Skip to main content

Advertisement

Log in

A gaseous time projection chamber with Micromegas readout for low-radioactive material screening

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

Low-radioactive material screening is becoming essential for rare event search experiments, such as neutrinoless double beta decay and dark matter searches in underground laboratories. A gaseous time projection chamber (TPC) can be used for such purposes with large active areas and high efficiency.

Methods

A gaseous TPC with a Micromegas readout plane of approximately \(20 \times 20\) \(\hbox {cm}^2\) is successfully constructed for surface alpha contamination measurements.

Results

We have characterized the energy resolution, gain stability, and tracking capability with calibration sources.

Conclusion

With the unique track-related background suppression cuts of the gaseous TPC, we have established that the alpha background rate of the TPC is (\(0.13\pm 0.03\))\(\times 10^{-6}\) Bq/\(\hbox {cm}^2\), comparable to the leading commercial solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Agostini, G. Benato, J. Detwiler, Discovery probability of next-generation neutrinoless double- \(\beta \) decay experiments. Phys. Rev. D 96(5), 053001 (2017). https://doi.org/10.1103/PhysRevD.96.053001. arXiv:1705.02996 [hep-ex]

    Article  ADS  Google Scholar 

  2. M.J. Dolinski, A.W.P. Poon, W. Rodejohann, Neutrinoless double-beta decay: status and prospects. Ann. Rev. Nucl. Part. Sci. 69, 219–251 (2019). https://doi.org/10.1146/annurev-nucl-101918-023407. arXiv:1902.04097 [nucl-ex]

    Article  ADS  Google Scholar 

  3. J. Liu, X. Chen, X. Ji, Current status of direct dark matter detection experiments. Nat. Phys. 13(3), 212–216 (2017). https://doi.org/10.1038/nphys4039. arXiv:1709.00688 [astro-ph.CO]

    Article  Google Scholar 

  4. J. Billard et al., Direct detection of dark matter–APPEC committee report. Rept. Prog. Phys. 85(5), 056201 (2022). https://doi.org/10.1088/1361-6633/ac5754. arXiv:2104.07634 [hep-ex]

    Article  ADS  Google Scholar 

  5. N. Abgrall et al., The Majorana demonstrator radioassay program. Nucl. Instrum. Meth. A 828, 22–36 (2016). https://doi.org/10.1016/j.nima.2016.04.070. arXiv:1601.03779 [physics.ins-det]

    Article  ADS  Google Scholar 

  6. D.S. Leonard et al., Trace radioactive impurities in final construction materials for EXO-200. Nucl. Instrum. Meth. A 871, 169–179 (2017). https://doi.org/10.1016/j.nima.2017.04.049. arXiv:1703.10799 [physics.ins-det]

    Article  ADS  Google Scholar 

  7. Z. Qian et al., Low radioactive material screening and background control for the PandaX-4T experiment. JHEP 06, 147 (2022). https://doi.org/10.1007/JHEP06(2022)147. arXiv:2112.02892 [physics.ins-det]

    Article  ADS  Google Scholar 

  8. X. Chen et al., PandaX-III: searching for neutrinoless double beta decay with high \(\text{ pressure}^{136}\)Xe gas time projection chambers. Sci. China Phys. Mech. Astron. 60(6), 061011 (2017). https://doi.org/10.1007/s11433-017-9028-0. arXiv:1610.08883 [physics.ins-det]

    Article  ADS  Google Scholar 

  9. C. Alduino et al., The projected background for the CUORE experiment. Eur. Phys. J. C 77(8), 543 (2017). https://doi.org/10.1140/epjc/s10052-017-5080-6. arXiv:1704.08970 [physics.ins-det]

    Article  ADS  Google Scholar 

  10. H. Zhang et al., Dark matter direct search sensitivity of the PandaX-4T experiment. Sci. China Phys. Mech. Astron. 62(3), 31011 (2019). https://doi.org/10.1007/s11433-018-9259-0. arXiv:1806.02229 [physics.ins-det]

    Article  ADS  Google Scholar 

  11. R. Bunker et al., The BetaCage, an ultra-sensitive screener for surface contamination. AIP Conf. Proc. 1549(1), 132–135 (2013). https://doi.org/10.1063/1.4818093. arXiv:1404.5803 [physics.ins-det]

    Article  ADS  Google Scholar 

  12. H. Ito, K. Miuchi, K. Kobayashi, Y. Takeuchi, K.D. Nakamura, T. Ikeda, H. Ishiura, Alpha-ray imaging chamber based on a micro-TPC in a low radioactivity structure. J. Phys. Conf. Ser. 1468(1), 012233 (2020). https://doi.org/10.1088/1742-6596/1468/1/012233

    Article  Google Scholar 

  13. H.-Y. Du et al., Screener3D: a gaseous time projection chamber for ultra-low radioactive material screening. Nucl. Sci. Tech. 32(12), 142 (2021). https://doi.org/10.1007/s41365-021-00983-y. arXiv:2107.05897 [physics.ins-det]

    Article  Google Scholar 

  14. J. Pan, Z. Zhang, C. Feng, D. Wang, R. Zhang, S. Liu, An ultra-low background alpha detection system with a Micromegas-based time projection chamber. Rev. Sci. Instrum. 93(1), 013303 (2022). https://doi.org/10.1063/5.0070612

    Article  ADS  Google Scholar 

  15. Y. Giomataris, P. Rebourgeard, J.P. Robert, G. Charpak, MICROMEGAS: a high granularity position sensitive gaseous detector for high particle flux environments. Nucl. Instrum. Meth. A 376, 29–35 (1996). https://doi.org/10.1016/0168-9002(96)00175-1

    Article  ADS  Google Scholar 

  16. H. Lin et al., Design and commissioning of a 600 L time projection chamber with microbulk micromegas. JINST 13(06), 06012 (2018). https://doi.org/10.1088/1748-0221/13/06/P06012. arXiv:1804.02863 [physics.ins-det]

    Article  Google Scholar 

  17. J. Feng, Z. Zhang, J. Liu, B. Qi, A. Wang, M. Shao, Y. Zhou, A thermal bonding method for manufacturing micromegas detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 989, 164958 (2021). https://doi.org/10.1016/j.nima.2020.164958

    Article  Google Scholar 

  18. M. Fu, S.G. Wang, C. Cheng, Y. Meng, Z. Qian, X. Ning, L. Si, M. Wu, Y. Yao, Investigation of radioactive radon daughters removal methods from copper surface. Nucl. Tech. 44(2), 20502–020502 (2021). https://doi.org/10.11889/j.0253-3219.2021.hjs.44.020502

    Article  Google Scholar 

  19. Z. Qian, et al., Low radioactive material screening and background control for the PandaX-4T experiment (2021) arXiv:2112.02892 [physics.ins-det]

  20. S. Liu, C. Feng, C. Li, J. Dong, H. Chen, Z. Chen, J. Pan, Development of the front-end electronics for PandaX-III prototype TPC. IEEE Trans. Nucl. Sci. 66(7), 1123–1129 (2019). https://doi.org/10.1109/TNS.2019.2907125. arXiv:1806.09257 [physics.ins-det]

    Article  ADS  Google Scholar 

  21. S. Anvar, P. Baron, B. Blank, J. Chavas, E. Delagnes, F. Druillole, P. Hellmuth, L. Nalpas, J.L. Pedroza, J. Pibernat, E. Pollacco, A. Rebii, N. Usher, Aget, the get front-end ASIC, for the readout of the time projection chambers used in nuclear physic experiments. In: 2011 IEEE Nuclear Science Symposium Conference Record, pp. 745–749 (2011). https://doi.org/10.1109/NSSMIC.2011.6154095

  22. R. Veenhof, Garfield, a drift chamber simulation program. Conf. Proc. C 9306149, 66–71 (1993)

    Google Scholar 

  23. R. Veenhof, Garfield - simulation of gaseous detectors. https://garfield.web.cern.ch/garfield/ (2010)

  24. M. Oreglia, A study of the reactions \(\psi ^\prime \rightarrow \gamma \gamma \psi \). Phd thesis, Stanford University (1980)

  25. K. Altenmüller et al., REST-for-Physics, a ROOT-based framework for event oriented data analysis and combined Monte Carlo response. Comput. Phys. Commun. 273, 108281 (2022). https://doi.org/10.1016/j.cpc.2021.108281. arXiv:2109.05863 [physics.comp-ph]

    Article  Google Scholar 

  26. ORTEC Part No. 932505: Alpha Mega Ensemble–Integrated Alpha Spectrometer Hardware User’s Manual. https://www.ortec-online.com/-/media/ametekortec/manuals/a/alpha-duo-mega-ensemble-mnl.pdf

  27. S. Agostinelli et al., GEANT4-a simulation toolkit. Nucl. Instrum. Meth. A 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  28. XIA: UltraLo-1800 alpha particle counter. https://xia.com/products/ultralo-1800/

Download references

Acknowledgements

This work was supported by the grant from the Ministry of Science and Technology of China (No. 2016YFA0400302) and the grant U1965201 from the National Natural Sciences Foundation of China. We appreciate the support from the Chinese Academy of Sciences Center for Excellence in Particle Physics (CCEPP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Han.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, H., Du, C., Han, K. et al. A gaseous time projection chamber with Micromegas readout for low-radioactive material screening. Radiat Detect Technol Methods 7, 90–99 (2023). https://doi.org/10.1007/s41605-022-00364-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-022-00364-y

Keywords

Navigation