Skip to main content

Advertisement

Log in

Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

How to prepare electrodes with high areal and volumetric capacitance is very significant for the daily use of supercapacitors. The booming additive manufacturing technology is well suited to this task. However, the selection of materials for 3D printing electrodes is still the focus of research. In this study, 2D layered graphene oxide (GO) was used as the binder and two kinds of 1D nanomaterials including MWCNTs and KCu7S4 were used as conductive and skeleton materials to prepare ink with excellent rheological properties through simple vacuum stirring. The electrodes were prepared by direct ink writing (DIW) printing, freeze drying, and simple chemical reduction. Herein, the 3D printed rGO/MWCNTs/KCu7S4 electrode has a special conductive cross-linking structure formed by self-combination. Among them, the 8-layer electrode at a current density of 0.5 A g−1 shows a gravimetric capacitance of 1674.3 F g−1, corresponding to the areal and volumetric capacitance of 27.8 F cm−2 and 73.1 F cm−3, respectively. This electrode has excellent capacitance retention, which could be achieved at 88.6% after 2000 successive cycles at 2 A g−1. Our work provides a simple and effective approach for the application of copper sulfate materials in DIW printing, and lays a good foundation for future application in supercapacitors and other electrochemical energy storage devices.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Miller JR, Simon P (2008) Materials science. Electrochemical capacitors for energy management. Science 321(5889):651–652

    CAS  Google Scholar 

  2. Zhiyao P, Qinglong J, Ping P et al (2021) NH3-activated fullerene derivative hierarchical microstructures to porous Fe3O4/N-C for oxygen reduction reaction and Zn-air battery. Eng Sci 14:27–38

    Google Scholar 

  3. Xinpeng H, Hao W, Shuang L et al (2022) Fabrication of organic shape-stabilized phase change material and its energy storage applications. Eng Sci 17:1–27

    Google Scholar 

  4. Chunping H, Jiao H, Hao Z et al (2020) Facile synthesis of LiMn0.75Fe0.25PO4/C nanocomposite cathode materials of lithium-ion batteries through microwave sintering. Eng Sci 11:36–43

    Google Scholar 

  5. Satyajeet SP, Tejasvinee SB, Aviraj MT et al (2020) Hybrid solid state supercapacitors (HSSC’s) for high energy & power density: an overview. Eng Sci 12:38–51

    Google Scholar 

  6. Zhe W, Shuangding H, Vincent N et al (2020) Ionic liquids as “green solvent and/or electrolyte” for energy interface. Eng Sci 11:3–18

    Google Scholar 

  7. Kyeremateng NA, Brousse T, Pech D (2016) Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat Nanotechnol 12:7–15

    Article  CAS  Google Scholar 

  8. Jií Libich J, Máca JV, Ech O, Sedlaíková M (2018) Supercapacitors: properties and applications. J Ener Stor 17(6):224–227

    Article  Google Scholar 

  9. Nannan W, Xue B, Duo P et al (2020) Recent advances of asymmetric supercapacitors. Adv Mater Interfaces 8:2001710

    Google Scholar 

  10. Shao Y, El-Kady MF, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner RB (2018) Design and mechanisms of asymmetric supercapacitors. Chem Rev 118(18)

  11. Patil SS, Bhat TS, Teli AM et al (2020) Hybrid solid state supercapacitors (HSSC’s) for high energy & power density: an overview. Eng Sci 12:38–51

    CAS  Google Scholar 

  12. Wang Y, Lin J, Fan J et al (2020) Significantly enhanced ultrathin NiCo-based MOF nanosheet electrodes hybrided with Ti3C2Tx MXene for high performance asymmetric supercapacitors. Eng Sci 9:50–59

    Google Scholar 

  13. Dong H, Li Y, Chai H et al (2019) Hydrothermal synthesis of CuCo2S4 nano-structure and N-doped graphene for high-performance aqueous asymmetric supercapacitors. ES Ener Environ 4:19–26

  14. Yongpeng M, Xiubo X, Wenyue Y et al (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4:906–924

    Article  CAS  Google Scholar 

  15. Zhang K, Ma Z, Deng H et al (2021) Improving high-temperature energy storage performance of PI dielectric capacitor films through boron nitride interlayer. Adv Compos Hybrid Mater 23:1–12

    CAS  Google Scholar 

  16. Zhe S, Keqi Q, Jiahang L et al (2021) Self-template biomass-derived nitrogen and oxygen co-doped porous carbon for symmetrical supercapacitor and dye adsorption. Adv Compos Hybrid Mater 4:1413–1424

    Article  CAS  Google Scholar 

  17. Wang Y, Hu YJ, Hao X et al (2020) Hydrothermal synthesis and applications of advanced carbonaceous materials from biomass: a review. Adv Compos Hybrid Mater 3(6042):1–18

    Article  CAS  Google Scholar 

  18. Nannan W, Beibei Z, Jiyun L et al (2021) MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv Compos Hybrid Mater 4:707–715

    Article  CAS  Google Scholar 

  19. Naveen TB, Durgalakshmi D, Kunhiraman AK et al (2021) Recent advances in graphene-based micro-supercapacitors: processes and applications. J Mater Res 36:4102–4119

    Article  CAS  Google Scholar 

  20. Keqi Q, Weicong W, Cai S et al (2021) Fungus bran-derived nano porous carbon with layered structure and rime-like support for enhanced symmetric supercapacitors. J Nanostruct Chem 11:769–784

    Article  CAS  Google Scholar 

  21. Tao Y, Sui ZY, Han BH (2020) Advanced porous graphene materials: from in-plane pore generation to energy storage applications. J Mater Chem A 8:6125–6143

    Article  CAS  Google Scholar 

  22. Jianming Y, Bin Z, Dongxiao H et al (2022) High-precision three-dimensional printing in a flexible, low-cost and versatile way: a review. ES Mater Manufact 15:1–13

    Google Scholar 

  23. Wang B, Zhang Z, Pei Z et al (2020) Current progress on the 3D printing of thermosets. Adv Compos Hybrid Mater 3(4):1–11

    Article  CAS  Google Scholar 

  24. Yue X, Zhihan H, Coleman G et al (2018) Thermal studies of three-dimensional printing using pulsed laser heating. ES Mater Manufact 1:21–26

    Google Scholar 

  25. Zhao W, Chen L, Hu S et al (2020) Printed hydrogel nanocomposites: fine-tuning nanostructure for anisotropic mechanical and conductive properties. Adv Compos Hybrid Mater 3:7

    Article  CAS  Google Scholar 

  26. You X, Yang J, Qian F et al (2018) Three-dimensional graphene-based materials by direct ink writing method for lightweight application. Int J Lightweight Mater Manufact 1(2):96–101

    Article  Google Scholar 

  27. Yun X, Lu B, Xiong Z et al (2019) Direct 3D printing of a graphene oxide hydrogel for fabrication of a high areal specific capacitance micro-supercapacitor. RSC Adv 9:29384–29395

    Article  CAS  Google Scholar 

  28. Junkai Z, Daina W, Ce Z et al (2021) An overview of oxygen reduction electrocatalysts for rechargeable zinc-air batteries enabled by carbon and carbon composites. Eng Sci 15:1–19

    Google Scholar 

  29. Chuanxin H, Bing W, Murugadoss V et al (2020) Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng Sci 11:19–30

    Google Scholar 

  30. Gaoyang L, Congcong D, Yue H et al (2020) Experimental and theoretical characteristic of single atom Co-N-C catalyst for Li-O2 batteries. Eng Sci 10:85–94

    Google Scholar 

  31. Yanqiu J, Zhen X, Tieqi H et al (2018) Direct 3D Printing of ultralight graphene oxide aerogel micro lattices. Adv Func Mater 28(16):1707024

    Article  CAS  Google Scholar 

  32. Pham MH, Khazaeli A, Godbille-Cardona G, Truica-Marasescu F, Peppley B, Barz DP (2020) Printing of graphene supercapacitors with enhanced capacitances induced by a leavening agent. J Ener Stor 28:101210

  33. Qiangqiang Z, Feng Z, Sai Pradeep M et al (2016) 3D printing of graphene aerogels. Small 12(13):1702–1708

    Article  CAS  Google Scholar 

  34. Guo B, Liang G, Yu S et al (2021) 3D printing of reduced graphene oxide aerogels for energy storage devices: a paradigm from materials and technologies to applications. Ener Stor Mater 39:146–165

    Article  CAS  Google Scholar 

  35. Gao T, Zhou Z, Yu J, Zhao J et al (2019) 3D printing of tunable energy storage devices with both high areal and volumetric energy densities. Adv Ener Mater 9(8):1802578.1–1802578.10

  36. Bolin C, Yizhou J, Xiaohui T et al (2017) Fully packaged carbon nanotube supercapacitors by direct ink writing on flexible substrates. ACS Appl Mater Interfaces 9(34):28433–28440

    Article  CAS  Google Scholar 

  37. Meiyan Y, Teng Y, Shougang C et al (2020) A Facile synthesis of Ag/TiO2/rGO nanocomposites with enhanced visible light photocatalytic activity. ES Mater Manufactur 7:64–69

    Google Scholar 

  38. Yun C, Zhanhu G, Das R et al (2020) Starch-based carbon nanotubes and graphene: preparation, properties and applications. ES Food  Agrofores 2:13–21

    Google Scholar 

  39. Hongjuan L, Yuanbing M (2021) Graphene oxide-based nanomaterials for uranium adsorptive uptake. ES Mater Manufact 13:3–22

    Google Scholar 

  40. Ponnamma D, Yin Y, Salim N et al (2021) Recent progress and multifunctional applications of 3D printed graphene nanocomposites. Compos Part B Eng 204:108493

  41. You X, Yang J, Dong S (2021) Structural and functional applications of 3D printed graphene-based architectures. J Mater Sci 56(9):1–40

    CAS  Google Scholar 

  42. Yaling W, Yan Z, Guolong W et al (2020) Direct graphene-carbon nanotube composite ink writing all-solid-state flexible micro supercapacitors with high areal energy density. Adv Func Mater 30(16):1907284

    Article  CAS  Google Scholar 

  43. Qi Z, Ye J, Chen W et al (2018) 3D-printed, superelastic polypyrrole-graphene electrodes with ultrahigh areal capacitance for electrochemical energy storage. Adv Mater Technol 3(7):1800053–1800053

    Article  CAS  Google Scholar 

  44. Zishen W, Qin′e Z, Shichuan L et al (2018) Three-dimensional printing of polyaniline/reduced graphene oxide composite for high-performance planar supercapacitor. ACS Appl Mater Interfaces 10:10437–10444

    Article  CAS  Google Scholar 

  45. Shen K, Ding J, Yang S et al (2018) 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv Ener Mater 8(20):1800408.1–1800408.7

  46. Yao B, Chandrasekaran S, Zhang H et al (2020) 3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels. Adv Mater 32(8):1906652

    Article  CAS  Google Scholar 

  47. Tang K, Ma H, Tian Y et al (2020) 3D printed hybrid-dimensional electrodes for flexible micro-supercapacitors with superior electrochemical behaviours. Virt Phys Prototyp 15:511–519

    Article  Google Scholar 

  48. Zong-Feng LI, Dong GX, Kang JR et al (2019) Research progress of transition metal sulfides in lithium-ion batteries. Ener Stor Sci Technol 10(3):995–1001

    Google Scholar 

  49. Zhang K, Chen F, Pan H et al (2019) Study on the effect of transition metal sulfide in lithium-sulfur battery. Inorga Chem Fronti 6(2):477–481

    Article  CAS  Google Scholar 

  50. Karuppasamy K, Jothi VR, Nichelson A et al (2020) Nanostructured transition metal sulfide/selenide anodes for high-performance sodium-ion batteries. Nanostruct Funct Flex Mater Ener Convers Stor Syst 437–464

  51. Wang J, Yue X, Xie Z et al (2021) MOFs-derived transition metal sulfide composites for advanced sodium ion batteries. Energy Storage Materials 41:404–426

    Article  Google Scholar 

  52. Barik R, Ingole PP (2020) Challenges and prospects of metal sulfide materials for supercapacitors. Curr Opin Electrochem 21:327–334

    Article  CAS  Google Scholar 

  53. Wang YY, Wang ZY, Peng W et al (2019) Thickness-dependent resistive switching behavior of KCu7S4/CuxO/Au device. J Nanosci Nanotechnol 19(5):2844–2850

    Article  CAS  Google Scholar 

  54. Wang YY, Wu YD, Peng W et al (2018) Self-assembled KCu7S4 nanowire monolayers for self-powered near-infrared photodetectors. Nanoscale 10:18502–18509

    Article  CAS  Google Scholar 

  55. Xue Y, Zhang Y, Yang R et al (2021) In-situ synthesis of KCu7S4 nanowires array on nickel foam for high performance supercapacitor. Funct Mater Lett 14(1):2151005

    Article  CAS  Google Scholar 

  56. Shen W, J Zang, Hu H et al (2020) Controlled synthesis of KCu7S4/rGO nanocomposites for electrochemical energy storage. Mater Design 195:108992

  57. Dai S, Xi Y, Hu C et al (2013) KCu7S4 nanowires and the Mn/KCu7S4 nanostructure for solid-state supercapacitors. J Mater Chem A 1(48):15530–15534

    Article  CAS  Google Scholar 

  58. Singh RK, Kumar R, Singh DP (2016) Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv 6(69):64993

    Article  CAS  Google Scholar 

  59. Lang L, JunYong L, XinLin L et al (2021) 3D printing of high-performance micro-supercapacitors with patterned exfoliated graphene/carbon nanotube/silver nanowire electrodes. Sci China Technol Sci 64(5):1065–1073

    Article  CAS  Google Scholar 

  60. Fujita T, Guo, et al (2015) 3D nanoporous nitrogen-doped graphene with encapsulated RuO2 nanoparticles for Li-O2 batteries. Adv Mater 27:6137–6143

    Article  CAS  Google Scholar 

  61. Yanmin W, Xueliang W, Yongqin H et al (2021) Flexible supercapacitor: overview and outlooks. J Ener Stor 42:103053

  62. Nian YR, Teng H (2003) Influence of surface oxides on the impedance behavior of carbon-based electrochemical capacitors. J Electroanal Chem 540(2):119–127

    Article  CAS  Google Scholar 

  63. Rocha G, Victoria G-T et al (2017) Multimaterial 3D printing of graphene-based electrodes for electrochemical energy storage using thermoresponsive inks. Acs Appl Mater Interfaces 9:37136–37145

    Article  CAS  Google Scholar 

  64. Yuan S, Fan W, Wang D et al (2021) 3D printed carbon aerogel microlattices for customizable supercapacitors with high areal capacitance. J Mater Chem A 9:423–432

    Article  CAS  Google Scholar 

  65. Kang W, Zeng L, Ling S et al (2021) 3D printed supercapacitors toward trinity excellence in kinetics, energy density, and flexibility. Adv Ener Mater 2100020

  66. Yu L, Li W, Wei C et al (2020) 3D printing of NiCoP/Ti3C2 MXene architectures for energy storage devices with high areal and volumetric energy density. Nano-Micro Lett 12:143

    Article  CAS  Google Scholar 

  67. Yu L, Fan Z, Shao Y et al (2019) Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv Ener Mater 1901839

Download references

Funding

This work was supported by the Supported by Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2020L0640, No. 2020L0634) and the Applied Basic Research Program Project of Shanxi Province (No. 201901D211455).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peikang Bai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Three-dimensional printed rGO/MWCNTs/KCu7S4 shows high areal capacitance of 27.8 F cm−2 and volumetric capacitance of 73.1 F cm−3 at 0.5 A g−1 and good capacitance retention.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 724 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Liu, F., Zhu, K. et al. Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances. Adv Compos Hybrid Mater 5, 1537–1547 (2022). https://doi.org/10.1007/s42114-022-00430-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00430-5

Navigation