differences between several sauropod clades with the control of the intraspecific variability. Similar methods with the use of surface analyses of other titanosaurs enabled the recognition of morphological similarities congruent with morphofunctional convergences between one of the lithostrotian morphotypes identified in Lo Hueco (the Morphotype II) and some gracile colossosaurs such as Mendozasaurus neguyelap. In contrast, Morphotype I at Lo Hueco present a more typical titanosaurian morphology, resembling Jainosaurus cf. septentrionalis. The use of discriminant analyses allowed us to distinguish Colossosauria on the basis of limb morphology for the first time. We also observed that Colossosauria and Saltasauridae diverge from a more typical titanosaurian non-autopodial limb skeleton. Our results also suggest a highly different and specialized limb skeleton for the Saltasauridae in comparison with other sampled titanosaurians. The use of surface semilandmarks and discriminant analyses also allowed us to propose several new potential osteological characters for use in phylogenetic analyses through the maximization of differences between the sampled clades.

Resumen

El esqueleto apendicular de los titanosaurios presenta similitudes morfológicas entre clados muy diversos y su información osteológica es de menor utilidad para taxonomía respecto a otras regiones del esqueleto. Es possible que se produzca una convergencia morfológica debido a similitudes morfofuncionales entre miembros de los diferentes grupos de titanosaurios. Además, la elevada variabilidad intraespecífica ha dificultado la diferenciación entre formas de titanosaurio morfológicamente similares en el Cretácico tardío del dominio Ibero-Armoricano. El uso de técnicas de morfometría geométrica 3D así como análisis discriminante en una muestra abundante de ejemplares apendiculares del yacimiento de Lo Hueco y otros taxones de titanosaurio ha permitido caracterizar algunas diferencias entre los distintos clados de titanosaurios con el control de la variabilidad intraespecífica. Estos métodos se aplicaron también en análisis de superficies permitiendo reconocer similitudes morfológicas congruentes con convergencias morfofuncionales entre uno de los morfotipos de lithostrotios identificados en Lo Hueco (Morfortipo II) y formas gráciles de colossosaurios como Mendozasaurus neguyelap. Sin embargo, el Morfotipo I de Lo Hueco presentaría una morfología titanosauriana más típica, asemejándose a Jainosaurus cf. septentrionalis. El uso de análisis discriminantes permitió distinguir Colossosauria en base a la morfología de sus extremidades por primera vez. También se puede observar que la morfología de Colossosauria y Saltasauridae divergen de morfologías apendicular no autopodiales más típicamente titanosaurianas. Nuestros resultados sugieren que las grandes diferencias morfológicas de las extremidades de Saltasauridae con otros clados se debería a su especialización en comparación a otros titanosaurios muestrados en este estudio. El uso de semilandmarks de superficie y análisis discriminante permitió proponer una serie de potenciales caracteres osteológicos nuevos, útiles para el análisis filogenético, gracias a maximizar las diferencias existentes entre los diferentes clados muestreados.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Online Resources (various, cited in manuscript text).

Code availability

R-code available in Online Resource 6.

References

  • Adams, D. C., Collyer, M. L., & Kaliontzopoulou, A. (2019). Geomorph: Software for geometric morphometric analyses. R package version 3.1.0. https://cran.r-project.org/package=geomorph.

  • Adler, D., Murdoch, D., et al. (2019). rgl: 3D visualization using OpenGL. https://cran.r-project.org/package=rgl.

  • Apesteguía, S. (2005). Evolution of the titanosaur metacarpus. In V. Tidwell & K. Carpenter (Eds.), Thunder-lizards: The sauropodomorph dinosaurs (pp. 321–345). Bloomington: Indiana University Press.

    Google Scholar 

  • Arbour, J. H., & Brown, C. M. (2014). Incomplete specimens in geometric morphometric analyses. Methods in Ecology and Evolution, 5(1), 16–26.

    Google Scholar 

  • Bates, K. T., Mannion, P. D., Falkingham, P. L., Brusatte, S. L., Hutchinson, J. R., Otero, A., et al. (2016). Temporal and phylogenetic evolution of the sauropod dinosaur body plan. Royal Society Open Science. https://doi.org/10.1098/rsos.150636.

    Article  Google Scholar 

  • Blender Online Community (2018). Blender - a 3D modelling and rendering package. Blender Institute, Amsterdam. URL http://www.blender.org

  • Bonaparte, J. F., Heinrich, W.-D., & Wild, R. (2000). Review of Janenschia WILD, with the description of a new sauropod from the Tendaguru beds of Tanzania and a discussion on the systematic value of procoelous caudal vertebrae in the sauropoda. Palaeontographica Abteilung A, 256(1–3), 25–76.

    Google Scholar 

  • Bonnan, M. F. (2004). Morphometric analysis of humerus and femur shape in Morrison sauropods: Implications for functional morphology and paleobiology. Paleobiology, 30(3), 444–470.

    Google Scholar 

  • Bonnan, M. F. (2007). Linear and geometric morphometric analysis of long bone scaling patterns in Jurassic neosauropod dinosaurs: Their functional and paleobiological implications. Anatomical Record, 290(9), 1089–1111.

    Google Scholar 

  • Bookstein, F. L. (1991). Morphometric tools for landmark data. Cambridge: Cambridge University Press.

    Google Scholar 

  • Borsuk-Bialynicka, M. (1977). A New Camarasaurid Sauropod Opisthocoelicaudia skarzynskii gen. n., sp. n. from the Upper Cretaceous of Mongolia. Paleontologia Polonica, 37, 5–64.

    Google Scholar 

  • Botton-Divet, L., Houssaye, A., Herrel, A., Fabre, A.-C., & Cornette, R. (2015). Tools for quantitative form description; an evaluation of different software packages for semi-landmark analysis. PeerJ, 3, e1417.

    Google Scholar 

  • Brown, C. M., Arbour, J. H., & Jackson, D. A. (2012). Testing of the effect of missing data estimation and distribution in morphometric multivariate data analyses. Systematic Biology, 61(6), 941–954.

    Google Scholar 

  • Canudo, J. I. (2001). Descripción de un fragmento proximal de fémur de Titanosauridae (Dinosauria, Sauropoda) del Maastrichtiense superior de Serraduy (Huesca). In G. Meléndez, Z. Herrera, G. Delvene, & B. Azanza (Eds.), XVII Jornadas de Paleontología. Los fósiles y la Paleogeografía (pp. 255–262). Zaragoza: Sociedad Española de Paleontología y Áreay Museo de Paleontología de la Universidad de Zaragoza.

    Google Scholar 

  • Carballido, J. L., Marpmann, J. S., Schwarz, D., & Pabst, B. (2012). New information on a juvenile sauropod specimen from the Morrison Formation and the reassessment of its systematic position. Palaeontology. https://doi.org/10.1111/j.1475-4983.2012.01139.x.

    Article  Google Scholar 

  • Carballido, J. L., Pol, D., Cerda, I. A., & Salgado, J. L. (2011). The Osteology of Chubutisaurus insignis Del Corro, 1975 (Dinosauria: Neosauropoda) from the “Middle” Cretaceous of Central Patagonia, Argentina. Journal of Vertebrate Paleontology, 31(1), 93–110.

    Google Scholar 

  • Carballido, J. L., Pol, D., Otero, A., Cerda, I. A., Salgado, J. L., Garrido, A. C., et al. (2017). A new giant titanosaur sheds light on body mass evolution among sauropod dinosaurs. Proceedings of the Royal Society B Biological Sciences. https://doi.org/10.1098/rspb.2017.1219.

    Article  Google Scholar 

  • Carballido, J. L., & Sander, P. M. (2014). Postcranial axial skeleton of Europasaurus holgeri (Dinosauria, Sauropoda) from the Upper Jurassic of Germany: Implications for sauropod ontogeny and phylogenetic relationships of basal Macronaria. Journal of Systematic Palaeontology, 12(3), 335–387.

    Google Scholar 

  • Carrano, M. T. (1998). Locomotion in non-avian dinosaurs: Integrating data from hindlimb kinematics, in vivo strains, and bone morphology. Paleobiology, 24(4), 450–469.

    Google Scholar 

  • Carrano, M. T. (2005). The evolution of sauropod locomotion. In K. A. CurryRogers & J. A. Wilson (Eds.), The Sauropods: Evolution and paleobiology (pp. 229–250). California: University of California Press.

    Google Scholar 

  • Carrano, M. T. (2006). Body-size evolution in the Dinosauria. In M. T. Carrano, T. J. Gaudin, R. W. Blob, & J. Wible (Eds.), Amniote paleobiology: Perspectives on the evolution of mammals, birds, and reptiles (pp. 225–268). Chicago: University of Chicago Press.

    Google Scholar 

  • Christian, A., & Dzemski, G. (2011). Neck posture in Sauropods. In Biology of the Sauropod Dinosaurs: Understanding the life of giants (pp. 251–262).

  • Cignoni, P., Rocchini, C., & Scopigno, R. (1998). Metro: Measuring error on simplified surfaces. Computer Graphics Forum, 17(2), 167–174.

    Google Scholar 

  • Claude, J. (2008). Morphometrics with R. Use R!. New York: Springer.

    Google Scholar 

  • Company, J., Suberbiola, X. P., & Ruiz-Omeñaca, J. I. (2009). Nuevos restos fósiles del dinosaurio Lirainosaurus. Ameghiniana, 46(2), 391–405.

    Google Scholar 

  • Curry Rogers, K. (2005). Titanosauria: A phylogenetic overview. In K. Curry Rogers & J. A. Wilson (Eds.), The Sauropods: Evolution and paleobiology (pp. 50–103). Berkeley: University of California Press.

    Google Scholar 

  • Curry Rogers, K. (2009). The postcranial osteology of Rapetosaurus krausei (Sauropoda: Titanosauria) from the Late Cretaceous of Madagascar. Journal of Vertebrate Paleontology, 29(4), 1046–1086.

    Google Scholar 

  • D’Emic, M. D. (2012). The early evolution of titanosauriform sauropod dinosaurs. Zoological Journal of the Linnean Society, 166, 624–671.

    Google Scholar 

  • D’Emic, M. D., Mannion, P. D., Upchurch, P., Benson, R. B. J., Pang, Q., & Zhengwu, C. (2013). Osteology of Huabeisaurus allocotus (Sauropoda: Titanosauriformes) from the Upper Cretaceous of China. PLoS One. https://doi.org/10.1371/journal.pone.0069375.

    Article  Google Scholar 

  • Darlington, R. B., Weinberg, S. L., & Walberg, H. J. (1973). Canonical variate analysis and related techniques. Review of Educational Research, 43, 433–454.

    Google Scholar 

  • Díez Díaz, V., Garcia, G., Pereda Suberbiola, X., Jentgen-Ceschino, B., Stein, K. H. W., Godefroit, P., & Valentin, X. (2018). A new titanosaurian sauropod from the Late Cretaceous of Velaux-La Bastide Neuve (southern France). In XVI annual meeting of the European association of vertebrate paleontologists (p. 60). Caparica, Lisbon.

  • Díez Díaz, V., Garcia, G., Pereda-Suberbiola, X., Jentgen-Ceschino, B., Stein, K., Godefroit, P., et al. (2018). The titanosaurian dinosaur Atsinganosaurus velauciensis (Sauropoda) from the Upper Cretaceous of southern France: New material, phylogenetic affinities, and palaeobiogeographical implications. Cretaceous Research, 91, 429–456.

    Google Scholar 

  • Díez Díaz, V., Mocho, P., Páramo, A., Escaso, F., Marcos-Fernández, F., Sanz, J. L., et al. (2016). A new titanosaur (Dinosauria, Sauropoda) from the Upper Cretaceous of Lo Hueco (Cuenca, Spain). Cretaceous Research, 68, 49–60.

    Google Scholar 

  • Díez Díaz, V., Pereda Suberbiola, X., & Company, J. (2015). Updating titanosaurian diversity (Sauropoda) from the Late Cretaceous of Spain: The fossil site of Laño and Chera. Spanish Journal of Palaeontology, 30(2), 293–306.

    Google Scholar 

  • Díez Díaz, V., Suberbiola, X. P., & Sanz, J. L. (2013). Appendicular skeleton and dermal armour of the Late Cretaceous titanosaur Lirainosaurus astibiae (Dinosauria: Sauropoda) from Spain. Palaeontologia Electronica, 16(2), 18p.

    Google Scholar 

  • Falkingham, P. L. (2012). Acquisition of high resolution three-dimensional models using free, open-source, photogrammetric software. Paleontologia Electronica, 15(1), 1–15.

    Google Scholar 

  • Falkingham, P. L. (2013). Low cost 3D scanning using off-the-shelf video gaming peripherals. Journal of Paleontological Techniques, 11, 1–9.

    Google Scholar 

  • Garcia, G., Amico, S., Fournier, F., Thouand, E., & Valentin, X. (2010). A new Titanosaur genus (Dinosauria, Sauropoda) from the Late Cretaceous of southern France and its paleobiogeographic implications. Bulletin de la Société Géologique de France, 181(3), 269–277.

    Google Scholar 

  • González Riga, B. J. (2003). A new Titanosaur (Dinosauria, Sauropoda) from the Upper Cretaceous of Mendoza Province, Argentina. Ameghiniana, 40(2), 155–172.

    Google Scholar 

  • González Riga, B. J., Lamanna, M. C., Ortiz David, L. D., Calvo, J. O., & Coria, J. P. (2016). A gigantic new dinosaur from Argentina and the evolution of the sauropod hind foot. Scientific Reports, 6(1), 1–15.

    Google Scholar 

  • González Riga, B. J., Lamanna, M. C., Otero, A., Ortiz David, L. D., Kellner, A. W. A., & Ibiricu, L. M. (2019). An overview of the appendicular skeletal anatomy of South American titanosaurian sauropods, with definition of a newly recognized clade. Anais Da Academia Brasileira de Ciências. https://doi.org/10.1590/0001-3765201920180374.

    Article  Google Scholar 

  • González Riga, B. J., Mannion, P. D., Poropat, S. F., Ortiz David, L. D., & Coria, J. P. (2018). Osteology of the Late Cretaceous Argentinean sauropod dinosaur Mendozasaurus neguyelap: Implications for basal titanosaur relationships. Zoological Journal of the Linnean Society, 20, 1–46.

    Google Scholar 

  • Gorscak, E., & O‘Connor, P. M. (2016). Time-calibrated models support congruency between Cretaceous continental rifting and titanosaurian evolutionary history. Biology Letters, 12(4), 20151047.

    Google Scholar 

  • Gorscak, E., O’Connor, P. M., Roberts, E. M., & Stevens, N. J. (2017). The second titanosaurian (Dinosauria: Sauropoda) from the middle Cretaceous Galula Formation, southwestern Tanzania, with remarks on African titanosaurian diversity. Journal of Vertebrate Paleontology, 37(4), e1343250.

    Google Scholar 

  • Gunz, P. (2005). Statistical and geometric morphometric reconstruction of hominid crania. Reconstructing autralopithecine ontogeny. Vienna: University of Vienna.

    Google Scholar 

  • Gunz, P., & Mitteroecker, P. (2013). Semilandmarks: A method for quantifying curves and surfaces. Hystrix The Italian Journal of Mammalogy, 24(1), 103–109.

    Google Scholar 

  • Gunz, P., Mitteroecker, P., & Bookstein, F. L. (2005). Semilandmarks in three dimensions. In D. E. Slice (Ed.) Modern morphometrics in physical anthropology (pp. 73–98).

  • Gunz, P., Mitteroecker, P., Neubauer, S., Weber, G. W., & Bookstein, F. L. (2009). Principles for the virtual reconstruction of hominin crania. Journal of Human Evolution, 57(1), 48–62.

    Google Scholar 

  • Harris, J. D. (2006). The significance of Suuwassea emilieae (Dinosauria: Sauropoda) for flagellicaudatan intrarelationships and evolution. Journal of Systematic Palaeontology, 4(2), 185–198.

    Google Scholar 

  • Henderson, D. M. (2006). Burly gaits: Centers of mass, stability, and the trackways of sauropod dinosaurs. Journal of Vertebrate Paleontology, 26(4), 907–921.

    Google Scholar 

  • Jakob, W., Tarini, M., Panozzo, D., & Sorkine-Hornung, O. (2015). Instant field-aligned meshes. In ACM transactions on graphics (proceedings of SIGGRAPH Asia 2015) (pp. 1–15).

  • Kendall, D. G. (1984). Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society, 16(2), 81–121.

    Google Scholar 

  • Langer, M. C., Franca, M., & Gabriel, S. (2007). The pectoral girdle and forelimb anatomy of the stem-sauropodomorph Saturnalia tupiniquim (Upper Triassic, Brazil). Special Papers in Palaeontology, 77, 113–137.

    Google Scholar 

  • Lautenschlager, S. (2017). From bone to pixel—fossil restoration and reconstruction with digital techniques. Geology Today, 33(4), 155–159.

    Google Scholar 

  • Lautenschlager, S., Rayfield, E. J., Altangerel, P., Zanno, L. E., & Witmer, L. M. (2012). The endocranial anatomy of therizinosauria and its implications for sensory and cognitive function. PLoS One, 7(12), e52289.

    Google Scholar 

  • Le Loeuff, J. (1995). Ampelosaurus atacis (nov, gen., nov. sp.), un nouveau Titanosauridae (Dinosauria, Sauropoda) du Crétacé supérieur de la Haute Vallée de l’Aude (France). Comptes Rendus de l’Académie Des Sciences à Paris Série IIa, 321, 693–699.

    Google Scholar 

  • Le Loeuff, J. (2005). Osteology of Ampelosaurus atacis (Titanosauria) from Southern France. In V. Tidwell & K. Carpenter (Eds.), Thunder-lizards: The sauropodomorph dinosaurs (1st ed., pp. 115–137). Bloomington: Indiana University Press.

    Google Scholar 

  • Lydekker, R. (1893). The dinosaurs of patagonia. Anales Del Museo de La Plata, 2, 1–14.

    Google Scholar 

  • Mallison, H., & Wings, O. (2014). Photogrammetry in paleontology—a practical guide. Journal of Paleontological Techniques, 12, 1–13.

    Google Scholar 

  • Mannion, P. D., Allain, R., & Moine, O. (2017). The earliest known titanosauriform sauropod dinosaur and the evolution of Brachiosauridae. PeerJ, 5, e3217.

    Google Scholar 

  • Mannion, P. D., Schwarz, D., Upchurch, P., & Wings, O. (2019). Taxonomic affinities and biogeographic implications of the putative titanosaurs (Dinosauria: Sauropoda) from the Late Jurassic Tendaguru Formation of Tanzania. Journal of Vertebrate Paleontology, XX, 1–126.

    Google Scholar 

  • Mannion, P. D., Upchurch, P., Barnes, R. N., & Mateus, O. (2013). Osteology of the Late Jurassic Portuguese sauropod dinosaur Lusotitan atalaiensis (Macronaria) and the evolutionary history of basal titanosauriforms. Zoological Journal of the Linnean Society, 168(1), 98–206.

    Google Scholar 

  • Mannion, P. D., Upchurch, P., Mateus, O., Barnes, R. N., & Jones, M. E. H. (2012). New information on the anatomy and systematic position of Dinheirosaurus lourinhanensis (Sauropoda: Diplodocoidea) from the Late Jurassic of Portugal, with a review of European diplodocoids. Journal of Systematic Palaeontology, 10, 1–31.

    Google Scholar 

  • Mitteroecker, P., & Bookstein, F. L. (2011). Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evolutionary Biology, 38(1), 100–114.

    Google Scholar 

  • Mocho, P., Escaso, F., Marcos-Fernández, F., Páramo, A., Vidal, D. & Ortega, F. (2019b). Preliminary systematic overview on a new titanosaurian specimen from the Upper Cretaceous of Lo Hueco (Cuenca, Spain). In 17th annual meeting of the European Association of Vertebrate Palaeontology (p. 76).

  • Mocho, P., Páramo, A., Díez Díaz, V., Escaso, F., Marcos-Fernández, F., Sanz, J.L. & Ortega & F. (2016). Looking through the axial skeleton of the Lo Hueco titanosaurians. In: Torcida Fernández-Baldor, F., Canudo, J.I., Huerta, P., Pereda, X. (Eds.), VII International symposium about dinosaurs palaeontology and their environment (pp. 99–100).

  • Mocho, P., Páramo, A., Escaso, F., Marcos-Fernández, F., Vidal, D. & Ortega, F. (2019c). Titanosaurians from Lo Hueco (Campanian–Maastrichtian) reveal new information about the evolutionary history of European titanosaurians. In 63rd annual meeting of the Paleontological Association (pp. 110–111).

  • Mocho, P., Páramo, A., & Ortega, F. (2019a). Titanosaurians from the Iberian Peninsula: An overview and future perspectives. In VIII international symposium about dinosaurs palaeontology and their environment.

  • Mocho, P., Pérez-García, A., Martín-Jiménez, M., Ortega, F., Martín Jiménez, M., & Ortega, F. (2018). New remains from the Spanish Cenomanian shade light on the Gondwanan origin of European Early Cretaceous titanosaurs. Cretacaceous Research. https://doi.org/10.1016/j.toxlet.2014.06.131.

    Article  Google Scholar 

  • Molnar, J. L., Pierce, S. E., & Hutchinson, J. R. (2012). Idealized landmark-based geometric reconstructions of poorly preserved fossil material: A case study of an early tetrapod vertebra. Palaeontologia Electronica, 15(1), 1–18.

    Google Scholar 

  • Ortega, F., Bardet, N., Barroso-Barcenilla, F., Callapez, P. M. P. M., Cambra-moo, O., Daviero- Gómez, V., et al. (2015). The biota of the Upper Cretaceous site of “Lo Hueco” (Cuenca, Spain). Journal of Iberian Geology, 41(1), 83–99.

    Google Scholar 

  • Otero, A. (2010). The appendicular skeleton of Neuquensaurus, a Late Cretaceous saltasaurine sauropod from Patagonia, Argentina. Acta Palaeontologica Polonica, 55(3), 399–426.

    Google Scholar 

  • Otero, A. (2018). Forelimb musculature and osteological correlates in Sauropodomorpha (Dinosauria, Saurischia). PLoS One, 13(7), e0198988.

    Google Scholar 

  • Páramo, A., Mocho, P., Marcos-Fernández, F., Ortega, F., & Sanz, J. L. (2017). 3D geometric morphometrics on the hind limb of the Titanosaurs from Lo Hueco: Dwarf taxa or Small Individuals? In 15th annual meeting of the European Association of Vertebrate Paleontologists. Zitteliana, 91, 68.

    Google Scholar 

  • Páramo, A., Mocho, P., Ortega, F., & Sanz, J. L. (2018). Intraspecific variability in and its effects on systematic assessment of the titanosaurs from Lo Hueco (Late Cretaceous. Cuenca, Spain). In XVI annual meeting of European Association of Vertebrate Paleontologists (p. 147).

  • Páramo, A., Ortega, F., Mocho, P., & Sanz, J. L. (2016). Femoral variability in two titanosaur taxa from Lo Hueco (Cuenca, Spain): Insights for iberoarmorican titanosaur diversity assessment. In F. Torcida, I. C. Jose, P. Huerta, & X. Pereda-Suberbiola (Eds.), VII international symposium about dinosaurs palaeontology and their environment (pp. 107–108). Salas de los Infantes: Colectivo Arqueológico y Paleontológico de Salas.

    Google Scholar 

  • Páramo, A., Ortega, F., & Sanz, J. L. (2017b). Comparison Between Classification Methods for Isolated Appendicular Titanosaur Bones. In 15th annual meeting of the European Association of Vertebrate Paleontologists. Zitteliana, 91 (p. 69).

  • Páramo, A., Ortega, F. & Sanz, J.L. (2019). Morphological disparity and niche exploitation in two Titanosaur forms from the Campanian–Maastrichtian of Lo Hueco (Cuenca, Spain). In XVII annual meeting of the European Association of Vertebrate Palaeontology.

  • Pereda, X., Astibia, H., Murelaga, X., Elorza, J. J., & Gómez-Alday, J. J. (2000). Taphonomy of the Late Cretaceous dinosaur-bearing beds of the Laño Quarry (Iberian Peninsula). Palaeogeography Palaeoclimatology Palaeoecology, 157(3–4), 247–275.

    Google Scholar 

  • Pereda, X., Corral, J. C., Astibia, H., Badiola, A., Bardet, N., Berreteaga, A., et al. (2015). Continental and marine vertebrate assemblages from the Late Cretaceous of the Laño Quarry (Basque-Cantabrian Region, Iberian Peninsula): An update. Journal of Iberian Geology, 41(1), 101–124.

    Google Scholar 

  • Piechowski, R., & Tałanda, M. (2020). The locomotor musculature and posture of the early dinosauriform Silesaurus opolensis provides a new look into the evolution of Dinosauromorpha. Journal of Anatomy. https://doi.org/10.1111/joa.13155.

    Article  Google Scholar 

  • Poropat, S. F., Mannion, P. D., Upchurch, P., Hocknull, S. A., Kear, B. P., Kundrát, M., et al. (2016). New Australian sauropods shed light on Cretaceous dinosaur palaeobiogeography. Scientific Reports, 6(April), 1–12.

    Google Scholar 

  • Powell, J. E. (1992). Osteología de Saltasaurus loricatus (Sauropoda–Titanosauridae) del Cretácico Superior del noroeste argentino. In J. L. Sanz & A. D. Buscalioni (Eds.), Los Dinosaurios y Su Entorno Biotico Actas del Segundo Curso de Paleontologia in Cuenca (Vol 4) (pp. 166–229). Cuenca: Instituto “Juan Valdes.”.

    Google Scholar 

  • Powell, J. E. (2003). Revision of South American titanosaurid dinosaurs: Palaeobiological, palaeobiogeographical and phylogenetic aspects. Records of the Queen Victoria Museum, 111, 1–179.

    Google Scholar 

  • Profico, A., Schlager, S., Valoriani, V., Buzi, C., Melchionna, M., Veneziano, A., et al. (2018). Reproducing the internal and external anatomy of fossil bones: Two new automatic digital tools. American Journal of Physical Anthropology, 166(4), 979–986.

    Google Scholar 

  • Remes, K. (2007). Evolution of the Pectoral girdle and Forelimb in Sauropodomorpha (Dinosauria, Saurischia): Osteology, myology and fuction. München: Ludwig-Maximilians-Universität München.

    Google Scholar 

  • Rohlf, F. J. (1998). On applications of geometric morphometrics to studies of ontogeny and phylogeny. Systematic Biology, 47(1), 147–158.

    Google Scholar 

  • Rohlf, F. J. (1999). Shape statistics: Procrustes superimpositions and tangent spaces. Journal of Classification. https://doi.org/10.1007/s003579900054.

    Article  Google Scholar 

  • Rohlf, F. J. (2000). On the use of shape spaces to compare morphometric methods. Hystrix. https://doi.org/10.4404/hystrix-11.1-4134.

    Article  Google Scholar 

  • Royo-Torres, R. (2009). El saurópodo de Peñarroya de Tastavins (1st ed.). Teruel: Instituto de Estudios Turolenses y Fundación Conjunto Paleontológico de Teruel-Dinópolis.

    Google Scholar 

  • Salgado, J. L., Calvo, J. O., & Coria, R. A. (1995). Relaciones filogenéticas de Pleurocoelus Marsh (Sauropoda). In III Jornadas Argentinas de paleontología de vertebrados (Vol. 18, pp. 156–157).

  • Salgado, J. L., Coria, R. A., & Calvo, J. O. (1997). Evolution of the titanosaurid sauropods I: Phylogenetic analysis based on the postcranial evidence. Ameghiniana, 34(1), 3–32.

    Google Scholar 

  • Salgado, L., Apesteguía, S., & Heredia, S. E. (2005). A new specimen of Neuquensaurus australis, a Late Cretaceous saltasaurine titanosaur from North Patagonia. Journal of Vertebrate Paleontology, 25(3), 623–634.

    Google Scholar 

  • Sallam, H. M., Gorscak, E., O’Connor, P. M., El-Dawoudi, I. A., El-Sayed, S., Saber, S., et al. (2018). New Egyptian sauropod reveals Late Cretaceous dinosaur dispersal between Europe and Africa. Nature Ecology and Evolution, 2(3), 445–451.

    Google Scholar 

  • Sanz, J. L., Powell, J. E., Le Loeuff, J., Martínez, R. N., & Pereda Suberbiola, X. (1999). Sauropod remains from the Upper Cretaceous of Laño (north central Spain). Titanosaur phylogenetic relationships. Estudios Del Museo de Ciencias Naturales de Alava, 14(1), 235–255.

    Google Scholar 

  • Schlager, S. (2017). Morpho and Rvcg—shape analysis in R. In G. Zheng, S. Li, & G. Szekely (Eds.), Statistical shape and deformation analysis (pp. 217–256). New York: Elsevier.

    Google Scholar 

  • Schlager, S., Profico, A., Di Vincenzo, F., & Manzi, G. (2018). Retrodeformation of fossil specimens based on 3D bilateral semi-landmarks: Implementation in the R package “Morpho”. PLoS One, 13(3), e0194073.

    Google Scholar 

  • Sereno, P. C. (2007). Basal sauropodomorpha: Historical and recent phylogenetic hypotheses, with comments on Ammosaurus major (MARSH, 1889). Special Papers in Palaeontology., 77, 261–289.

    Google Scholar 

  • Souter, T., Cornette, R., Pedraza, J., Hutchinson, J. R., & Baylac, M. (2010). Two applications of 3D semi-landmark morphometrics implying different template designs: The theropod pelvis and the shrew skull. Comptes Rendus Palevol, 9(6–7), 411–422.

    Google Scholar 

  • The R Core Team. (2016). A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/.

  • Tschopp, E., Mateus, O., & Benson, R. B. J. (2015). A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda). PeerJ, 3, e857.

    Google Scholar 

  • Ullmann, P. V., Bonnan, M. F., & Lacovara, K. J. (2017). Characterizing the evolution of wide-gauge features in stylopodial limb elements of titanosauriform sauropods via geometric morphometrics. The Anatomical Record, 300(9), 1618–1635.

    Google Scholar 

  • Ullmann, P. V., & Lacovara, K. J. (2016). Appendicular osteology of Dreadnoughtus schrani, a giant titanosaurian (Sauropoda, Titanosauria) from the Upper Cretaceous of Patagonia, Argentina. Journal of Vertebrate Paleontology. https://doi.org/10.1080/02724634.2016.1225303.

    Article  Google Scholar 

  • Upchurch, P., Barrett, P. M., & Dodson, P. (2004). Sauropoda. In D. B. Weishampel, P. Dodson, & H. Osmólska (Eds.), The dinosauria (2nd ed., pp. 259–322). Berkeley: University of California Press.

    Google Scholar 

  • Upchurch, P., Barrett, P. M., & Galton, P. M. (2007). A phylogenetic analysis of basal sauropodomorph relationships: Implications for the origin of Sauropod dinosaurs. Special Papers in Palaeontology, 77, 57–90.

    Google Scholar 

  • Upchurch, P., Mannion, P. D., & Taylor, M. P. (2015). The anatomy and phylogenetic relationships of “Pelorosaurusbecklesii (Neosauropoda, Macronaria) from the Early Cretaceous of England. PLoS One, 10(6), e0125819.

    Google Scholar 

  • van Buren, C. S., & Bonnan, M. F. (2013). Forearm posture and mobility in quadrupedal dinosaurs. PLoS One, 8(9), e74842.

    Google Scholar 

  • Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). Berlin: Springer.

    Google Scholar 

  • Vidal, D., & Díez Díaz, V. (2017). Reconstructing hypothetical sauropod tails by means of 3D digitization: Lirainosaurus astibiae as case study. Journal of Iberian Geology, 43(2), 293–305.

    Google Scholar 

  • Vila, B., Galobart, À., Canudo, J. I., Le Loeuff, J., Dinarès-Turell, J., Riera, V., et al. (2012). The diversity of sauropod dinosaurs and their first taxonomic succession from the latest Cretaceous of southwestern Europe: Clues to demise and extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 350–352, 19–38.

    Google Scholar 

  • Voegele, K. K., Ullmann, P. V., Lamanna, M. C., & Lacovara, K. J. (2020). Appendicular myological reconstruction of the forelimb of the giant titanosaurian sauropod dinosaur Dreadnoughtus schrani. Journal of Anatomy. https://doi.org/10.1111/joa.13176.

    Article  Google Scholar 

  • Whitlock, J. A. (2011). A phylogenetic analysis of Diplodocoidea (Saurischia: Sauropoda). Zoological Journal of the Linnean Society. https://doi.org/10.1111/j.1096-3642.2010.00665.x.

    Article  Google Scholar 

  • Wiley, D. F., Amenta, N., Alcantara, D. A., Ghosh, D., Kil, Y. J., Delson, E., & Hamann, B. (2005). Evolutionary morphing. In Proceedings of IEEE visualization 2005 (pp. 1–8). Minneapolis.

  • Wilson, J. A. (2002). Sauropod dinosaur phylogeny: Critique and cladistic analysis. Zoological Journal of the Linnean Society, 136, 215–275.

    Google Scholar 

  • Wilson, J. A., & Carrano, M. T. (1999). Titanosaurs and the Origin of “wide-gauge” trackways: A biomechanical and systematic perspective on sauropod locomotion. Paleobiology, 25(2), 252–267.

    Google Scholar 

  • Wilson, J. A., & Sereno, P. C. (1998). Early evolution and high-level phylogeny of sauropod dinosaurs. Journal of Vertebrate Paleontology, 18(2), 1–68.

    Google Scholar 

  • Wilson, J. A., & Upchurch, P. (2003). A revision of Titanosaurus Lydekker (Dinosauria—Sauropoda), the first dinosaur genus with a “Gondwanan” distribution. Journal of Systematic Palaeontology, 1(3), 125–160.

    Google Scholar 

  • Young, C. C., & Chao, S. C. (1972). Mamenchisaurus hochuaensis sp. nov. Memoirs of the Institute of Vertebrate Paleontology and Paleoanthropology Academia Sinica, 8, 1–30.

    Google Scholar 

  • Zelditch, M. L., Swiderski, D. L., & Sheets, H. D. (2012). Geometric morphometrics for biologists (2nd ed.). Oxford: Elsevier.

    Google Scholar 

Download references

Acknowledgements

This research was funded by project CGL2012-35199 and CGL2015-68363-P from the Ministry of Economy and Competitiveness of Spain. Research of A. Páramo was funded by contract BES-2013-065509 granted by the Ministry of Economy and Competitiveness of Spain. Preparation and study of material from Lo Hueco was possible under projects SBPLY/15/180601/000045, SBPLY/16/180801/000017, SBPLY/17/ 180801/000063 of the Junta de Comunidades de Castilla-La Mancha, Spain. We want to thank also F. Marco-Fernández and the Conservacion GBE team as well as the alumni of Methodology of Archaeological Materials, Conservation and Restoration of Cultural Heritage degree (Fine Arts Faculty, UCM, Spain) and the alumni from the Taller de Restauración Paleontológica I, II & III, Cuenca (C-LM, Spain). Access to Argentinean titanosaurian material was possible thanks to the funding EEBB-I-16-11875 from the Ministry of Economy and Competitiveness of Spain. Access to NHM collections was possible thanks to funding of European Union SYNTHESYS program 2016. Ref. GB-TAF-6153. Research of P. Mocho was funded by FCT/MCTES for one CEEC Individual contract (CEECIND/00726/2017). We want to also thank the following people for access to the sampled specimens under their care to S. Langreo from the Museo de Paleontología de Castilla-La Mancha (Cuenca, Spain); J.A. Ramírez de la Peciña and C. Corral from the MCNA (Vitoria, Spain); R. Coria from the MCF (Plaza Huincul, Argentina); L. Filippi from the MRS (Rincón de los Sauces, Argentina); M. Reguero from the MLP (La Plata, Argentina) and A. Otero from the CONICET (La Plata, Argentina); S. Devincenzi from the IANIGLA (Mendoza, Argentina) and B. González Riga from the UNCUYO (Mendoza, Argentina); C. Muñoz from the MPCA (Cipolletti, Argentina) and I. Cerda from the CONICET (Cipolletti, Argentina); P. Ortiz from the PVL (Tucumán, Argentina); A.G. Kramarz and M. Ezcurra from the MACN (Buenos Aires, Argentina). We want to also thank P. Ullmann and an anonymous reviewer for their commentaries and suggestions that allowed to improve this article.

Funding

This research was funded by project CGL2012-35199 and CGL2015-68363-P from the Ministry of Economy and Competitiveness of Spain. Work from Páramo, A. was funded by contract BES-2013-065509 granted by the Ministry of Economy and Competitiveness of Spain. Preparation and study of Material from Lo Hueco was possible under projects SBPLY/15/180601/000045, SBPLY/16/180801/000017, SBPLY/17/ 180801/000063 of the Junta de Comunidades de Castilla-La Mancha, C-LM, Spain. Access to Argentinean titanosaurian material was possible thanks to the funding EEBB-I-16-11875 from the Ministry of Economy and Competitiveness of Spain. Access to NHM collections was possible thanks to the funding European Union SYNTHESYS program 2016. Ref. GB-TAF-6153. Work by Mocho, P. was funded by FCT/MCTES through one CEEC Individual contract (CEECIND/00726/2017).

Author information

Authors and Affiliations

Authors

Contributions

PA: conceptualization, formal analysis, investigation, methodology, resources, writing—original draft, writing—review and editing. MP: investigation, resources, writing—review and editing. OF: conceptualization, funding acquisition, investigation, project administration, supervision, writing—review and editing.

Corresponding author

Correspondence to Adrián Páramo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PTS 158 kb)

Supplementary file2 (TPS 475 kb)

Supplementary file3 (TPS 299 kb)

Supplementary file4 (CSV 3 kb)

Supplementary file5 (PTS 78 kb)

Supplementary file6 (TPS 325 kb)

Supplementary file7 (TPS 220 kb)

Supplementary file8 (CSV 2 kb)

Supplementary file9 (PTS 85 kb)

Supplementary file10 (TPS 426 kb)

Supplementary file11 (TPS 276 kb)

Supplementary file12 (CSV 2 kb)

Supplementary file13 (XLSX 15 kb)

Supplementary file14 (XLSX 391 kb)

Supplementary file15 (DOCX 15295 kb)

Supplementary file16 (XLSX 44 kb)

Supplementary file17 (R 66 kb)

Supplementary file18 (PTS 154 kb)

Supplementary file19 (TPS 116 kb)

Supplementary file20 (TPS 97 kb)

Supplementary file21 (CSV 1 kb)

Supplementary file22 (PTS 137 kb)

Supplementary file23 (TPS 310 kb)

Supplementary file24 (TPS 193 kb)

Supplementary file25 (CSV 2 kb)

Supplementary file26 (PTS 155 kb)

Supplementary file27 (TPS 174 kb)

Supplementary file28 (TPS 114 kb)

Supplementary file29 (CSV 1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Páramo, A., Mocho, P. & Ortega, F. Three-dimensional analysis of the titanosaurian limb skeleton: implications for systematic analysis. J Iber Geol 46, 369–402 (2020). https://doi.org/10.1007/s41513-020-00139-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-020-00139-8

Keywords

Palabras clave

Navigation