Skip to main content
Log in

Physico-chemical characterization and in vitro biological study of manganese doped β-tricalcium phosphate-based ceramics for bone regeneration applications

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

This work evaluates the effects of manganese (Mn) doping on the morpho-structural features, mechanical performance, and in vitro biological response of beta-tricalcium phosphate (β-TCP) derived bioceramics for bone tissue engineering applications. Five different Mn doping levels (i.e., 0.01%, 0.05%, 0.1%, 0.5%, and 1 wt.%) were investigated, with the β-TCP-based bioceramics being sintered at four temperatures (i.e., 1000, 1100, 1200, and 1300 °C). A densification improvement was induced when using Mn in excess of 0.05 wt.%; the densification remained stationary in the sintering temperature range of 1200 − 1300 °C. The structural analyses evidenced that all samples sintered at 1000 and 1100 °C were composed of β-TCP as major phase and hydroxyapatite (HA) as a minor constituent (~ 4–6 wt.%). At the higher temperatures (1200 and 1300 °C), the formation of α-TCP was signalled at the expense of both β-TCP and HA. The Mn doping was evidenced by lattice parameters changes. The evolution of the phase weights is linked to a complex inter-play between the capacity of the compounds to incorporate Mn and the thermal decomposition kinetics. The Mn doping induced a reduction in the mechanical performance (in terms of compressive strength, Vickers hardness and elastic modulus) of the β-TCP-based ceramics. The metabolic activity and viability of osteoblastic cells (MC3T3-E1) for the ceramics were studied in both powder and compacted pellet form. Ceramics with Mn doping levels lower than 0.1 wt.% yielded a more favorable microenvironment for the osteoblast cells with respect to the undoped β-TCP. No cytotoxic effects were recorded up to 21 days. The Mn-doped β-TCPs showed a significant increase (p < 0.01) in alkaline phosphatase activity with respect to pure β-TCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dayer, S.R., Mears, S.C., Pangle, A.K., Mendiratta, P., Wei, J.Y., Azhar, G.: Does superior bone health promote a longer lifespan? Geriatr. Orthop. Surg. Rehabil. 12, 215145932110362 (2021). https://doi.org/10.1177/21514593211036231

    Article  Google Scholar 

  2. Salari, N., Darvishi, N., Bartina, Y., Larti, M., Kiaei, A., Hemmati, M., Shohaimi, S., Mohammadi, M.: Global prevalence of osteoporosis among the world older adults: a comprehensive systematic review and meta-analysis. J. Orthop. Surg. Res. 16, 669 (2021). https://doi.org/10.1186/s13018-021-02821-8

    Article  Google Scholar 

  3. Oden, A., Dawson, A., Dere, W., Johnell, O., Jonsson, B., Kanis, J.A.: Lifetime risk of hip fractures is underestimated. Osteoporos. Int. 8, 599–603 (1998). https://doi.org/10.1007/s001980050105

    Article  CAS  Google Scholar 

  4. World Health Organization - Life expencancy and healthy life expectancy, (2022). https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-life-expectancy-and-healthy-life-expectancy (accessed November 28, 2022).

  5. Koons, G.L., Diba, M., Mikos, A.G.: Materials design for bone-tissue engineering. Nat. Rev. Mater. 5, 584–603 (2020). https://doi.org/10.1038/s41578-020-0204-2

    Article  CAS  Google Scholar 

  6. Qu, H., Fu, H., Han, Z., Sun, Y.: Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 9, 26252–26262 (2019). https://doi.org/10.1039/C9RA05214C

    Article  CAS  Google Scholar 

  7. Tang, G., Liu, Z., Liu, Y., Yu, J., Wang, X., Tan, Z., Ye, X.: Recent trends in the development of bone regenerative biomaterials. Front. Cell Dev. Biol. 9, 665813 (2021). https://doi.org/10.3389/fcell.2021.665813

    Article  Google Scholar 

  8. Montoya, C., Du, Y., Gianforcaro, A.L., Orrego, S., Yang, M., Lelkes, P.I.: On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook. Bone Res. 9, 12 (2021). https://doi.org/10.1038/s41413-020-00131-z

    Article  CAS  Google Scholar 

  9. Jeong, J., Kim, J.H., Shim, J.H., Hwang, N.S., Heo, C.Y.: Bioactive calcium phosphate materials and applications in bone regeneration. Biomater. Res. 23, 4 (2019). https://doi.org/10.1186/s40824-018-0149-3

    Article  Google Scholar 

  10. Lu, J., Yu, H., Chen, C.: Biological properties of calcium phosphate biomaterials for bone repair: A review. RSC Adv. 8, 2015–2033 (2018). https://doi.org/10.1039/c7ra11278e

    Article  CAS  Google Scholar 

  11. Tite, T., Popa, A.C., Balescu, L.M., Bogdan, I.M., Pasuk, I., Ferreira, J.M.F., Stan, G.E.: Cationic substitutions in hydroxyapatite: Current status of the derived biofunctional effects and their in vitro interrogation methods. Materials (Basel). 11, 2081 (2018). https://doi.org/10.3390/ma11112081

    Article  CAS  Google Scholar 

  12. Wang, L., Nancollas, G.H.: Calcium orthophosphates: Crystallization and dissolution. Chem. Rev. 108, 4628–4669 (2008). https://doi.org/10.1021/cr0782574

    Article  CAS  Google Scholar 

  13. Dorozhkin, S.V.: Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter. 1, 121–164 (2011). https://doi.org/10.4161/biom.18790

    Article  Google Scholar 

  14. Gallinetti, S., Canal, C., Ginebra, M.P.: Development and characterization of biphasic hydroxyapatite/β-TCP cements. J. Am. Ceram. Soc. 97, 1065–1073 (2014). https://doi.org/10.1111/jace.12861

    Article  CAS  Google Scholar 

  15. Bouler, J.M., Pilet, P., Gauthier, O., Verron, E.: Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomater. 53, 1–12 (2017). https://doi.org/10.1016/j.actbio.2017.01.076

    Article  CAS  Google Scholar 

  16. Basu, S., Basu, B.: Unravelling doped biphasic calcium phosphate: Synthesis to application. ACS Appl. Bio Mater. 2, 5263–5297 (2019). https://doi.org/10.1021/acsabm.9b00488

    Article  CAS  Google Scholar 

  17. Bohner, M., Santoni, B.L.G., Döbelin, N.: β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater. 113, 23–41 (2020). https://doi.org/10.1016/j.actbio.2020.06.022

    Article  CAS  Google Scholar 

  18. Carrodeguas, R.G., De Aza, S.: α-Tricalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomater. 7, 3536–3546 (2011). https://doi.org/10.1016/j.actbio.2011.06.019

    Article  CAS  Google Scholar 

  19. Safronova, T.V., Selezneva, I.I., Tikhonova, S.A., Kiselev, A.S., Davydova, G.A., Shatalova, T.B., Larionov, D.S., Rau, J.V.: Biocompatibility of biphasic α, β-tricalcium phosphate ceramics in vitro. Bioact. Mater. 5, 423–427 (2020). https://doi.org/10.1016/j.bioactmat.2020.03.007

    Article  CAS  Google Scholar 

  20. Cicek, G., Aksoy, E.A., Durucan, C., Hasirci, N.: Alpha-tricalcium phosphate (α-TCP): solid state synthesis from different calcium precursors and the hydraulic reactivity. J. Mater. Sci. Mater. Med. 22, 809–817 (2011). https://doi.org/10.1007/s10856-011-4283-x

    Article  CAS  Google Scholar 

  21. Torres, P.M.C., Abrantes, J.C.C., Kaushal, A., Pina, S., Döbelin, N., Bohner, M., Ferreira, J.M.F.: Influence of Mg-doping, calcium pyrophosphate impurities and cooling rate on the allotropic α↔β-tricalcium phosphate phase transformations. J. Eur. Ceram. Soc. 36, 817–827 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.09.037

    Article  CAS  Google Scholar 

  22. Gu, T., Shi, H., Ye, J.: Reinforcement of calcium phosphate cement by incorporating with high-strength β-tricalcium phosphate aggregates. J. Biomed. Mater. Res. - Part B Appl. Biomater. 100 B, 350–359 (2012). https://doi.org/10.1002/jbm.b.31956

    Article  CAS  Google Scholar 

  23. Eddy, Tsuchiya, A., Tsuru, K., Ishikawa, K.: Fabrication of self-setting β-TCP granular cement using β-TCP granules and sodium hydrogen sulfate solution. J. Biomater. Appl. 33, 630–636 (2018). https://doi.org/10.1177/0885328218808015

    Article  CAS  Google Scholar 

  24. Andrianjatovo, H., Jose, F., Lemaitre, J.: Effect of β-TCP granularity on setting time and strength of calcium phosphate hydraulic cements. J. Mater. Sci. Mater. Med. 7, 34–39 (1996). https://doi.org/10.1007/BF00121187

    Article  CAS  Google Scholar 

  25. Torres, P.M.C., Vieira, S.I., Cerqueira, A.R., Pina, S., da Cruz Silva, O.A.B., Abrantes, J.C.C., Ferreira, J.M.F.: Effects of Mn-doping on the structure and biological properties of β-tricalcium phosphate. J. Inorg. Biochem. 136, 57–66 (2014). https://doi.org/10.1016/j.jinorgbio.2014.03.013

    Article  CAS  Google Scholar 

  26. Wu, T., Shi, H., Liang, Y., Lu, T., Lin, Z., Ye, J.: Improving osteogenesis of calcium phosphate bone cement by incorporating with manganese doped β-tricalcium phosphate. Mater. Sci. Eng. C. 109, 110481 (2020). https://doi.org/10.1016/j.msec.2019.110481

    Article  CAS  Google Scholar 

  27. Rau, J.V., Fadeeva, I.V., Fomin, A.S., Barbaro, K., Galvano, E., Ryzhov, A.P., Murzakhanov, F., Gafurov, M., Orlinskii, S., Antoniac, I., Uskoković, V.: Sic parvis magna: Manganese-substituted tricalcium phosphate and its biophysical properties. ACS Biomater. Sci. Eng. 5, 6632–6644 (2019). https://doi.org/10.1021/acsbiomaterials.9b01528

    Article  CAS  Google Scholar 

  28. Brodziak-Dopierała, B., Kwapuliński, J., Sobczyk, K., Wiechuła, D.: The content of manganese and iron in hip joint tissue. J. Trace Elem. Med. Biol. 27, 208–212 (2013). https://doi.org/10.1016/j.jtemb.2012.12.005

    Article  CAS  Google Scholar 

  29. Kamaraj, M., Roopavath, U.K., Giri, P.S., Ponnusamy, N.K., Rath, S.N.: Modulation of 3D printed calcium-deficient apatite constructs with varying Mn concentrations for osteochondral regeneration via endochondral differentiation. ACS Appl. Mater. Interfaces. 14, 23245–23259 (2022). https://doi.org/10.1021/acsami.2c05110

    Article  CAS  Google Scholar 

  30. Bae, Y.-J., Kim, M.-H.: Manganese supplementation improves mineral density of the spine and femur and serum osteocalcin in rats. Biol. Trace Elem. Res. 124, 28–34 (2008). https://doi.org/10.1007/s12011-008-8119-6

    Article  CAS  Google Scholar 

  31. Strause, L., Saltman, P., Glowacki, J.: The effect of deficiencies of manganese and copper on osteoinduction and on resorption of bone particles in rats. Calcif. Tissue Int. 41, 145–150 (1987). https://doi.org/10.1007/BF02563794

    Article  CAS  Google Scholar 

  32. Hreha, J., Wey, A., Cunningham, C., Krell, E.S., Brietbart, E.A., Paglia, D.N., Montemurro, N.J., Nguyen, D.A., Lee, Y.J., Komlos, D., Lim, E., Benevenia, J., O’Connor, J.P., Lin, S.S.: Local manganese chloride treatment accelerates fracture healing in a rat model. J. Orthop. Res. 33, 122–130 (2015). https://doi.org/10.1002/jor.22733

    Article  CAS  Google Scholar 

  33. Pabbruwe, M.B., Standard, O.C., Sorrell, C.C., Howlett, C.R.: Bone formation within alumina tubes: Effect of calcium, manganese, and chromium dopants. Biomaterials 25, 4901–4910 (2004). https://doi.org/10.1016/j.biomaterials.2004.01.005

    Article  CAS  Google Scholar 

  34. Bracci, B., Torricelli, P., Panzavolta, S., Boanini, E., Giardino, R., Bigi, A.: Effect of Mg2+, Sr2+, and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. J. Inorg. Biochem. 103, 1666–1674 (2009). https://doi.org/10.1016/j.jinorgbio.2009.09.009

    Article  CAS  Google Scholar 

  35. Barrioni, B.R., Norris, E., Li, S., Naruphontjirakul, P., Jones, J.R., de Pereira, M.M.: Osteogenic potential of sol–gel bioactive glasses containing manganese. J. Mater. Sci. Mater. Med. 30, 86 (2019). https://doi.org/10.1007/s10856-019-6288-9

    Article  CAS  Google Scholar 

  36. Wołonciej, M., Milewska, E., Roszkowska-Jakimiec, W.: Trace elements as an activator of antioxidant enzymes. Postepy Hig. Med. Dosw. 70, 1483–1498 (2016). https://doi.org/10.5604/17322693.1229074

    Article  Google Scholar 

  37. Saltman, P.D., Strause, L.G.: The role of trace minerals in osteoporosis. J. Am. Coll. Nutr. 12, 384–389 (1993). https://doi.org/10.1080/07315724.1993.10718327

    Article  CAS  Google Scholar 

  38. Zea, C.J., Camci-Unal, G., Pohl, N.L.: Thermodynamics of binding of divalent magnesium and manganese to uridine phosphates: Implications for diabetes-related hypomagnesaemia and carbohydrate biocatalysis. Chem. Cent. J. 2(15), 1–7 (2008). https://doi.org/10.1186/1752-153X-2-15

    Article  CAS  Google Scholar 

  39. Li, J., Deng, C., Liang, W., Kang, F., Bai, Y., Ma, B., Wu, C., Dong, S.: Mn-containing bioceramics inhibit osteoclastogenesis and promote osteoporotic bone regeneration via scavenging ROS. Bioact. Mater. 6, 3839–3850 (2021). https://doi.org/10.1016/j.bioactmat.2021.03.039

    Article  CAS  Google Scholar 

  40. Röllin, H.B., Nogueira, C.M.C.A.: Manganese: Environmental pollution and health effects, Encycl. Environ. Heal. 617–629 (2011).https://doi.org/10.1016/B978-0-444-52272-6.00540-7

  41. Clegg, M.S., Donovan, S.M., Monaco, M.H., Baly, D.L., Ensunsa, J.L., Keen, C.L.: The influence of manganese deficiency on serum IGF-1 and IGF binding proteins in the male rat. Proc. Soc. Exp. Biol. Med. 219, 41–47 (1998). https://doi.org/10.3181/00379727-219-44314

    Article  CAS  Google Scholar 

  42. Rondanelli, M., Faliva, M.A., Peroni, G., Infantino, V., Gasparri, C., Iannello, G., Perna, S., Riva, A., Petrangolini, G., Tartara, A.: Essentiality of manganese for bone health: An overview and update. Nat. Prod. Commun. 16, 1934578X2110166 (2021). https://doi.org/10.1177/1934578X211016649

    Article  Google Scholar 

  43. Khatik, R., Wang, Z., Li, F., Zhi, D., Kiran, S., Dwivedi, P., Xu, R.X., Liang, G., Qiu, B., Yang, Q.: “Magnus nano-bullets” as T1/T2 based dual-modal for in vitro and in vivo MRI visualization, Nanomedicine Nanotechnology. Biol. Med. 15, 264–273 (2019). https://doi.org/10.1016/j.nano.2018.10.005

    Article  CAS  Google Scholar 

  44. Park, S., Choi, J., Doan, V.H.M., O, S.H.: Biodegradable manganese-doped hydroxyapatite antitumor adjuvant as a promising photo-therapeutic for cancer treatment. Front. Mol. Biosci. 9, 1085458 (2022). https://doi.org/10.3389/fmolb.2022.1085458

    Article  CAS  Google Scholar 

  45. Pang, L., Zhao, R., Chen, J., Ding, J., Chen, X., Chai, W., Cui, X., Li, X., Wang, D., Pan, H.: Osteogenic and anti-tumor Cu and Mn-doped borosilicate nanoparticles for syncretic bone repair and chemodynamic therapy in bone tumor treatment. Bioact. Mater. 12, 1–15 (2022). https://doi.org/10.1016/j.bioactmat.2021.10.030

    Article  CAS  Google Scholar 

  46. Fu, L.H., Hu, Y.R., Qi, C., He, T., Jiang, S., Jiang, C., He, J., Qu, J., Lin, J., Huang, P.: Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano 13, 13985–13994 (2019). https://doi.org/10.1021/acsnano.9b05836

    Article  CAS  Google Scholar 

  47. Rau, J.V., De Bonis, A., Teghil, R., Curcio, M., Fadeeva, I.V., Barbaro, K., Di Menno Di, M., Bucchianico, M., Fosca, Y.Z.: Double substituted with manganese and strontium tricalcium phosphate coatings on zinc-lithium biodegradable alloys for biomedical implant applications. Coatings 13, 36 (2022). https://doi.org/10.3390/coatings13010036

    Article  CAS  Google Scholar 

  48. Racette, B.A.: Manganism in the 21st century: The Hanninen lecture. Neurotoxicology 45, 201–207 (2014). https://doi.org/10.1016/j.neuro.2013.09.007

    Article  CAS  Google Scholar 

  49. de Moura, T.C., Afadlal, S., Hazell, A.S.: Potential for stem cell treatment in manganism. Neurochem. Int. 112, 134–145 (2018). https://doi.org/10.1016/j.neuint.2017.10.005

    Article  CAS  Google Scholar 

  50. O’Neill, R., McCarthy, H.O., Montufar, E.B., Ginebra, M.P., Wilson, D.I., Lennon, A., Dunne, N.: Critical review: Injectability of calcium phosphate pastes and cements. Acta Biomater. 50, 1–19 (2017). https://doi.org/10.1016/j.actbio.2016.11.019

    Article  CAS  Google Scholar 

  51. Souza, T.L., Batschauer, A.R., Brito, P.M., Martino-Andrade, A.J., Ortolani-Machado, C.F.: Evaluation of testicular structure in mice after exposure to environmentally relevant doses of manganese during critical windows of development. Ecotoxicol. Environ. Saf. 207, 111537 (2021). https://doi.org/10.1016/j.ecoenv.2020.111537

    Article  CAS  Google Scholar 

  52. Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969). https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  53. Ryu, H.-S., Youn, H.-J., Sun Hong, K., Chang, B.-S., Lee, C.-K., Chung, S.-S.: An improvement in sintering property of β-tricalcium phosphate by addition of calcium pyrophosphate. Biomaterials. 23, 909–914 (2002). https://doi.org/10.1016/S0142-9612(01)00201-0

    Article  CAS  Google Scholar 

  54. Turan, Y., Kalkandelen, C., Palaci, Y., Sahin, A., Gokce, H., Gunduz, O., Ben-Nissan, B.: Synthesis and cytotoxicity analysis of porous β-TCP/starch bioceramics. J. Aust. Ceram. Soc. 58, 487–494 (2022). https://doi.org/10.1007/s41779-022-00702-9

    Article  CAS  Google Scholar 

  55. Jillavenkatesa, A., Condrate, R.A.: The infrared and raman spectra of β-and α-tricalcium phosphate (Ca 3 (Po 4) 2). Spectrosc. Lett. 31, 1619–1634 (1998). https://doi.org/10.1080/00387019808007439

    Article  CAS  Google Scholar 

  56. Topsakal, A., Ekren, N., Kilic, O., Oktar, F.N., Mahirogullari, M., Ozkan, O., Sasmazel, H.T., Turk, M., Bogdan, I.M., Stan, G.E., Gunduz, O.: Synthesis and characterization of antibacterial drug loaded β-tricalcium phosphate powders for bone engineering applications. J. Mater. Sci. Mater. Med. 31, 16 (2020). https://doi.org/10.1007/s10856-019-6356-1

    Article  CAS  Google Scholar 

  57. Sinusaite, L., Kareiva, A., Zarkov, A.: Thermally induced crystallization and phase evolution of amorphous calcium phosphate substituted with divalent cations having different sizes. Cryst. Growth Des. 21, 1242–1248 (2021). https://doi.org/10.1021/acs.cgd.0c01534

    Article  CAS  Google Scholar 

  58. Szurkowska, K., Szeleszczuk, Ł, Kolmas, J.: Effects of synthesis conditions on the formation of Si-substituted alpha tricalcium phosphates. Int. J. Mol. Sci. 21, 9164 (2020). https://doi.org/10.3390/ijms21239164

    Article  CAS  Google Scholar 

  59. Seifert, A., Groll, J., Weichhold, J., Boehm, A.V., Müller, F.A., Gbureck, U.: Phase conversion of ice-templated α-tricalcium phosphate scaffolds into low-temperature calcium phosphates with anisotropic open porosity. Adv. Eng. Mater. 23, 2001417 (2021). https://doi.org/10.1002/adem.202001417

    Article  CAS  Google Scholar 

  60. Matsunaga, K., Kubota, T., Toyoura, K., Nakamura, A.: First-principles calculations of divalent substitution of Ca2+ in tricalcium phosphates. Acta Biomater. 23, 329–337 (2015). https://doi.org/10.1016/j.actbio.2015.05.014

    Article  CAS  Google Scholar 

  61. Gibson, I.R., Rehman, I., Best, S.M., Bonfield, W.: Characterization of the transformation from calcium-deficient apatite to β-tricalcium phosphate. J. Mater. Sci. Mater. Med. 11, 533–539 (2000). https://doi.org/10.1023/A:1008961816208

    Article  CAS  Google Scholar 

  62. Sinusaite, L., Renner, A.M., Schütz, M.B., Antuzevics, A., Rogulis, U., Grigoraviciute-Puroniene, I., Mathur, S., Zarkov, A.: Effect of Mn doping on the low-temperature synthesis of tricalcium phosphate (TCP) polymorphs. J. Eur. Ceram. Soc. 39, 3257–3263 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.03.057

    Article  CAS  Google Scholar 

  63. Renaudin, G., Gomes, S., Nedelec, J.-M.: First-row transition metal doping in calcium phosphate bioceramics: A detailed crystallographic study. Materials (Basel). 10, 92 (2017). https://doi.org/10.3390/ma10010092

    Article  CAS  Google Scholar 

  64. Tian, Y., Lu, T., He, F., Xu, Y., Shi, H., Shi, X., Zuo, F., Wu, S., Ye, J.: β-tricalcium phosphate composite ceramics with high compressive strength, enhanced osteogenesis and inhibited osteoclastic activities. Colloids Surf. B Biointerfaces. 167, 318–327 (2018). https://doi.org/10.1016/j.colsurfb.2018.04.028

    Article  CAS  Google Scholar 

  65. Lüthen, F., Bulnheim, U., Müller, P.D., Rychly, J., Jesswein, H., Nebe, J.G.B.: Influence of manganese ions on cellular behavior of human osteoblasts in vitro. Biomol. Eng. 24, 531–536 (2007). https://doi.org/10.1016/j.bioeng.2007.08.003

    Article  CAS  Google Scholar 

  66. Westhauser, F., Wilkesmann, S., Nawaz, Q., Hohenbild, F., Rehder, F., Saur, M., Fellenberg, J., Moghaddam, A., Ali, M.S., Peukert, W., Boccaccini, A.R.: Effect of manganese, zinc, and copper on the biological and osteogenic properties of mesoporous bioactive glass nanoparticles. J. Biomed. Mater. Res. Part A. 109, 1457–1467 (2021). https://doi.org/10.1002/jbm.a.37136

    Article  CAS  Google Scholar 

  67. Miola, M., Brovarone, C.V., Maina, G., Rossi, F., Bergandi, L., Ghigo, D., Saracino, S., Maggiora, M., Canuto, R.A., Muzio, G., Vernè, E.: In vitro study of manganese-doped bioactive glasses for bone regeneration. Mater. Sci. Eng. C. 38, 107–118 (2014). https://doi.org/10.1016/j.msec.2014.01.045

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.E.S. and L.M.B. are thankful for the financial support of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, in the framework of PNIII-P1-1.1-TE-2019-0463 project (within PNCDI III), as well as to Core Program of the National Institute of Materials Physics within the National Research Development and Innovation Plan 2022–2027, carried out with the support of the Romanian Ministry of Research, Innovation and Digitalization under the project PC2-PN23080101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oguzhan Gunduz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arpak, M.C., Daglilar, S., Kalkandelen, C. et al. Physico-chemical characterization and in vitro biological study of manganese doped β-tricalcium phosphate-based ceramics for bone regeneration applications. J Aust Ceram Soc 59, 969–983 (2023). https://doi.org/10.1007/s41779-023-00889-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00889-5

Keywords

Navigation