Skip to main content
Log in

Measuring the mechanical properties of small body regolith layers using a granular penetrometer

  • Research Article
  • Published:
Astrodynamics Aims and scope Submit manuscript

Abstract

Small bodies in the solar system are known to be covered by a layer of loose unconsolidated soil composed of grains ranging from dusty sands to rugged boulders. Various geophysical processes have modified these regolith layers since their origin. Therefore, the landforms on regolith-blanketed surfaces hold vital clues for reconstructing the geological processes occurring on small bodies. However, the mechanical strength of small body regolith remains unclear, which is an important parameter for understanding its dynamic evolution. Furthermore, regolith mechanical properties are key factors for the design and operation of space missions that interact with small body surfaces. The granular penetrometer, which is an instrument that facilitates in situ mechanical characterization of surface/subsurface materials, has attracted significant attention. However, we still do not fully understand the penetration dynamics related to granular regolith, partially because of the experimental difficulties in measuring grain-scale responses under microgravity, particularly on the longer timescales of small body dynamics. In this study, we analyzed the slow intrusion of a locomotor into granular matter through large-scale numerical simulations based on a soft sphere discrete element model. We demonstrated that the resistance force of cohesionless regolith increases abruptly with penetration depth after contact and then transitions to a linear regime. The scale factor of the steady-state component is roughly proportional to the internal friction of the granular materials, which allows us to deduce the shear strength of planetary soils by measuring their force-depth relationships. When cohesion is included, due to the brittle behavior of cohesive materials, the resistance profile is characterized by a stationary state at a large penetration depth. The saturation resistance, which represents the failure threshold of granular materials, increases with the cohesion strength of the regolith. This positive correlation provides a reliable tool for measuring the tensile strength of granular regolith in small body touchdown missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clark, B. E., Hapke, B., Pieters, C., Britt, D. Asteroid space weathering and regolith evolution. In: Asteroids III. Bottke, W. F., Cellino A., Paolicchi P., Binzel R. P., Eds. Tucson, AZ, USA: University of Arizona Press, 2002: 585–600.

    Chapter  Google Scholar 

  2. Walsh, K. J., Jawin, E. R., Ballouz, R. L., Barnouin, O. S., Bierhaus, E. B., Connolly Jr., H. C., Molaro, J. L., McCoy, T. J., Delbo, M., Hartzell, C. M., et al. Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface. Nature Geoscience, 2019, 12: 242–246.

    Article  Google Scholar 

  3. Delbo, M., Libourel, G., Wilkerson, J., Murdoch, N., Michel, P., Ramesh, K. T., Ganino, C., Verati, C., Marchi, S. Thermal fatigue as the origin of regolith on small asteroids. Nature, 2014, 508(7495): 233–236.

    Article  Google Scholar 

  4. Cambioni, S., Delbo, M., Poggiali, G., Avdellidou, C., Ryan, A. J., Deshapriya, J. D. P., Asphaug, E., Ballouz, R. L., Barucci, M. A., Bennett, C. A., et al. Fine-regolith production on asteroids controlled by rock porosity. Nature, 2021, 598(7879): 49–52.

    Article  Google Scholar 

  5. Miyamoto, H., Yano, H., Scheeres, D. J., Abe, S., Barnouin-Jha, O., Cheng, A. F., Demura, H., Gaskell, R. W., Hirata, N., Ishiguro, M., et al. Regolith migration and sorting on asteroid Itokawa. Science, 2007, 316(5827): 1011–1014.

    Article  Google Scholar 

  6. Daly, M. G., Barnouin, O. S., Seabrook, J. A., Roberts, J., Dickinson, C., Walsh, K. J., Jawin, E. R., Palmer, E. E., Gaskell, R., Weirich, J., et al. Hemispherical differences in the shape and topography of asteroid (101955) Bennu. Science Advances, 2020, 6(41): eabd3649.

    Article  Google Scholar 

  7. Glaser, D. L., Ball, A. J., Zacny, K. A. A review of penetrometers for subsurface access on comets and asteroids. Meteoritics & Planetary Science, 2008, 43(6): 1021–1032.

    Article  Google Scholar 

  8. Wen, T. G., Zeng, X. Y., Circi, C., Gao, Y. Hop reachable domain on irregularly shaped asteroids. Journal of Guidance, Control, and Dynamics, 2020, 43(7): 1269–1283.

    Article  Google Scholar 

  9. Yano, H., Kubota, T., Miyamoto, H., Okada, T., Scheeres, D., Takagi, Y., Yoshida, K., Abe, M., Abe, S., Barnouin-Jha, O., et al. Touchdown of the Hayabusa spacecraft at the Muses Sea on Itokawa. Science, 2006, 312(5778): 1350–1353.

    Article  Google Scholar 

  10. Biele, J., Ulamec, S., Maibaum, M., Roll, R., Witte, L., Jurado, E., Muñoz, P., Arnold, W., Auster, H. U., Casas, C., et al. The landing(s) of Philae and inferences about comet surface mechanical properties. Science, 2015, 349(6247): aaa9816.

    Article  Google Scholar 

  11. O’Rourke, L., Heinisch, P., Blum, J., Fornasier, S., Filacchione, G., Hoang, H. V., Ciarniello, M., Raponi, A., Gundlach, B., Blasco, R. A., et al. The Philae lander reveals low-strength primitive ice inside cometary boulders. Nature, 2020, 586(7831): 697–701.

    Article  Google Scholar 

  12. Mitchell, J. K., Bromwell, L. G., Carrier, W. D. I., Costes, N. C., Scott, R. F. Soil mechanical properties at the Apollo 14 site. Journal of Geophysical Research, 1972, 77(29): 5641–5664.

    Article  Google Scholar 

  13. Zarnecki, J. C., Leese, M. R., Hathi, B., Ball, A. J., Hagermann, A., Towner, M. C., Lorenz, R. D., McDonnell, J. A. M., Green, S. F., Patel, M. R., et al. A soft solid surface on Titan as revealed by the Huygens Surface Science Package. Nature, 2005, 438(7069): 792–795.

    Article  Google Scholar 

  14. Golombek, M., Warner, N. H., Grant, J. A., Hauber, E., Ansan, V., Weitz, C. M., Williams, N., Charalambous, C., Wilson, S. A., DeMott, A., et al. Geology of the InSight landing site on Mars. Nature Communications, 2020, 11: 1014.

    Article  Google Scholar 

  15. Katsuragi, H., Durian, D. J. Unified force law for granular impact cratering. Nature Physics, 2007, 3(6): 420–423.

    Article  Google Scholar 

  16. Kang, W., Feng, Y., Liu, C., Blumenfeld, R. Archimedes’ law explains penetration of solids into granular media. Nature Communications, 2018, 9: 1101.

    Article  Google Scholar 

  17. Miyai, S., Kobayakawa, M., Tsuji, T., Tanaka, T. Influence of particle size on vertical plate penetration into dense cohesionless granular materials (large-scale DEM simulation using real particle size). Granular Matter, 2019, 21(4): 105.

    Article  Google Scholar 

  18. Roth, L. K., Han, E. D., Jaeger, H. M. Intrusion into granular media beyond the quasistatic regime. Physical Review Letters, 2021, 126(21): 218001.

    Article  Google Scholar 

  19. Sunday, C., Murdoch, N., Cherrier, O., Morales Serrano, S., Valeria Nardi, C., Janin, T., Avila Martinez, I., Gourinat, Y., Mimoun, D. A novel facility for reduced-gravity testing: A setup for studying low-velocity collisions into granular surfaces. Review of Scientific Instruments, 2016, 87(8): 084504.

    Article  Google Scholar 

  20. Murdoch, N., Avila Martinez, I., Sunday, C., Zenou, E., Cherrier, O., Cadu, A., Gourinat, Y. An experimental study of low-velocity impacts into granular material in reduced gravity. Monthly Notices of the Royal Astronomical Society, 2017, 468(2): 1259–1272.

    Google Scholar 

  21. Cundall, P. A., Strack, O. D. L. A discrete numerical model for granular assemblies. Géotechnique, 1979, 29(1): 47–65.

    Article  Google Scholar 

  22. Schwartz, S. R., Richardson, D. C., Michel, P. An implementation of the soft-sphere discrete element method in a high-performance parallel gravity tree-code. Granular Matter, 2012, 14(3): 363–380.

    Article  Google Scholar 

  23. Sánchez, P., Scheeres, D. J. Simulating asteroid rubble piles with a self-gravitating soft-sphere distinct element method model. The Astrophysical Journal, 2011, 727(2): 120.

    Article  Google Scholar 

  24. Cheng, B., Yu, Y., Baoyin, H. X. Asteroid surface impact sampling: Dependence of the cavity morphology and collected mass on projectile shape. Scientific Reports, 2017, 7: 10004.

    Article  Google Scholar 

  25. Cheng, B., Yu, Y., Baoyin, H. X. Collision-based understanding of the force law in granular impact dynamics. Physical Review E, 2018, 98: 012901.

    Article  Google Scholar 

  26. Cheng, B., Yu, Y., Baoyin, H. X. Numerical simulations of the controlled motion of a hopping asteroid lander on the regolith surface. Monthly Notices of the Royal Astronomical Society, 2019, 485(3): 3088–3096.

    Article  Google Scholar 

  27. Cheng, B., Yu, Y., Asphaug, E., Michel, P., Richardson, D. C., Hirabayashi, M., Yoshikawa, M., Baoyin, H. Reconstructing the formation history of top-shaped asteroids from the surface boulder distribution. Nature Astronomy, 2021, 5: 134–138.

    Article  Google Scholar 

  28. Somfai, E., Roux, J. N., Snoeijer, J. H., van Hecke, M., van Saarloos, W. Elastic wave propagation in confined granular systems. Physical Review E, 2005, 72: 021301.

    Article  Google Scholar 

  29. Feng, Y. J., Blumenfeld, R., Liu, C. S. Support of modified Archimedes’ law theory in granular media. Soft Matter, 2019, 15(14): 3008–3017.

    Article  Google Scholar 

  30. Wada, K., Senshu, H., Matsui, T. Numerical simulation of impact cratering on granular material. Icarus, 2006, 180(2): 528–545.

    Article  Google Scholar 

  31. Jiang, M. J., Shen, Z. F., Wang, J. F. A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances. Computers and Geotechnics, 2015, 65: 147–163.

    Article  Google Scholar 

  32. Scheeres, D. J., Hartzell, C. M., Sánchez, P., Swift, M. Scaling forces to asteroid surfaces: The role of cohesion. Icarus, 2010, 210(2): 968–984.

    Article  Google Scholar 

  33. Sánchez, P., Scheeres, D. J. The strength of regolith and rubble pile asteroids. Meteoritics & Planetary Science, 2014, 49(5): 788–811.

    Article  Google Scholar 

  34. Zhang, Y., Richardson, D. C., Barnouin, O. S., Michel, P., Schwartz, S. R., Ballouz, R. L. Rotational failure of rubble-pile bodies: Influences of shear and cohesive strengths. The Astrophysical Journal, 2018, 857: 15.

    Article  Google Scholar 

  35. Arakawa, M., Saiki, T., Wada, K., Ogawa, K., Kadono, T., Shirai, K., Sawada, H., Ishibashi, K., Honda, R., Sakatani, N., et al. An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime. Science, 2020, 368(6486): 67–71.

    Article  Google Scholar 

  36. Rozitis, B., MacLennan, E., Emery, J. P. Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA. Nature, 2014, 512(7513): 174–176.

    Article  Google Scholar 

  37. Seguin, A., Bertho, Y., Gondret, P. Influence of confinement on granular penetration by impact. Physical Review E, 2008, 78: 010301.

    Article  Google Scholar 

  38. Albert, R., Pfeifer, M. A., Barabási, A. L., Schiffer, P. Slow drag in a granular medium. Physical Review Letters, 1999, 82(1): 205–208.

    Article  Google Scholar 

  39. Ballouz, R. L., Baresi, N., Crites, S. T., Kawakatsu, Y., Fujimoto, M. Surface refreshing of Martian moon Phobos by orbital eccentricity-driven grain motion. Nature Geoscience, 2019, 12(4): 229–234.

    Article  Google Scholar 

  40. Richard, P., Valance, A., Métayer, J. F., Sanchez, P., Crassous, J., Louge, M., Delannay, R. Rheology of confined granular flows: Scale invariance, glass transition, and friction weakening. Physical Review Letters, 2008, 101(24): 248002.

    Article  Google Scholar 

  41. Murthy, T. G., Gnanamanickam, E., Chandrasekar, S. Deformation field in indentation of a granular ensemble. Physical Review E, 2012, 85: 061306.

    Article  Google Scholar 

  42. Aguilar, J., Goldman, D. I. Robophysical study of jumping dynamics on granular media. Nature Physics, 2016, 12(3): 278–283.

    Article  Google Scholar 

  43. Peters, J. F., Muthuswamy, M., Wibowo, J., Tordesillas, A. Characterization of force chains in granular material. Physical Review E, 2005, 72: 041307.

    Google Scholar 

  44. Ai, J., Chen, J. F., Rotter, J. M., Ooi, J. Y. Assessment of rolling resistance models in discrete element simulations. Powder Technology, 2011, 206(3): 269–282.

    Article  Google Scholar 

  45. Wensrich, C. M., Katterfeld, A. Rolling friction as a technique for modelling particle shape in DEM. Powder Technology, 2012, 217: 409–417.

    Article  Google Scholar 

  46. Clark, A. H., Petersen, A. J., Behringer, R. P. Collisional model for granular impact dynamics. Physical Review E, 2014, 89: 012201.

    Article  Google Scholar 

  47. Tordesillas, A., Muthuswamy, M. On the modeling of confined buckling of force chains. Journal of the Mechanics and Physics of Solids, 2009, 57(4): 706–727.

    Article  MathSciNet  MATH  Google Scholar 

  48. Dumont, D., Soulard, P., Salez, T., Raphaël, E., Damman, P. Microscopic picture of erosion and sedimentation processes in dense granular flows. Physical Review Letters, 2020, 125(20): 208002.

    Article  Google Scholar 

  49. Brzinski III, T. A., Mayor, P., Durian, D. J. Depth-dependent resistance of granular media to vertical penetration. Physical Review Letters, 2013, 111(16): 168002.

    Article  Google Scholar 

  50. Li, C., Zhang, T. N., Goldman, D. I. A terradynamics of legged locomotion on granular media. Science, 2013, 339(6126): 1408–1412.

    Article  Google Scholar 

  51. Askari, H., Kamrin, K. Intrusion rheology in grains and other flowable materials. Nature Materials, 2016, 15(12): 1274–1279.

    Article  Google Scholar 

  52. Hirabayashi, M., Scheeres, D. J., Sánchez, D. P., Gabriel, T. Constraints on the physical properties of main belt comet P/2013 R3 from its breakup event. The Astrophysical Journal Letters, 2014, 789(1): L12.

    Article  Google Scholar 

  53. Barnouin, O. S., Daly, M. G., Palmer, E. E., Gaskell, R. W., Weirich, J. R., Johnson, C. L., Al Asad, M. M., Roberts, J. H., Perry, M. E., Susorney, H. C. M., et al. Shape of (101955) Bennu indicative of a rubble pile with internal stiffness. Nature Geoscience, 2019, 12(4): 247–252.

    Article  Google Scholar 

  54. Iveson, S. M., Page, N. W. Brittle to plastic transition in the dynamic mechanical behavior of partially saturated granular materials. Journal of Applied Mechanics, 2004, 71(4): 470–475.

    Article  MATH  Google Scholar 

  55. Paton, M. D., Green, S. F., Ball, A. J., Zarnecki, J. C., Harri, A. M. Using the inertia of spacecraft during landing to penetrate regoliths of the Solar System. Advances in Space Research, 2015, 56(6): 1242–1263.

    Article  Google Scholar 

  56. Paton, M. D., Green, S. F., Ball, A. J., Zarnecki, J. C., Hagermann, A. Detection of structure in asteroid analogue materials and Titan’s regolith by a landing spacecraft. Advances in Space Research, 2016, 58(3): 415–437.

    Article  Google Scholar 

  57. Sullivan, R., Greeley, R., Pappalardo, R., Asphaug, E., Moore, J. M., Morrison, D., Belton, M. J. S., Carr, M., Chapman, C. R., Geissler, P., et al. Geology of 243 Ida. Icarus, 1996, 120(1): 119–139.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (2019YFA0706500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Cheng.

Additional information

Declaration of competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

Bin Cheng received his B.S. and Ph.D. degrees in aerospace science and technology from Tsinghua University, China, in 2016 and 2021, respectively. He is currently a postdoctoral fellow under the direction of Prof. Hexi Baoyin. His research interests include the granular dynamics during geological processes and spacecraft interaction on small body regolith. E-mail: chengbin.thu@gmail.com.

Erik Asphaug is a professor in Lunar & Planetary Laboratory, University of Arizona, USA. His research interests include planetary impacts and small body geophysics. He is on the science team of NASA’s Psyche mission to asteroid Psyche, ESA’s Hera mission to asteroid Didymos, and JAXA’s MMX mission to the Martian moons. E-mail: asphaug@lpl.arizona.edu.

Yang Yu is currently a professor at Beihang University, China. He joined the Faculty of Theoretical Mechanics in April 2016. He obtained his B.S. degree in physics from Beihang University in 2009 and his Ph.D. degree in aeronautics and astronautics from Tsinghua University, China, in 2014. He had his postdoctoral position at Observatoire de la Côte d’Azur in France from 2014 to 2016. His research interests include the Hamiltonian dynamics of celestial systems and the formation and evolution of solar system small bodies. E-mail: yuyang.thu@icloud.com.

Hexi Baoyin is a professor in School of Aerospace Engineering, Tsinghua University, China. His current research interests include orbit theory in irregular gravitational fields and interplanetary mission analysis and optimization. E-mail: baoyin@tsinghua.edu.cn.

Electronic Supplementary Material

Supplementary material, approximately 6.68 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, B., Asphaug, E., Yu, Y. et al. Measuring the mechanical properties of small body regolith layers using a granular penetrometer. Astrodyn 7, 15–29 (2023). https://doi.org/10.1007/s42064-021-0127-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42064-021-0127-8

Keywords

Navigation