Skip to main content

Advertisement

Log in

Optimization of steel beams with external pretension, considering the environmental and financial impact

  • Research
  • Published:
Asian Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

With the advancement technology for reinforced concrete structures, it becomes increasingly feasible to use this technology for steel structures. The objective of this work is to present the formulation of the optimization problem of steel beams with external pretension with straight or polygonal tracing cables, considering the environmental and economic impacts. For the objective function formulation, the minimization of CO2 emission and cost in the design of the structure were considered. As constraints were established the states limits imposed by ABNT NBR 8800:2008. The program was developed within the MATLAB Platform (MATLAB®. Guia do usuário R2016a (2016) The Math Works Inc) and the optimization problem solution was obtained through the native genetic algorithms method. Routine validation was performed using examples found in the literature and an analysis of the predominant collapse modes was performed. The results indicate that monosymmetric profiles have gains when it comes to reducing CO2 emissions and cost when compared to doubly symmetrical profiles, in addition it was observed that straight cables generate better values of CO2 emission and cost when compared to polygonal cables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data-sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  • Abbas, A. L., Mohammed, A. H., & Abdul-Razzaq, K. S. (2018). Finite element analysis and optimization of steel girders with external prestressing. Civil Engineering Journal, 4(7), 1490.

    Article  Google Scholar 

  • Akbari, J., & Ayubirad, M. S. (2017). Seismic optimum design of steel structures using gradient-based and genetic algorithm methods. International Journal of Civil Engineering, 15, 135–148.

    Article  Google Scholar 

  • Arpini, P. A. T., Loureiro, M. C., Breda, B. D., Calenzani, A. F., & Alves, E. C. (2022). Optimum design of a composite floor system considering environmental and economic impacts. IBRACON Structures and Materials Journal, 15(3), e15302.

    Google Scholar 

  • Associação Brasileira De Normas Técnicas (2008) NBR 8800 - Design of steel structures and composite steel and concrete structures of buildings. Rio de Janeiro [In Portuguese]

  • Aydin, Z. (2022). Size layout and tendon profile optimization of prestressed steel trusses using Jaya algorithm. Structures, 40, 284–294.

    Article  Google Scholar 

  • Azam, M., Khan, A. Q., Abdullah, H. B., & Qureshi, M. E. (2016). The impact of CO2 emissions on economic growth: evidence from selected higher CO2 emissions economies. Environmental Science and Pollution Research, 23, 6376–6389.

    Article  Google Scholar 

  • Breda, B. D., Pietralonga, T. C., & Alves, E. C. (2020). Optimization of the structural system with composite beam and composite slab using genetic algorithm. IBRACON Structures and Materials Journal. https://doi.org/10.1590/S1983-41952020000600002

    Article  Google Scholar 

  • Camp, C. V., & Huq, F. (2013). CO2 and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm. Engineering Structures, 48, 363–372. https://doi.org/10.1016/j.engstruct.2012.09.004

    Article  Google Scholar 

  • Chen, S. A., Wang, X., & Jia, Y. (2009). Comparative study of continuous steel concrete composite beams prestressed with external tendons: experimental investigation. Journal of Constructional Steel Research, 65, 1480–1489.

    Article  Google Scholar 

  • Cucuzza, R., Costi, C., Rosso, M. M., Domaneschi, M., Marano, G. C., & Masera, D. (2021). Optimal strengthening by steel truss arches in prestressed girder bridges. Proceedings of the Institution of Civil Engineers-Bridge Engineering. https://doi.org/10.1680/jbren.21.00056

    Article  Google Scholar 

  • Durgam, H. R., Ramani, P. V., & Gupta, A. (2022). Drivers of sustainable site management for green construction: an Indian construction perspective. Asian Journal of Civil Engineering, 23, 515–530.

    Article  Google Scholar 

  • El-Sisi, A. A., Hassanin, A. I., Shabaan, H. F., & Elsheikh, A. I. (2021). Effect of external post-tensioning on steel–concrete composite beams with partial connection. Engineering Structures, 247, 113130.

    Article  Google Scholar 

  • Erdal, F., Doğan, E., & Saka, M. P. (2011). Optimum design of cellular beams using harmony search and particle swarm optimizers. Journal of Constructional Steel Research, 67(2), 237–247. https://doi.org/10.1016/j.jcsr.2010.07.014

    Article  Google Scholar 

  • Hare, W., Nutini, J., & Tesfamariam, S. (2013). A survey of non-gradient optimization methods in structural engineering. Advances in Engineering Software, 59, 19–28. https://doi.org/10.1016/j.advengsoft.2013.03.001

    Article  Google Scholar 

  • Hashmi, A. F., Ayaz, M., Bilal, A., Shariq, M., & Baqi, A. (2023). GA-based hybrid ANN optimization approach for the prediction of compressive strength of high-volume fly ash concrete mixes. Asian Journal of Civil Engineering, 24, 1115–1128.

    Article  Google Scholar 

  • Hassanin, A. I., Shabaan, H. F., & Elsheikh, A. I. (2021). Cyclic loading behavior on strengthened composite beams using external post-tensioning tendons (experimental study). Structures, 29, 1119–1136.

    Article  Google Scholar 

  • Holland, J. H. (1962). Outline for a logical theory of adaptive systems. Journal of the ACM, 3, 297–314.

  • Kaveh, A., & Ardalani, Sh. (2016). Cost and CO2 emission optimization of reinforced concrete frames using ECBO algorithm. Asian Journal of Civil Engineering, 17(6), 831–858.

    Google Scholar 

  • Kaveh, A., Izadifard, R. A., & Mottaghi, L. (2020). Optimal design of planar RC frames considering CO2 emissions using ECBO, EVPS and PSO metaheuristic algorithms. Journal of Building Engineering, 28, 101014.

    Article  Google Scholar 

  • Kaveh, A., Mottaghi, L., & Izadifard, R. A. (2022). Optimization of columns and bent caps of RC bridges for cost and CO2 emission. Periodica Polytechnica Civil Engineering, 66(2), 553–563.

    Google Scholar 

  • Lou, T., & Karavasilis, T. L. (2019). Numerical assessment of the nonlinear behavior of continuous prestressed steel-concrete composite beams. Engineering Structures, 190, 116–127.

    Article  Google Scholar 

  • Lou, T., Lopes, S. M. R., & Lopes, A. V. (2016). Numerical modeling of externally prestressed steel-concrete composite beams. Journal of Constructional Steel Research, 121, 229-236.4.

    Article  Google Scholar 

  • Luo, L. (2022). Stability analysis of long-span prestressed steel structure of elevated station using edge computing. International Journal of System Assurance Engineering and Management, 13, 1134–1141.

    Google Scholar 

  • Mageveske, P., Barboza, I. R., Trés, G. F. M., Calenzani, A. F. G., & Alves, E. C. (2021) Cost analysis on the optimum design os prestressed doubly-symmetric steel beams. CILAMCE-PAVACM-2021, 9–12

  • MATLAB®. Guia do usuário R2016a (2016) The Math Works Inc

  • Mousavi, S. E., MosalmanYazdi, H. A., & MosalmanYazdi, M. (2022). Optimization design of reduced beam section using genetic algorithm. International Journal of Steel Structures, 22, 805–815.

    Article  Google Scholar 

  • Nie, J. G., Cai, C. S., Zhou, T. R., & Li, Y. (2007). Experimental and analytical study of prestressed steel–concrete composite beams considering slip effect. Journal of Structural Engineering, 133(4), 530–540.

    Article  Google Scholar 

  • Oliveira, V. C. H. C., Damineli, B. L., Agopyan, V., & John, V. M. (2014). Strategies for the minimization of CO2 emissions from concrete. Ambiente Construído, 14(4), 167–181.

    Article  Google Scholar 

  • Park, S. H., Hwanyoung, L., Yousok, K., Taehoon, H., & Se Woon, C. (2014). Evaluation of the influence of design factors on the CO2 emissions and costs of reinforced concrete columns. Energy and Buildings, 82, 378–384. https://doi.org/10.1016/j.enbuild.2014.07.038

    Article  Google Scholar 

  • Payá-Zaforteza, I., Yepes, V., Hospitaler, A., & González-Vidosa, F. (2009). CO2-optimization of reinforced concrete frames by simulated annealing. Engineering Structures, 31(7), 1501–1508. https://doi.org/10.1016/j.engstruct.2009.02.034

    Article  MATH  Google Scholar 

  • Qin, L., Huang, W., Du, Y., Zheng, L., & Jawed, M. K. (2020). Genetic algorithm-based inverse design of elastic gridshells. Structural and Multidisciplinary Optimization, 62, 2691–2707.

    Article  MathSciNet  Google Scholar 

  • Ramos, J. R. S., & Alves, E. C. (2021). Numerical analysis of collapse modes in optimized design of alveolar Steel-concrete composite beams via genetic algorithms. REM - International Engineering Journal, 74, 173–181.

    Article  Google Scholar 

  • Rezende, C.R. (2007) Structural Analysis of prestressed steel beams. MSc thesis, Federal University of Espírito Santo (In Portuguese)

  • Santoro, J. F., & Kripka, M. (2020). Minimizing environmental impact from optimized sizing of reinforced concrete elements. Computers and Concrete, 25(2), 111–118.

    Google Scholar 

  • Senouci, A. B., & Al-ansari, M. S. (2009). Cost optimization of composite beams using genetic algorithms. Advances in Engineering Software, 40(11), 1112–1118. https://doi.org/10.1016/j.advengsoft.2009.06.001

    Article  MATH  Google Scholar 

  • SINAPI - National System of Survey of Costs and Indexes of Civil Construction (2022) Cost of compositions - synthetic - ES. Março/2022. [In Portuguese]

  • Tormen, A. F., Pravia, Z. M. C., Ramires, F. B., & Kripka, M. (2020). Optimization of steel concrete composite beams considering cost and environmental impact. Steel and Composite Structures, 34(3), 409–421. https://doi.org/10.12989/scs.2020.34.3.409

    Article  Google Scholar 

  • Turini, T. T., & Calenzani, A. F. G. (2022). Analytical study of composite steel-concrete beams with external prestressing. Structural Engineering and Mechanics, 82(5), 595–609. https://doi.org/10.12989/sem.2022.82.5.595

    Article  Google Scholar 

  • Worldsteel Association (2022) LCI data for steel products

  • Yassami, M., & Ashtari, P. (2015). Using fuzzy genetic, artificial bee colony (ABC) and simple genetic algorithm for the stiffness optimization of steel frames with semi-rigid connections. KSCE Journal of Civil Engineering, 19, 1366–1374.

    Article  Google Scholar 

  • Yepes, J. V., Martí, T., & García-segura. (2015). Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49A, 123–134. https://doi.org/10.1016/j.autcon.2014.10.013

    Article  Google Scholar 

  • Yu, M., Robati, M., Oldfield, P., Wiedmann, T., Crawford, R., Nezhad, A. A., & Carmichael, D. (2020). The impact of value engineering on embodied greenhouse gas emissions in the built environment: a hybrid life cycle assessment. Building and Environment, 168, 106452. https://doi.org/10.1016/j.buildenv.2019.106452

    Article  Google Scholar 

  • Zhou, H., Hao, C., Zheng, Z., & Wang, W. (2020). Numerical studies on fire resistance of prestressed continuous steel-concrete composite beams. Fire Technology, 56, 993–1011. https://doi.org/10.1007/s10694-019-00916-7

    Article  Google Scholar 

  • Zhou, H., Kodur, V. K. R., Nie, H., Wang, Y., & Naser, M. Z. (2017). Behavior of prestressed stayed steel columns under fire conditions. International Journal of Steel Structures, 17, 195–204.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Brazilian Federal Government Agency CAPES for the financial support provided during the development of this research. The second author thanks the Brazilian Federal Government Agency CNPQ for the productivity research grant number 309741/2020-3.

Funding

Nothing to declare.

Author information

Authors and Affiliations

Authors

Contributions

KMF, GFS, AFGC, ÉCA wrote the main manuscript. KMF, GFS, AFGC, ÉCA numerical simulation. AFGC, ÉCA methodology. AFGC, ÉCA supervision

Corresponding author

Correspondence to Élcio Cassimiro Alves.

Ethics declarations

Conflict of interest

Nothing to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiorotti, K.M., Silva, G.F., Calenzani, A.F.G. et al. Optimization of steel beams with external pretension, considering the environmental and financial impact. Asian J Civ Eng 24, 3331–3344 (2023). https://doi.org/10.1007/s42107-023-00715-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42107-023-00715-0

Keywords

Navigation