Skip to main content
Log in

Taxes Versus Tradable Permits Considering Public Environmental Awareness

  • Original Paper
  • Published:
Economics of Disasters and Climate Change Aims and scope Submit manuscript

Abstract

This paper examines the relative performance of taxes and tradable permits when public environmental awareness is taken into account in policy-making. Two sovereign regions linked by a transboundary pollutant are considered. We show when public environmental awareness in one region increases, domestic government tightens its policy setting. While for foreign government, its response is different in these two polices. Under taxes, foreign government relaxes tax rate to get a free ride; under tradable permits, it may also tighten permit supply to benefit more from the international tradable permit market. But anyway, total pollution emissions are reduced. Moreover, when public environmental awareness in one region is sufficiently large, tradable permits welfare dominates taxes. However, public environmental awareness is bounded in reality. So, we further narrow its range to match reality. It is shown for the case of global externalities, tradable permits policy is superior. While for the case of reciprocal externalities, taxes policy is superior when pollution spillover is relatively low. And with the rise of public environmental awareness, the advantage of taxes is further strengthened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The authors declare that all data supporting the findings of this study are available within the article.

Notes

  1. For ease of exposition, only two sovereign governments and two corresponding firms are considered. A model including more governments and firms is essentially the same with ours in a competitive industry, while just implies a qualitative complication.

  2. For simplicity, we don’t consider product market. It is easy to build a qualitatively equivalent model where the output is sold in a competitive market with an exogenously given price. The abatement cost functions account for the optimal output adjustment (Requate 2005).

  3. Our model mainly considers transboundary pollution caused by gas emissions. Other environmental problems, such as unidirectional externalities, aren’t covered here. In river system, pollution from up-stream region is deposited in down-stream region without any reverse pollution flows.

  4. The measuring of public environmental awareness relies on its influencing factors. The factors influenced environmental awareness includes income level of citizens, education level, government’s publicity level on environmental protection, and so on (Shen and Saijo 2008; China Environmental Awareness Program 2009).

  5. It can be easily seen that: \(\partial {\tilde{D }}_{k}({\tilde{E }}_{k},{\theta }_{k})/\partial {\theta }_{k}=\partial {D}_{k}({E}_{k},{\theta }_{k})/\partial {\theta }_{k}>0\), \(\partial {\tilde{D }}_{k}({\tilde{E }}_{k},{\theta }_{k})/\partial {\tilde{E }}_{k}=2\partial {D}_{k}({E}_{k},{\theta }_{k})/\partial {E}_{k}>0\), \({\partial }^{2}{\tilde{D }}_{k}({\tilde{E }}_{k},{\theta }_{k})/\partial {\tilde{E }}_{k}^{2}=4{\partial }^{2}{D}_{k}({E}_{k},{\theta }_{k})/\partial {E}_{k}^{2}\ge 0\), \({\partial }^{2}{\tilde{D }}_{k}({\tilde{E }}_{k},{\theta }_{k})/\partial {\tilde{E }}_{k}\partial {\theta }_{k}=2{\partial }^{2}{D}_{k}({E}_{k},{\theta }_{k})/\partial {E}_{k}\partial {\theta }_{k}>0\) for \({\tilde{E }}_{k},{\theta }_{k}>0\).

  6. Since \({E}_{i}=\alpha {e}_{i}({t}_{i})+(1-\beta ){e}_{j}({t}_{j})\) and \({E}_{j}=(1-\alpha ){e}_{i}({t}_{i})+\beta {e}_{j}({t}_{j})\), they can be implicitly defined as \({E}_{i}({t}_{i},{t}_{j})\) and \({E}_{j}({t}_{i},{t}_{j})\) respectively.

  7. To ensure the interior solutions hold, we suppose the second-order conditions satisfy: \(\frac{{\partial }^{2}S{C}_{i}}{\partial {a}_{i}^{2}}>0\), \(\frac{{\partial }^{2}S{C}_{j}}{\partial {a}_{j}^{2}}>0\) and \(\frac{{\partial }^{2}S{C}_{i}}{\partial {a}_{i}^{2}}\frac{{\partial }^{2}S{C}_{j}}{\partial {a}_{j}^{2}}-\frac{{\partial }^{2}S{C}_{i}}{\partial {a}_{i}\partial {a}_{j}}\frac{{\partial }^{2}S{C}_{j}}{\partial {a}_{j}\partial {a}_{i}}>0\).

References

  • Adar Z (1976) Uncertainty and the choice of pollution control instruments. J Environ Econ Manag 3(3):178–188

    Article  Google Scholar 

  • Aidt TS (2005) The rise of environmentalism, pollution taxes and intra-industry trade. Econ Gov 6:1–12

    Article  Google Scholar 

  • Ambec S, Coria J (2013) Prices vs quantities with multiple pollutants. J Environ Econ Manag 66:123–140

    Article  Google Scholar 

  • Akao KI, Managi S (2013) A Tradable Permit System in an Intertemporal Economy. Environ Resour Econ 55:309–336

    Article  Google Scholar 

  • China Environmental Awareness Program (2008) 2007 National environmental public awareness survey. World Environ 2(2):72–77 (in Chinese)

    Google Scholar 

  • Conconi P (2003) Green lobbies and transboundary pollution in large open economies. J Int Econ 59:399–422

    Article  Google Scholar 

  • Eurobarometer S (2017) Attitudes of European citizens towards the environment. Eur Comm 468

  • Fowlie M, Muller N (2019) Market-based emissions regulation when damages vary across sources: what are the gains from differentiation? J Assoc Environ Reso Economists 6(3):593–632

    Google Scholar 

  • Ham M, Mrčela D, Horvat M (2016) Insights for measuring environmental awareness. Ekon Vjesn 29(1):159–176

    Google Scholar 

  • Hamilton S, Requate T (2012) Emissions standards and ambient environmental quality standards with stochastic environmental services. J Environ Econ Manag 64:377–389

    Article  Google Scholar 

  • Holland S, Yates A (2015) Optimal trading ratios for pollution permit markets. J Public Econ 125:16–27

    Article  Google Scholar 

  • Ishikawa J, Kiyono K (2006) Greenhouse-gas emission controls in an open economy. Int Econ Rev 47(2):431–450

    Article  Google Scholar 

  • Jacobsen M, Lariviere J, Price M (2017) Public policy and the private provision of public goods under heterogeneous preferences. J Assoc Environ Reso 4(1):243–280

    Google Scholar 

  • MacKenzie IA (2011) Tradable permit allocations and sequential choice. Resour Energy Econ 33(1):268–278

    Article  Google Scholar 

  • Muller N, Mendelsohn R (2009) Efficient pollution regulation: getting the prices right. Am Econ Rev 99(5):1714–1739

    Article  Google Scholar 

  • Nkuiya B, Plantinga AJ (2021) Strategic pollution control under free trade. Resour Energy Econ 64:101218

  • Program CEA (2009) Discussion on research methodology of China public environmental literacy evaluation indicator system. World Environ 5:69–72 (in Chinese)

    Google Scholar 

  • Requate T (2005) Dynamic incentives by environmental policy instruments—a survey. Ecol Econ 54(2/3):175–195

    Article  Google Scholar 

  • Shen J, Saijo T (2008) Reexamining the relations between socio-demographic characteristics and individual environmental concern: Evidence from Shanghai data. J Environ Psychol 28(1):42–50

    Article  Google Scholar 

  • Weitzman M (1974) Prices vs. Quantities. Rev Econ Stud 41(4):477–491

    Article  Google Scholar 

  • Weitzman M (1978) Optimal rewards for economic regulation. Am Econ Rev 68(4):683–691

    Google Scholar 

  • Wichman C (2016) Incentives, green preferences, and private provision of impure public goods. J Environ Econ Manag 79:208–220

    Article  Google Scholar 

  • Yates A (2012) On a fundamental advantage of permits over taxes for the control of pollution. Environ Resour Econ 51:583–598

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Philosophy and Social Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 2019SJA0263).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

This appendix contains the proofs of all propositions.

Proof of Proposition 1

Rewrite the first-order conditions (2) and (3) as:

$$\frac{\partial {C}_{i}({e}_{i})}{\partial {e}_{i}}+\alpha \frac{\partial {D}_{i}({E}_{i},{\theta }_{i})}{\partial {E}_{i}}+(1-\alpha )\frac{\partial {D}_{j}\left({E}_{j},{\theta }_{j}\right)}{\partial {E}_{j}}=0,$$
(23)
$$\frac{\partial {C}_{j}({e}_{j})}{\partial {e}_{j}}+(1-\beta )\frac{\partial {D}_{i}\left({E}_{i},{\theta }_{i}\right)}{\partial {E}_{i}}+\beta \frac{\partial {D}_{j}\left({E}_{j},{\theta }_{j}\right)}{\partial {E}_{j}}=0.$$
(24)

For ease of exposition, the left sides of Eqs. (23) and (24) are denoted by \({\Phi }_{1}(\cdot )\) and \({\Phi }_{2}(\cdot )\), respectively. Differentiating Eqs. (23) and (24) with respect to \({\theta }_{i}\), and using the implicit function theorem, we obtain:

$$\frac{\partial {e}_{i}}{\partial {\theta }_{i}}=-\frac{\left|{\Lambda }_{1,{\theta }_{i}}\right|}{\left|H\right|},\frac{\partial {e}_{j}}{\partial {\theta }_{i}}=-\frac{\left|{\Lambda }_{2,{\theta }_{i}}\right|}{\left|H\right|},$$
(25)

where \(H\) is the Hessian Matrix of the system, and \({\Lambda }_{n,{\theta }_{i}}\) is the matrix which is acquired through replacing the \({n}_{th}\) column of the Hessian by the first derivatives with respect to \({\theta }_{i}\).

$$\begin{array}{c}\left|H\right|=\begin{vmatrix}\frac{\partial\Phi_1}{\partial e_i}\frac{\partial\Phi_1}{\partial e_j}\\\frac{\partial\Phi_2}{\partial e_i}\frac{\partial\Phi_2}{\partial e_j}\end{vmatrix}=\frac{\partial^2C_i}{\partial e_i^2}(\frac{\partial^2C_j}{\partial e_j^2}+\left(1-\beta\right)^2\frac{\partial^2D_i}{\partial E_i^2}+\beta^2\frac{\partial^2D_j}{\partial E_j^2})+\frac{\partial^2C_j}{\partial e_j^2}(\alpha^2\frac{\partial^2D_i}{\partial E_i^2}+\left(1-\alpha\right)^2\frac{\partial^2D_j}{\partial E_j^2})\\+\left(\alpha+\beta-1\right)^2\frac{\partial^2D_i}{\partial E_i^2}\frac{\partial^2D_j}{\partial E_j^2}>0,\end{array}$$
(26)
$$\left|{\Lambda }_{1,{\theta }_{i}}\right|=\left|\begin{array}{c}\frac{\partial {\Phi }_{1}}{\partial {\theta }_{i}}\frac{\partial {\Phi }_{1}}{\partial {e}_{j}}\\ \frac{\partial {\Phi }_{2}}{\partial {\theta }_{i}}\frac{\partial {\Phi }_{2}}{\partial {e}_{j}}\end{array}\right|=\frac{{\partial }^{2}{D}_{i}}{\partial {E}_{i}\partial {\theta }_{i}}(\alpha \frac{{\partial }^{2}{C}_{j}}{\partial {e}_{j}^{2}}+\beta (\alpha +\beta -1)\frac{{\partial }^{2}{D}_{j}}{\partial {E}_{j}^{2}})>0,$$
(27)
$$\left|{\Lambda }_{2,{\theta }_{i}}\right|=\left|\begin{array}{c}\frac{\partial {\Phi }_{1}}{\partial {e}_{i}}\frac{\partial {\Phi }_{1}}{\partial {\theta }_{i}}\\ \frac{\partial {\Phi }_{2}}{\partial {e}_{i}}\frac{\partial {\Phi }_{2}}{\partial {\theta }_{i}}\end{array}\right|=\frac{{\partial }^{2}{D}_{i}}{\partial {E}_{i}\partial {\theta }_{i}}\left(\left(1-\beta \right)\frac{{\partial }^{2}{C}_{i}}{\partial {e}_{i}^{2}}+\left(1-\alpha \right)\left(1-\alpha -\beta \right)\frac{{\partial }^{2}{D}_{j}}{\partial {E}_{j}^{2}}\right).$$
(28)

Since \(1/2\le \alpha ,\beta <1\), it is obvious that \(\left|H\right|>0\) and \(\left|{\Lambda }_{1,{\theta }_{i}}\right|>0\), which implies \(\frac{\partial {e}_{i}}{\partial {\theta }_{i}}<0\). And if \(\alpha =\beta =1/2\), then \(\left|{\Lambda }_{2,{\theta }_{i}}\right|>0\) implying \(\frac{\partial {e}_{j}}{\partial {\theta }_{i}}<0\); if \(1/2<\alpha ,\beta <1\), \(\left|{\Lambda }_{2,{\theta }_{i}}\right|>0\) is established when and only when \(\beta <\frac{\frac{{\partial }^{2}{C}_{i}}{\partial {e}_{i}^{2}}+{(1-\alpha )}^{2}\frac{{\partial }^{2}{D}_{j}}{\partial {E}_{j}^{2}}}{\frac{{\partial }^{2}{C}_{i}}{\partial {e}_{i}^{2}}+(1-\alpha )\frac{{\partial }^{2}{D}_{j}}{\partial {E}_{j}^{2}}}\).

Proof of Proposition 2

According to Eqs. (25)-(28), we can obtain:

$$\frac{\partial E}{\partial {\theta }_{i}}=\frac{\partial {e}_{i}}{\partial {\theta }_{i}}+\frac{\partial {e}_{j}}{\partial {\theta }_{i}}=-\frac{\left(\left(1-\beta \right)\frac{{\partial }^{2}{C}_{i}}{\partial {e}_{i}^{2}}+\alpha \frac{{\partial }^{2}{C}_{j}}{\partial {e}_{j}^{2}}+{\left(\alpha +\beta -1\right)}^{2}\frac{{\partial }^{2}{D}_{j}}{\partial {E}_{j}^{2}}\right)\frac{{\partial }^{2}{D}_{i}}{\partial {E}_{i}\partial {\theta }_{i}}}{\left|H\right|}<0.$$
$$\frac{\partial {E}_{i}}{\partial {\theta }_{i}}=\alpha \frac{\partial {e}_{i}}{\partial {\theta }_{i}}+(1-\beta )\frac{\partial {e}_{j}}{\partial {\theta }_{i}}=-\frac{\left({\left(1-\beta \right)}^{2}\frac{{\partial }^{2}{C}_{i}}{\partial {e}_{i}^{2}}+{\alpha }^{2}\frac{{\partial }^{2}{C}_{j}}{\partial {e}_{j}^{2}}+{\left(\alpha +\beta -1\right)}^{2}\frac{{\partial }^{2}{D}_{j}}{\partial {E}_{j}^{2}}\right)\frac{{\partial }^{2}{D}_{i}}{\partial {E}_{i}\partial {\theta }_{i}}}{\left|H\right|}<0.$$
$$\frac{\partial {E}_{j}}{\partial {\theta }_{i}}=(1-\alpha )\frac{\partial {e}_{i}}{\partial {\theta }_{i}}+\beta \frac{\partial {e}_{j}}{\partial {\theta }_{i}}=-\frac{(\beta (1-\beta )\frac{{\partial }^{2}{C}_{i}}{\partial {e}_{i}^{2}}+\alpha (1-\alpha )\frac{{\partial }^{2}{C}_{j}}{\partial {e}_{j}^{2}})\frac{{\partial }^{2}{D}_{i}}{\partial {E}_{i}\partial {\theta }_{i}}}{\left|H\right|}<0.$$

Proof of Proposition 3

Rewrite Eqs. (12) and (13) as:

$${t}_{i}-\alpha \frac{\partial {D}_{i}\left({E}_{i}\left({t}_{i},{t}_{j}\right),{\theta }_{i}\right)}{\partial {E}_{i}}=0,$$
(29)
$${t}_{j}-\beta \frac{\partial {D}_{j}\left({E}_{j}\left({t}_{i},{t}_{j}\right),{\theta }_{j}\right)}{\partial {E}_{j}}=0.$$
(30)

Similar to the proving process of Proposition 1, differentiate Eqs. (29) and (30) with respect to \(\theta_{i}\), and use the implicit function theorem:

$$\frac{\partial {t}_{i}}{\partial {\theta }_{i}}=\frac{\alpha \frac{{\partial }^{2}{D}_{i}}{\partial {E}_{i}\partial {\theta }_{i}}(1+\frac{{\beta }^{2}}{{\partial }^{2}{C}_{j}/\partial {e}_{j}^{2}}\frac{{\partial }^{2}{D}_{j}}{\partial {E}_{j}^{2}})}{\left|{H}_{t}\right|},$$
(31)
$$\frac{\partial {t}_{j}}{\partial {\theta }_{i}}=-\frac{\frac{\alpha \beta \left(1-\alpha \right)}{{\partial }^{2}{C}_{i}/\partial {e}_{i}^{2}}\frac{{\partial }^{2}{D}_{i}}{\partial {E}_{i}\partial {\theta }_{i}}\frac{{\partial }^{2}{D}_{j}}{\partial {E}_{j}^{2}}}{\left|{H}_{t}\right|},$$
(32)
$$\left|{H}_{t}\right|=1+\frac{{\alpha }^{2}}{{\partial }^{2}{C}_{i}/\partial {e}_{i}^{2}}\frac{{\partial }^{2}{D}_{i}}{\partial {E}_{i}^{2}}+\frac{{\beta }^{2}}{{\partial }^{2}{C}_{j}/\partial {e}_{j}^{2}}\frac{{\partial }^{2}{D}_{j}}{\partial {E}_{j}^{2}}+\frac{\alpha \beta }{{\partial }^{2}{C}_{i}/\partial {e}_{i}^{2}}\frac{\alpha +\beta -1}{{\partial }^{2}{C}_{j}/\partial {e}_{j}^{2}}\frac{{\partial }^{2}{D}_{i}}{\partial {E}_{i}^{2}}\frac{{\partial }^{2}{D}_{j}}{\partial {E}_{j}^{2}}>0.$$

Thus, we can obtain: \(\frac{\partial {t}_{i}}{\partial {\theta }_{i}}>0\) and \(\frac{\partial {t}_{j}}{\partial {\theta }_{i}}<0\) for all \(\frac{1}{2}\le \alpha ,\beta <1\).

Proof of Proposition 4

Based on Eq. (6) and the results of Proposition 3, we have:

$$\frac{\partial {e}_{i}}{\partial {\theta }_{i}}=\frac{\partial {e}_{i}}{\partial {t}_{i}}\frac{\partial {t}_{i}}{\partial {\theta }_{i}}=-\frac{\frac{\alpha }{{\partial }^{2}{C}_{i}/\partial {e}_{i}^{2}}\frac{{\partial }^{2}{D}_{i}}{\partial {E}_{i}\partial {\theta }_{i}}\left(1+\frac{{\beta }^{2}}{{\partial }^{2}{C}_{j}/\partial {e}_{j}^{2}}\frac{{\partial }^{2}{D}_{j}}{\partial {E}_{j}^{2}}\right)}{\left|{H}_{t}\right|}<0,$$
$$\frac{\partial {e}_{j}}{\partial {\theta }_{i}}=\frac{\partial {e}_{j}}{\partial {t}_{j}}\frac{\partial {t}_{j}}{\partial {\theta }_{i}}=\frac{\frac{\alpha \beta }{{\partial }^{2}{C}_{i}/\partial {e}_{i}^{2}}\frac{1-\alpha }{{\partial }^{2}{C}_{j}/\partial {e}_{j}^{2}}\frac{{\partial }^{2}{D}_{i}}{\partial {E}_{i}\partial {\theta }_{i}}\frac{{\partial }^{2}{D}_{j}}{\partial {E}_{j}^{2}}}{\left|{H}_{t}\right|}>0,$$
$$\frac{\partial E}{\partial {\theta }_{i}}=\frac{\partial {e}_{i}}{\partial {\theta }_{i}}+\frac{\partial {e}_{j}}{\partial {\theta }_{i}}=-\frac{\frac{\alpha }{{\partial }^{2}{C}_{i}/\partial {e}_{i}^{2}}\frac{{\partial }^{2}{D}_{i}}{\partial {E}_{i}\partial {\theta }_{i}}\left(1+\frac{\beta \left(\alpha +\beta -1\right)}{{\partial }^{2}{C}_{j}/\partial {e}_{j}^{2}}\frac{{\partial }^{2}{D}_{j}}{\partial {E}_{j}^{2}}\right)}{\left|{H}_{t}\right|}<0,$$
$$\frac{\partial {E}_{i}}{\partial {\theta }_{i}}=\alpha \frac{\partial {e}_{i}}{\partial {\theta }_{i}}+(1-\beta )\frac{\partial {e}_{j}}{\partial {\theta }_{i}}=-\frac{\frac{\alpha }{{\partial }^{2}{C}_{i}/\partial {e}_{i}^{2}}\frac{{\partial }^{2}{D}_{i}}{\partial {E}_{i}\partial {\theta }_{i}}\left(\alpha +\frac{\beta \left(\alpha +\beta -1\right)}{{\partial }^{2}{C}_{j}/\partial {e}_{j}^{2}}\frac{{\partial }^{2}{D}_{j}}{\partial {E}_{j}^{2}}\right)}{\left|{H}_{t}\right|}<0,$$
$$\frac{\partial {E}_{j}}{\partial {\theta }_{i}}=(1-\alpha )\frac{\partial {e}_{i}}{\partial {\theta }_{i}}+\beta \frac{\partial {e}_{j}}{\partial {\theta }_{i}}=-\frac{\frac{\alpha (1-\alpha )}{{\partial }^{2}{C}_{i}/\partial {e}_{i}^{2}}\frac{{\partial }^{2}{D}_{i}}{\partial {E}_{i}\partial {\theta }_{i}}}{\left|{H}_{t}\right|}<0.$$

Proof of Proposition 5

Similar to the proving process of Proposition 1, differentiate Eqs. (20) and (21) with respect to \(\theta_{i}\), and use the implicit function theorem:

$$\frac{\partial {a}_{i}}{\partial {\theta }_{i}}=-\frac{\frac{{\partial }^{2}S{C}_{i}}{\partial {a}_{i}\partial {\theta }_{i}}\frac{{\partial }^{2}S{C}_{j}}{\partial {a}_{j}^{2}}}{\left|{H}_{a}\right|},$$
(33)
$$\frac{\partial {a}_{j}}{\partial {\theta }_{i}}=\frac{\frac{{\partial }^{2}S{C}_{i}}{\partial {a}_{i}\partial {\theta }_{i}}\frac{{\partial }^{2}S{C}_{j}}{\partial {a}_{j}\partial {a}_{i}}}{\left|{H}_{a}\right|},$$
(34)
$$\frac{\partial S{C}_{i}}{\partial {a}_{i}\partial {\theta }_{i}}=\frac{{\partial }^{2}{D}_{i}}{\partial {E}_{i}\partial {\theta }_{i}}(\alpha \frac{\partial {e}_{i}}{\partial p}+(1-\beta )\frac{\partial {e}_{j}}{\partial p})\frac{\partial p}{\partial a}>0,$$
$$\begin{array}{c}\frac{\partial^2SC_j}{\partial a_j^2}=\frac{\partial^2p}{\partial a^2}(e_j-a_j)+\frac{\partial e_j}{\partial p}{(\frac{\partial p}{\partial a})}^2-2\frac{\partial p}{\partial a}+\frac{\partial^2D_j}{\partial E_j^2}{{((1-\alpha)}\frac{\partial e_i}{\partial p}+\beta\frac{\partial e_j}{\partial p})}^2{(\frac{\partial p}{\partial a})}^2\\+\frac{\partial D_j}{\partial E_j}((1-\alpha)\frac{\partial^2e_i}{\partial p^2}+\beta\frac{\partial^2e_j}{\partial p^2}){(\frac{\partial p}{\partial a})}^2+\frac{\partial D_j}{\partial E_j}((1-\alpha)\frac{\partial e_i}{\partial p}+\beta\frac{\partial e_j}{\partial p})\frac{\partial^2p}{\partial a^2}>0\end{array},$$
$$\frac{{\partial }^{2}S{C}_{j}}{\partial {a}_{j}\partial {a}_{i}}=\frac{{\partial }^{2}S{C}_{j}}{\partial {a}_{j}^{2}}+\frac{\partial p}{\partial a}=\frac{{\partial }^{2}S{C}_{j}}{\partial {a}_{j}^{2}}-\frac{\frac{{\partial }^{2}{C}_{i}}{\partial {e}_{i}^{2}}\frac{{\partial }^{2}{C}_{j}}{\partial {e}_{j}^{2}}}{\frac{{\partial }^{2}{C}_{i}}{\partial {e}_{i}^{2}}+\frac{{\partial }^{2}{C}_{j}}{\partial {e}_{j}^{2}}},$$
$$\left|{H}_{a}\right|=\frac{{\partial }^{2}S{C}_{i}}{\partial {a}_{i}^{2}}\frac{{\partial }^{2}S{C}_{j}}{\partial {a}_{j}^{2}}-\frac{{\partial }^{2}S{C}_{i}}{\partial {a}_{i}\partial {a}_{j}}\frac{{\partial }^{2}S{C}_{j}}{\partial {a}_{j}\partial {a}_{i}}>0.$$

Thus for all \(\frac{1}{2}\le \alpha ,\beta <1\), we can obtain \(\frac{\partial {a}_{i}}{\partial {\theta }_{i}}<0\), and \(\frac{\partial {a}_{j}}{\partial {\theta }_{i}}<0\) when and only when \(\frac{{\partial }^{2}S{C}_{j}}{\partial {a}_{j}^{2}}-\frac{\frac{{\partial }^{2}{C}_{i}}{\partial {e}_{i}^{2}}\frac{{\partial }^{2}{C}_{j}}{\partial {e}_{j}^{2}}}{\frac{{\partial }^{2}{C}_{i}}{\partial {e}_{i}^{2}}+\frac{{\partial }^{2}{C}_{j}}{\partial {e}_{j}^{2}}}<0\).

Proof of Proposition 6

Based on the results of Proposition 5, we have:

$$\frac{\partial a}{\partial {\theta }_{i}}=\frac{\partial {a}_{i}}{\partial {\theta }_{i}}+\frac{\partial {a}_{j}}{\partial {\theta }_{i}}=\frac{\frac{{\partial }^{2}{D}_{i}}{\partial {E}_{i}\partial {\theta }_{i}}{(\frac{\partial p}{\partial a})}^{2}(\alpha \frac{\partial {e}_{i}}{\partial p}+(1-\beta )\frac{\partial {e}_{j}}{\partial p})}{\left|{H}_{a}\right|}<0,$$
$$\frac{\partial {e}_{i}}{\partial {\theta }_{i}}=\frac{\partial {e}_{i}}{\partial p}\frac{\partial p}{\partial a}\frac{\partial a}{\partial {\theta }_{i}}<0,$$
$$\frac{\partial {e}_{j}}{\partial {\theta }_{i}}=\frac{\partial {e}_{j}}{\partial p}\frac{\partial p}{\partial a}\frac{\partial a}{\partial {\theta }_{i}}<0,$$
$$\frac{\partial E}{\partial {\theta }_{i}}=\frac{\partial a}{\partial {\theta }_{i}}<0,$$
$$\frac{\partial {E}_{i}}{\partial {\theta }_{i}}=\alpha \frac{\partial {e}_{i}}{\partial {\theta }_{i}}+(1-\beta )\frac{\partial {e}_{j}}{\partial {\theta }_{i}}<0,$$
$$\frac{\partial {E}_{j}}{\partial {\theta }_{i}}=(1-\alpha )\frac{\partial {e}_{i}}{\partial {\theta }_{i}}+\beta \frac{\partial {e}_{j}}{\partial {\theta }_{i}}<0.$$

Proof of Proposition 7

Under the optimal tax regime, it is satisfied that:

$$TSC\left({\theta }_{i},{\theta }_{j}\right)={C}_{i}\left({e}_{i}\right)+{D}_{i}\left({E}_{i},{\theta }_{i}\right)+{C}_{j}\left({e}_{j}\right)+{D}_{j}\left({E}_{j},{\theta }_{j}\right),$$
$$s.t.-\frac{\partial {C}_{i}\left({e}_{i}\right)}{\partial {e}_{i}}={t}_{i}=\alpha \frac{\partial {D}_{i}\left({E}_{i},{\theta }_{i}\right)}{\partial {E}_{i}},$$
$$-\frac{\partial {C}_{j}\left({e}_{j}\right)}{\partial {e}_{j}}={t}_{j}=\beta \frac{\partial {D}_{j}\left({E}_{j},{\theta }_{j}\right)}{\partial {E}_{j}}.$$

So it is obtained that:

$$TSC(\mathrm{0,0})=0,$$
(35)

where \({e}_{i}={e}_{i}^{\mathrm{max}}\) and \({e}_{j}={e}_{j}^{\mathrm{max}}\), since \(\frac{\partial {D}_{i}({E}_{i},0)}{\partial {E}_{i}}=0=\frac{\partial {D}_{j}({E}_{j},0)}{\partial {E}_{j}}\). That is, both firms emit their unregulated pollution levels when the public in the two regions has no awareness of environmental protection.

$$\underset{{\theta }_{i}\to \infty }{\mathrm{lim}}TSC\left({\theta }_{i},{\theta }_{j}\right)=\underset{{\theta }_{i}\to \infty }{\mathrm{lim}}\left[{C}_{i}\left(0\right)+{D}_{i}\left(\left(1-\beta \right){e}_{j},{\theta }_{i}\right)+{C}_{j}\left({e}_{j}\right)+{D}_{j}\left(\beta {e}_{j},{\theta }_{j}\right)\right]=\infty ,$$
(36)

where \({e}_{i}=0\), since \(\underset{{\theta }_{i}\to \infty }{\mathrm{lim}}\frac{\partial {D}_{i}({E}_{i},{\theta }_{i})}{\partial {E}_{i}}=\infty\) for \({E}_{i}>0\). That is, firm \(i\) wouldn’t emit any pollution when public environmental awareness in the region is extremely high.

$$\begin{array}{lcl}\frac{\partial TSC({\theta }_{i},{\theta }_{j})}{\partial {\theta }_{i}}&=&\frac{\partial {C}_{i}}{\partial {e}_{i}}\frac{\partial {e}_{i}}{\partial {\theta }_{i}}+\frac{\partial {D}_{i}({E}_{i},{\theta }_{i})}{\partial {E}_{i}}\frac{\partial {E}_{i}}{\partial {\theta }_{i}}+\frac{\partial {D}_{i}({E}_{i},{\theta }_{i})}{\partial {\theta }_{i}}+\frac{\partial {C}_{j}}{\partial {e}_{j}}\frac{\partial {e}_{j}}{\partial {\theta }_{i}}+\frac{\partial {D}_{j}({E}_{j},{\theta }_{j})}{\partial {E}_{j}}\frac{\partial {E}_{j}}{\partial {\theta }_{i}}\\ &=&\frac{\partial {D}_{i}({E}_{i},{\theta }_{i})}{\partial {E}_{i}}(\frac{\partial {E}_{i}}{\partial {\theta }_{i}}-\alpha \frac{\partial {e}_{i}}{\partial {\theta }_{i}})+\frac{\partial {D}_{i}({E}_{i},{\theta }_{i})}{\partial {\theta }_{i}}+\frac{\partial {D}_{j}({E}_{j},{\theta }_{j})}{\partial {E}_{j}}(\frac{\partial {E}_{j}}{\partial {\theta }_{i}}-\beta \frac{\partial {e}_{j}}{\partial {\theta }_{i}})\\ &=&\underset{>0}{\underbrace{\frac{\partial {D}_{i}({E}_{i},{\theta }_{i})}{\partial {E}_{i}}(1-\alpha )\frac{\partial {e}_{j}}{\partial {\theta }_{i}}}}+\underset{>0}{\underbrace{\frac{\partial {D}_{i}({E}_{i},{\theta }_{i})}{\partial {\theta }_{i}}}}+\underset{<0}{\underbrace{\frac{\partial {D}_{j}({E}_{j},{\theta }_{j})}{\partial {E}_{j}}(1-\beta )\frac{\partial {e}_{i}}{\partial {\theta }_{i}}}}\end{array},$$
(37)

In particular, \(\frac{\partial TSC({\theta }_{i},0)}{\partial {\theta }_{i}}=\frac{\partial {D}_{i}({E}_{i},{\theta }_{i})}{\partial {\theta }_{i}}>0\).

Under the optimal tradable permit regime, it is satisfied that:

$$\begin{aligned}TSC({\theta }_{i},{\theta }_{j})&={C}_{i}({e}_{i})+p({e}_{i}-{a}_{i})+{D}_{i}({E}_{i},{\theta }_{i})+{C}_{j}({e}_{j})+p({e}_{j}-{a}_{j})+{D}_{j}({E}_{j},{\theta }_{j})\\& ={C}_{i}({e}_{i})+{D}_{i}({E}_{i},{\theta }_{i})+{C}_{j}({e}_{j})+{D}_{j}({E}_{j},{\theta }_{j})\end{aligned},$$
$$\begin{array}{c}s.t.-\frac{\partial {C}_{i}({e}_{i})}{\partial {e}_{i}}=-\frac{\partial {C}_{j}({e}_{j})}{\partial {e}_{j}}=p=\frac{\partial {D}_{i}({E}_{i},{\theta }_{i})}{\partial {E}_{i}}\frac{(1-\beta )\frac{{\partial }^{2}{C}_{i}({e}_{i})}{\partial {e}_{i}^{2}}+\alpha \frac{{\partial }^{2}{C}_{j}({e}_{j})}{\partial {e}_{j}^{2}}}{2[\frac{{\partial }^{2}{C}_{i}({e}_{i})}{\partial {e}_{i}^{2}}+\frac{{\partial }^{2}{C}_{j}({e}_{j})}{\partial {e}_{j}^{2}}]}\\ +\frac{\partial {D}_{j}({E}_{j},{\theta }_{j})}{\partial {E}_{j}}\frac{\beta \frac{{\partial }^{2}{C}_{i}({e}_{i})}{\partial {e}_{i}^{2}}+(1-\alpha )\frac{{\partial }^{2}{C}_{j}({e}_{j})}{\partial {e}_{j}^{2}}}{2[\frac{{\partial }^{2}{C}_{i}({e}_{i})}{\partial {e}_{i}^{2}}+\frac{{\partial }^{2}{C}_{j}({e}_{j})}{\partial {e}_{j}^{2}}]}\end{array}.$$

So it is obtained that:

$$TSC(\mathrm{0,0})=0,$$
(38)

where \({e}_{i}={e}_{i}^{\mathrm{max}}\) and \({e}_{j}={e}_{j}^{\mathrm{max}}\), since \(\frac{\partial {D}_{i}({E}_{i},0)}{\partial {E}_{i}}=0=\frac{\partial {D}_{j}({E}_{j},0)}{\partial {E}_{j}}\).

$$\underset{{\theta }_{i}\to \infty }{\mathrm{lim}}TSC\left({\theta }_{i},{\theta }_{j}\right)={C}_{i}\left(0\right)+{C}_{j}\left(0\right)<\infty ,$$
(39)

where \({e}_{i}={e}_{j}=0\). A firm’s abatement cost couldn’t be infinitely large, or the firm would choose to stop any production activities.

$$\begin{array}{lcl}\frac{\partial TSC({\theta }_{i},{\theta }_{j})}{\partial {\theta }_{i}}&=&\frac{\partial {C}_{i}}{\partial {e}_{i}}\frac{\partial {e}_{i}}{\partial {\theta }_{i}}+\frac{\partial {D}_{i}({E}_{i},{\theta }_{i})}{\partial {E}_{i}}\frac{\partial {E}_{i}}{\partial {\theta }_{i}}+\frac{\partial {D}_{i}({E}_{i},{\theta }_{i})}{\partial {\theta }_{i}}+\frac{\partial {C}_{j}}{\partial {e}_{j}}\frac{\partial {e}_{j}}{\partial {\theta }_{i}}+\frac{\partial {D}_{j}({E}_{j},{\theta }_{j})}{\partial {E}_{j}}\frac{\partial {E}_{j}}{\partial {\theta }_{i}}\\ &=&\frac{\partial {C}_{i}}{\partial {e}_{i}}(\frac{\partial {e}_{i}}{\partial {\theta }_{i}}+\frac{\partial {e}_{j}}{\partial {\theta }_{i}})+\frac{\partial {D}_{i}({E}_{i},{\theta }_{i})}{\partial {E}_{i}}\frac{\partial {E}_{i}}{\partial {\theta }_{i}}+\frac{\partial {D}_{i}({E}_{i},{\theta }_{i})}{\partial {\theta }_{i}}+\frac{\partial {D}_{j}({E}_{j},{\theta }_{j})}{\partial {E}_{j}}\frac{\partial {E}_{j}}{\partial {\theta }_{i}}\\ &=&-[\frac{\partial {D}_{i}({E}_{i},{\theta }_{i})}{\partial {E}_{i}}\frac{\alpha \frac{\partial {e}_{i}}{\partial a}+(1-\beta )\frac{\partial {e}_{j}}{\partial a}}{2}+\frac{\partial {D}_{j}({E}_{j},{\theta }_{j})}{\partial {E}_{j}}\frac{(1-\alpha )\frac{\partial {e}_{i}}{\partial a}+\beta \frac{\partial {e}_{j}}{\partial a}}{2}]\frac{\partial a}{\partial {\theta }_{i}}\\ &\quad+&\frac{\partial {D}_{i}({E}_{i},{\theta }_{i})}{\partial {E}_{i}}\frac{\partial {E}_{i}}{\partial {\theta }_{i}}+\frac{\partial {D}_{j}({E}_{j},{\theta }_{j})}{\partial {E}_{j}}\frac{\partial {E}_{j}}{\partial {\theta }_{i}}+\frac{\partial {D}_{i}({E}_{i},{\theta }_{i})}{\partial {\theta }_{i}}\\ &=&\underset{<0}{\underbrace{\frac{1}{2}\frac{\partial {D}_{i}({E}_{i},{\theta }_{i})}{\partial {E}_{i}}\frac{\partial {E}_{i}}{\partial {\theta }_{i}}}}+\underset{<0}{\underbrace{\frac{1}{2}\frac{\partial {D}_{j}({E}_{j},{\theta }_{j})}{\partial {E}_{j}}\frac{\partial {E}_{j}}{\partial {\theta }_{i}}}}+\underset{>0}{\underbrace{\frac{\partial {D}_{i}({E}_{i},{\theta }_{i})}{\partial {\theta }_{i}}}}\end{array},$$
(40)

In particular, \(\frac{\partial TSC({\theta }_{i},0)}{\partial {\theta }_{i}}=\underset{<0}{\underbrace{\frac{1}{2}\frac{\partial {D}_{i}({E}_{i},{\theta }_{i})}{\partial {E}_{i}}\frac{\partial {E}_{i}}{\partial {\theta }_{i}}}}+\underset{>0}{\underbrace{\frac{\partial {D}_{i}({E}_{i},{\theta }_{i})}{\partial {\theta }_{i}}}}\).

For clarity of expression, the variables under taxes and tradable permits are distinct by superscripts \(t\) and \(a\) below.

  1. (i)

    According to (36) and (39), it is obtained that \(\underset{{\theta }_{i}\to \infty }{\mathrm{lim}}[TS{C}^{t}({\theta }_{i},{\theta }_{j})-TS{C}^{a}({\theta }_{i},{\theta }_{j})]>0\). Thus for \({\theta }_{i}\) sufficiently large, \(TS{C}^{t}({\theta }_{i},{\theta }_{j})>TS{C}^{a}({\theta }_{i},{\theta }_{j})\).

  2. (ii)

    For the case of \({\theta }_{j}=0\), we have:

$$\frac{\partial (TS{C}^{t}({\theta }_{i},0)-TS{C}^{a}({\theta }_{i},0))}{\partial {\theta }_{i}}=\underset{?}{\underbrace{\frac{\partial {D}_{i}({E}_{i}^{t},{\theta }_{i})}{\partial {\theta }_{i}}-\frac{\partial {D}_{i}({E}_{i}^{a},{\theta }_{i})}{\partial {\theta }_{i}}}}\underset{>0}{\underbrace{-\frac{1}{2}\frac{\partial {D}_{i}({E}_{i}^{a},{\theta }_{i})}{\partial {E}_{i}}\frac{\partial {E}_{i}^{a}}{\partial {\theta }_{i}}}}.$$
(41)

Thus if \(\frac{\partial {D}_{i}({E}_{i}^{t},{\theta }_{i})}{\partial {\theta }_{i}}-\frac{\partial {D}_{i}({E}_{i}^{a},{\theta }_{i})}{\partial {\theta }_{i}}\ge 0\iff {E}_{i}^{t}=\alpha {e}_{i}^{t}+(1-\beta ){e}_{j}^{\mathrm{max}}\ge {E}_{i}^{a}=\alpha {e}_{i}^{a}+(1-\beta ){e}_{j}^{a}\), we can conclude that the above is greater than 0.

Firstly, we prove \({e}_{i}^{t}<{e}_{i}^{a}\) by using reduction to absurdity. Assume \({e}_{i}^{t}\ge {e}_{i}^{a}\). It is obvious that:

$$-\frac{\partial {C}_{i}\left({e}_{i}^{t}\right)}{\partial {e}_{i}}\le -\frac{\partial {C}_{i}\left({e}_{i}^{a}\right)}{\partial {e}_{i}}.$$
(42)

On the other hand, we have \({E}_{i}^{t}\ge {E}_{i}^{a}\) and \(\alpha >\frac{\alpha }{2}\ge \frac{(1-\beta )\frac{{\partial }^{2}{C}_{i}({e}_{i}^{a})}{\partial {e}_{i}^{2}}+\alpha \frac{{\partial }^{2}{C}_{j}({e}_{j}^{a})}{\partial {e}_{j}^{2}}}{2[\frac{{\partial }^{2}{C}_{i}({e}_{i}^{a})}{\partial {e}_{i}^{2}}+\frac{{\partial }^{2}{C}_{j}({e}_{j}^{a})}{\partial {e}_{j}^{2}}]}\). And:

$$-\frac{\partial {C}_{i}\left({e}_{i}^{t}\right)}{\partial {e}_{i}}=\alpha \frac{\partial {D}_{i}\left({E}_{i}^{t},{\theta }_{i}\right)}{\partial {E}_{i}}>\frac{\left(1-\beta \right)\frac{{\partial }^{2}{C}_{i}\left({e}_{i}^{a}\right)}{\partial {e}_{i}^{2}}+\alpha \frac{{\partial }^{2}{C}_{j}\left({e}_{j}^{a}\right)}{\partial {e}_{j}^{2}}}{2\left[\frac{{\partial }^{2}{C}_{i}\left({e}_{i}^{a}\right)}{\partial {e}_{i}^{2}}+\frac{{\partial }^{2}{C}_{j}\left({e}_{j}^{a}\right)}{\partial {e}_{j}^{2}}\right]}\frac{\partial {D}_{i}\left({E}_{i}^{a},{\theta }_{i}\right)}{\partial {E}_{i}}=-\frac{\partial {C}_{i}\left({e}_{i}^{a}\right)}{\partial {e}_{i}}=-\frac{\partial {C}_{j}\left({e}_{j}^{a}\right)}{\partial {e}_{j}}.$$
(43)

The results (42) and (43) are contradictory. So the assumption is incorrect, and it is obtained that \({e}_{i}^{t}<{e}_{i}^{a}\).

For \(\forall \alpha ,\beta \in [1/2,1)\), \(\exists {\stackrel{\sim }{\theta }}_{i}>0\), when \({\theta }_{i}\ge {\stackrel{\sim }{\theta }}_{i}\), we have \({E}_{i}^{t}\ge {E}_{i}^{a}\). This is because the large value of \({\theta }_{i}\) could ensure that \({e}_{i}^{a}\) and \({e}_{j}^{a}\) are small enough that \(\alpha {e}_{i}^{t}+(1-\beta ){e}_{j}^{\mathrm{max}}\ge (1-\beta ){e}_{j}^{\mathrm{max}}\ge \alpha {e}_{i}^{a}+(1-\beta ){e}_{j}^{a}\). And it needs to meet the condition that \(\frac{\partial {\stackrel{\sim }{\theta }}_{i}}{\partial \alpha }>0\), which states \({e}_{i}^{a}\) needs to be smaller in response to an increase in \(\alpha\). In a word, for \(\forall \alpha ,\beta \in [1/2,1)\), \(\exists {\stackrel{\sim }{\theta }}_{i}>0\) which satisfies \(\frac{\partial {\stackrel{\sim }{\theta }}_{i}}{\partial \alpha }>0\), when \({\theta }_{i}\ge {\stackrel{\sim }{\theta }}_{i}\), it is obtained that \(\frac{\partial (TS{C}^{t}({\theta }_{i},0)-TS{C}^{a}({\theta }_{i},0))}{\partial {\theta }_{i}}>0\).

In addition, according to (43), we have: \(-\frac{\partial {C}_{i}({e}_{i}^{t})}{\partial {e}_{i}}\ge -2\frac{\partial {C}_{i}({e}_{i}^{a})}{\partial {e}_{i}}\). Thus, with respect to quadratic abatement cost functions, we can further obtain:

$$\begin{array}{lcl}TS{C}^{t}({\theta }_{i},0)-TS{C}^{a}({\theta }_{i},0)&=&{C}_{i}({e}_{i}^{t})+{D}_{i}({E}_{i}^{t},{\theta }_{i})-{C}_{i}({e}_{i}^{a})-{C}_{j}({e}_{j}^{a})-{D}_{i}({E}_{i}^{a},{\theta }_{i})\\ &=&{C}_{i}({e}_{i}^{t})-2{C}_{i}({e}_{i}^{a})+{D}_{i}({E}_{i}^{t},{\theta }_{i})-{D}_{i}({E}_{i}^{a},{\theta }_{i})\\ &=&\underset{>0}{\underbrace{\frac{1}{2}({e}_{i}^{\mathrm{max}}-{e}_{i}^{t})\times (-\frac{\partial {C}_{i}({e}_{i}^{t})}{\partial {e}_{i}})-\frac{1}{2}({e}_{i}^{\mathrm{max}}-{e}_{i}^{a})\times (-2\frac{\partial {C}_{i}({e}_{i}^{a})}{\partial {e}_{i}})}}\\ &\quad+&\underset{\ge 0}{\underbrace{{D}_{i}({E}_{i}^{t},{\theta }_{i})-{D}_{i}({E}_{i}^{a},{\theta }_{i})}}\\ &\quad\quad>0\end{array}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, W. Taxes Versus Tradable Permits Considering Public Environmental Awareness. EconDisCliCha 6, 293–315 (2022). https://doi.org/10.1007/s41885-022-00108-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41885-022-00108-8

Keywords

JEL Classification

Navigation