Skip to main content
Log in

Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Dielectric constant (ε, epsilon) is one of the basic physical parameters for materials, determining the response of materials to electromagnetic waves or electrical field; its value is generally positive. In fact, dielectric constant can also be negative, regarded as supernormal performance to some degree. The negative dielectric property has become research hotspot as an essential key for constructing metamaterials, showing unique and exotic electromagnetic properties not existing in naturally occurring materials, such as negative refraction, perfect troubles, and reverse Doppler effect. Recently, the feasibility is demonstrated to achieve negative dielectric property in conventional heterogeneous composites rather than periodic artificial arrays; drawing great attention from researchers in material science and engineering, many advances have been made and can promote the development of metamaterials and conventional electromagnetic functional materials. Here, we reviewed the recent advances in negative dielectric property designed in some heterogeneous composites, including metal composites, carbon composites, ceramic composites, conducting polymer. Besides, various strategies, including designing different microstructures, changing the working temperatures, choosing flexible matrix or fillers, electro-magnetic coupling, were summarized to precisely adjust negative dielectric property. Finally, the question unsolved and perspectives about negative dielectric property are put forward; we expect to shed light on the mechanism of negative dielectric property as well as its relationship with the material design in composition and microstructure.

Graphical abstract

Negative dielectric constant is regarded as supernormal performance, recent advances in negative dielectric property designed in some heterogeneous composites have been reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dang Z, Yuan J, Zha J, Zhou T, Li S, Hu G (2012) Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog Mater Sci 57(4):660–723

    Article  CAS  Google Scholar 

  2. Nan C, Shen Y, Ma J (2010) Physical properties of composites near percolation. Annu Rev Mater Res 40:131–151

    Article  CAS  Google Scholar 

  3. Zhang Y, Huang Y, Zhang T, Chang H, Xiao P, Chen H et al (2015) Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv Mater 27(12):2049–2053

    Article  CAS  Google Scholar 

  4. Guo Y, Wang D, Bai T, Liu H, Zheng Y, Liu C et al (2021) Electrostatic self-assembled NiFe2O4/Ti3C2Tx MXene nanocomposites for efficient electromagnetic wave absorption at ultralow loading level. Adv Compos Hybrid Mater 4:602–613

    Article  CAS  Google Scholar 

  5. Luo F, Liu D, Cao T, Cheng H, Kuang J, Deng Y et al (2021) Study on broadband microwave absorbing performance of gradient porous structure. Adv Compos Hybrid Mater 4:591–601

    Article  CAS  Google Scholar 

  6. Wang W, Deng X, Liu D, Luo F, Cheng H, Cao T et al (2021) Broadband radar-absorbing performance of square-hole structure. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00376-0

    Article  Google Scholar 

  7. Wu N, Qiao J, Liu J, Du W, Xu D, Liu W (2018) Strengthened electromagnetic absorption performance derived from synergistic effect of carbon nanotube hybrid with Co@C beads. Adv Compos Hybrid Mater 1:149–159

    Article  CAS  Google Scholar 

  8. Wu N, Zhao B, Liu J, Li Y, Chen Y, Chen L et al (2021) MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv Compos Hybrid Mater 4(3):707–715

    Article  CAS  Google Scholar 

  9. Wu N, Du W, Hu Q, Jiang S (2020) Recent development in fabrication of Co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng Sci 13:11–23

    Google Scholar 

  10. Asmatulu R, Bollavaram P, Patlolla V, Alarifi I, Khan W (2020) Investigating the effects of metallic submicron and nanofilms on fiber-reinforced composites for lightning strike protection and EMI shielding. Adv Compos Hybrid Mater 3(1):66–83

    Article  CAS  Google Scholar 

  11. Cheng H, Pan Y, Chen Q, Che R, Zheng G, Liu C et al (2021) Ultrathin flexible poly (vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv Compos Hybrid Mater 4:505–513

    Article  CAS  Google Scholar 

  12. Gao Q, Pan Y, Zheng G, Liu C, Shen C, Liu X (2021) Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv Compos Hybrid Mater 4:274–285

    Article  CAS  Google Scholar 

  13. Liang C, Du Y, Wang Y, Ma A, Huang S, Ma Z (2021) Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding. Adv Compos Hybrid Mater 4:979–988

    Article  CAS  Google Scholar 

  14. Cheng H, Lu Z, Gao Q, Zuo Y, Liu X, Guo Z et al (2021) PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng Sci 16. https://doi.org/10.30919/es8d518

  15. Wang Z, Li H, Hu H, Fan Y, Fan R, Li B et al (2020) Direct observation of stable negative capacitance in SrTiO3@ BaTiO3 heterostructure. Adv Electron Mater 6(2):1901005

    Article  CAS  Google Scholar 

  16. Huang Y, Chen M, Xie A, Wang Y, Xu X (2021) Recent advances in design and fabrication of nanocomposites for electromagnetic wave shielding and absorbing. Materials 14(15):4148

    Article  CAS  Google Scholar 

  17. Yin S, Huang Y, Deng C, Jiao Y, Wu W, Seidi F et al (2021) Hierarchically porous biochar derived from orthometric integration of wooden and bacterial celluloses for high-performance electromagnetic wave absorption. Compos Sci Technol 218:109184

    Article  CAS  Google Scholar 

  18. Yin S, Huang Y, Wang Y, Wang Y, Xiao H (2021) Tough and flexible poly (dimethylsiloxane) elastomer reinforced by conductive bacterial cellulose frameworks for high-performance microwave absorber. Cellulose. https://doi.org/10.1007/s10570-021-04276-w

    Article  Google Scholar 

  19. Dong Y, Liu Z, Pang L, Han Y, Yao S, Wang X (2021) Preparation of Y2O3–ZrO2–CeO2 solid solution by co-precipitation and its electrical property. Physica B 612:412972

    Article  CAS  Google Scholar 

  20. Dong Y, Liu Z, Qiu G, Pang L, Han Y, Yao S et al (2021) A limiting current oxygen sensor with 8YSZ solid electrolyte and (8YSZ)0.9(CeO2)0.1 dense diffusion barrier. J Alloy Compd 885:160903

    Article  CAS  Google Scholar 

  21. Wang Z, Sun K, Xie P, Fan R, Liu Y, Gu Q et al (2020) Low-loss and temperature-stable negative permittivity in La0.5Sr0.5MnO3 ceramics. J Eur Ceram Soc 40(5):1917–1921

    Article  CAS  Google Scholar 

  22. Kittel C, McEuen P, McEuen P (1996) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  23. Pendry J, Holden A, Stewart W, Youngs I (1996) Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett 76(25):4773

    Article  CAS  Google Scholar 

  24. Pendry J, Holden A, Robbins D, Stewart W (1998) Low frequency plasmons in thin-wire structures. J Phys: Condens Matter 10(22):4785

    CAS  Google Scholar 

  25. Pendry J, Holden A, Robbins D, Stewart W (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE T Microw Theory 47(11):2075–2084

    Article  Google Scholar 

  26. Sun K, Fan R, Zhang X, Zhang Z, Shi Z, Wang N et al (2018) An overview of metamaterials and their achievements in wireless power transfer. J Mater Chem C 6(12):2925–2943

    Article  CAS  Google Scholar 

  27. Shelby R, Smith D, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292(5514):77–79

    Article  CAS  Google Scholar 

  28. Li Y, Engheta N (2018) Capacitor-inspired metamaterial inductors. Phys Rev Appl 10(5):054021

    Article  Google Scholar 

  29. Shi Z, Fan R, Zhang Z, Qian L, Gao M, Zhang M et al (2012) Random composites of nickel networks supported by porous alumina toward double negative materials. Adv Mater 24(17):2349–2352

    Article  CAS  Google Scholar 

  30. Zhao Q, Kang L, Du B, Zhao H, Xie Q, Huang X et al (2008) Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. Phys Rev Lett 101(2):027402

    Article  CAS  Google Scholar 

  31. Xie P, Wang Z, Zhang Z, Fan R, Cheng C, Liu H et al (2018) Silica microsphere templated self-assembly of a three-dimensional carbon network with stable radio-frequency negative permittivity and low dielectric loss. J Mater Chem C 6(19):5239–5249

    Article  CAS  Google Scholar 

  32. Estevez D, Qin F, Luo Y, Quan L, Mai Y, Panina L et al (2019) Tunable negative permittivity in nano-carbon coated magnetic microwire polymer metacomposites. Compos Sci Technol 171:206–217

    Article  CAS  Google Scholar 

  33. Luo Y, Peng H, Qin F, Ipatov M, Zhukova V, Zhukov A et al (2013) Fe-based ferromagnetic microwires enabled meta-composites. Appl Phys Lett 103(25):251902

    Article  CAS  Google Scholar 

  34. Luo Y, Peng H, Qin F, Ipatov M, Zhukova V, Zhukov A et al (2014) Metacomposite characteristics and their influential factors of polymer composites containing orthogonal ferromagnetic microwire arrays. J Appl Phys 115(17):173909

    Article  CAS  Google Scholar 

  35. Qu Y, Wang Z, Xie P, Wang Z, Fan R (2022) Ultraweakly and fine-tunable negative permittivity of polyaniline/nickel metacomposites with high-frequency diamagnetic response. Compos Sci Technol 217:109092

    Article  CAS  Google Scholar 

  36. Qu Y, Wu J, Wang Z, Liu Y, Xie P, Wang Z et al (2021) Radio-frequency epsilon-negative property and diamagnetic response of percolative Ag/CCTO metacomposites. Scripta Mater 203:114067

    Article  CAS  Google Scholar 

  37. Wu H, Zhong Y, Tang Y, Huang Y, Liu G, Sun W et al (2021) Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00378-y

    Article  Google Scholar 

  38. Qi G, Liu Y, Chen L, Xie P, Pan D, Shi Z et al (2021) Lightweight Fe3C@ Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv Compos Hybrid Mater 4:1226–1238

    Article  CAS  Google Scholar 

  39. Sun L, Liang L, Shi Z, Wang H, Xie P, Dastan D et al (2020) Optimizing strategy for the dielectric performance of topological-structured polymer nanocomposites by rationally tailoring the spatial distribution of nanofillers. Eng Sci 12(5):95–105

    CAS  Google Scholar 

  40. Xie P, Li H, He B, Dang F, Lin J, Fan R et al (2018) Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption. J Mater Chem C 6(32):8812–8822

    Article  CAS  Google Scholar 

  41. Xie P, Liu Y, Feng M, Niu M, Liu C, Wu N et al (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4:173–185

    Article  CAS  Google Scholar 

  42. Yin P, Shi Z, Sun L, Xie P, Dastan D, Sun K et al (2021) Improved breakdown strengths and energy storage properties of polyimide composites: the effect of internal interfaces of C/SiO2 hybrid nanoparticles. Polym Compos 42(6):3000–3010

    Article  CAS  Google Scholar 

  43. Zhang W, Zhu X, Liang L, Yin P, Xie P, Dastan D et al (2021) Significantly enhanced dielectric permittivity and low loss in epoxy composites incorporating 3D W-WO3/BaTiO3 foams. J Mater Sci 56(6):4254–4265

    Article  CAS  Google Scholar 

  44. Xie P, Wang Z, Sun K, Cheng C, Liu Y, Fan R (2017) Regulation mechanism of negative permittivity in percolating composites via building blocks. Appl Phys Lett 111(11):112903

    Article  CAS  Google Scholar 

  45. Shi Z, Fan R, Zhang Z, Gong H, Ouyang J, Bai Y et al (2011) Experimental and theoretical investigation on the high frequency dielectric properties of Ag/Al2O3 composites. Appl Phys Lett 99(3):032903

    Article  CAS  Google Scholar 

  46. Shi Z, Fan R, Wang X, Zhang Z, Qian L, Yin L et al (2015) Radio-frequency permeability and permittivity spectra of copper/yttrium iron garnet cermet prepared at low temperatures. J Eur Ceram Soc 35(4):1219–1225

    Article  CAS  Google Scholar 

  47. Shi Z, Fan R, Zhang Z, Yan K, Zhang X, Sun K et al (2013) Experimental realization of simultaneous negative permittivity and permeability in Ag/Y3Fe5O12 random composites. J Mater Chem C 1(8):1633–1637

    Article  CAS  Google Scholar 

  48. Massango H, Tsutaoka T, Kasagi T, Yamamoto S, Hatakeyama K (2017) Coexistence of gyromagnetic resonance and low frequency plasmonic state in the submicron Ni granular composite materials. J Appl Phys 121(10):103902

    Article  CAS  Google Scholar 

  49. Tsutaoka T, Kasagi T, Yamamoto S, Hatakeyama K (2015) Double negative electromagnetic property of granular composite materials in the microwave range. J Magn Magn Mater 383:139–143

    Article  CAS  Google Scholar 

  50. Tsutaoka T, Massango H, Kasagi T, Yamamoto S, Hatakeyama K (2016) Double negative electromagnetic properties of percolated Fe53Ni47/Cu granular composites. Appl Phys Lett 108(19):191904

    Article  CAS  Google Scholar 

  51. Wang Z, Sun K, Xie P, Hou Q, Liu Y, Gu Q et al (2020) Design and analysis of negative permittivity behaviors in barium titanate/nickel metacomposites. Acta Mater 185:412–419

    Article  CAS  Google Scholar 

  52. Wang Z, Sun K, Xie P, Liu Y, Gu Q, Fan R et al (2020) Epsilon-negative BaTiO3/Cu composites with high thermal conductivity and yet low electrical conductivity. J Materiomics 6(1):145–151

    Article  Google Scholar 

  53. Sun K, Zhang Z, Qian L, Dang F, Zhang X, Fan R (2016) Dual percolation behaviors of electrical and thermal conductivity in metal-ceramic composites. Appl Phys Lett 108(6):061903

    Article  CAS  Google Scholar 

  54. Xie P, Zhang Z, Wang Z, Sun K, Fan R (2019) Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures. Research 2019:1021368

    Article  CAS  Google Scholar 

  55. Chen L, Mao S, Wang P, Yao Z, Du Z, Zhu Z et al (2021) Visible light driven hot-electron injection by pd nanoparticles: fast response in metal–semiconductor photodetection. Adv Opt Mater 9(1):2001505

    Article  CAS  Google Scholar 

  56. Liu J, Sui M, Song S, Huang L, Belfiore L, Tang J (2021) Towards applicable photoacoustic micro-fluidic pumps: tunable excitation wavelength and improved stability by fabrication of Ag-Au alloying nanoparticles. J Alloy Compd 884:161091

    Article  CAS  Google Scholar 

  57. Qi P, Wang Y, Zeng J, Sui K, Zhao J (2021) Progress in antimony capturing by superior materials: Mechanisms, properties and perspectives. Chem Eng J 419:130013

    Article  CAS  Google Scholar 

  58. Qi P, Zeng J, Tong X, Shi J, Wang Y, Sui K (2021) Bioinspired synthesis of fiber-shaped silk fibroin-ferric oxide nanohybrid for superior elimination of antimonite. J Hazard Mater 403:123909

    Article  CAS  Google Scholar 

  59. Zeng J, Qi P, Wang Y, Liu Y, Sui K (2021) Electrostatic assembly construction of polysaccharide functionalized hybrid membrane for enhanced antimony removal. J Hazard Mater 410:124633

    Article  CAS  Google Scholar 

  60. Qi P, Luo R, Pichler T, Zeng J, Wang Y, Fan Y et al (2019) Development of a magnetic core-shell Fe3O4@ TA@ UiO-66 microsphere for removal of arsenic (III) and antimony (III) from aqueous solution. J Hazard Mater 378:120721

    Article  CAS  Google Scholar 

  61. Cheng Y, Liu S, Wang L, Liu G, Zhao P, Lin M et al (2020) Homologous cancerous cell membrane modulated multifunctional nanoshuttles: targeting specificity and improved tumor theranostics. Compos Commun 20:100342

    Article  Google Scholar 

  62. Zhao P, Liu S, Wang L, Liu G, Cheng Y, Lin M et al (2020) Alginate mediated functional aggregation of gold nanoclusters for systemic photothermal therapy and efficient renal clearance. Carbohyd Polym 241:116344

    Article  CAS  Google Scholar 

  63. Bao L, Zhu S, Chen Y et al (2021) Anionic defects engineering of Co3O4 catalyst for toluene oxidation. Fuel 122774

  64. Hou C, Yang W, Xie X, Sun X, Wang J, Naik N et al (2021) Agaric-like anodes of porous carbon decorated with MoO2 nanoparticles for stable ultralong cycling lifespan and high-rate lithium/sodium storage. J Colloid Interf Sci 596:396–407

    Article  CAS  Google Scholar 

  65. Ma Y, Xie X, Yang W, Yu Z, Sun X, Zhang Y et al (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4:906–924

    Article  CAS  Google Scholar 

  66. Xie P, Li Y, Hou Q, Sui K, Liu C, Fu X et al (2020) Tunneling-induced negative permittivity in Ni/MnO nanocomposites by a bio-gel derived strategy. J Mater Chem C 8(9):3029–3039

    Article  CAS  Google Scholar 

  67. Cheng C, Fan R, Wang Z, Xie P, Hou C, Fan G et al (2018) Radio-frequency negative permittivity in the graphene/silicon nitride composites prepared by spark plasma sintering. J Am Ceram Soc 101(4):1598–1606

    Article  CAS  Google Scholar 

  68. Fan T, Deng W, Gang Y, Du Z, Li Y (2021) Degradation of hazardous organics via cathodic flow-through process using a spinel FeCo2O4/CNT decorated stainless-steel mesh. ES Mater Manuf 12:53–62

    CAS  Google Scholar 

  69. Gao C, Deng W, Pan F, Feng X, Li Y (2020) Superhydrophobic electrospun PVDF membranes with silanization and fluorosilanization co-functionalized CNTs for improved direct contact membrane distillation. Eng Sci 9(2):35–43

    CAS  Google Scholar 

  70. Cheng C, Fan R, Ren Y, Ding T, Qian L, Guo J et al (2017) Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites. Nanoscale 9(18):5779–5787

    Article  CAS  Google Scholar 

  71. Singh R, Chakravarty A, Mishra S, Prajapati R, Dutta J, Bhat I et al (2019) AlN–SWCNT METACOMPOSITES HAVING TUNABLE NEGATIVE PERMITTIVITY IN RADIO AND MICROWAVE FREQUENCIES. ACS Appl Mater Inter 11(51):48212–54820

    Article  CAS  Google Scholar 

  72. Badri S, Gilarlue M (2020) Silicon nitride waveguide devices based on gradient-index lenses implemented by subwavelength silicon grating metamaterials. Appl Opt 59(17):5269–5275

    Article  CAS  Google Scholar 

  73. Meng Y, Chen Y, Lu L, Ding Y, Cusano A, Fan J et al (2021) Optical meta-waveguides for integrated photonics and beyond. Light Sci Appl 10:235

    Article  CAS  Google Scholar 

  74. Yang Q, Chen Y, Lv Z, Chen L, Lou D, Zheng Z et al (2019) Nanosecond laser surface processing of AlN ceramics. J Mater Sci 54:13874–13882

    Article  CAS  Google Scholar 

  75. Yung K, Zhu B, Wu J, Yue T, Xie C (2007) Effect of AlN content on the performance of brominated epoxy resin for printed circuit board substrate. J Polym Sci Pol Phys 45(13):1662–1674

    Article  CAS  Google Scholar 

  76. Cheng C, Yan K, Fan R, Qian L, Zhang Z, Sun K et al (2016) Negative permittivity behavior in the carbon/silicon nitride composites prepared by impregnation-carbonization approach. Carbon 96:678–684

    Article  CAS  Google Scholar 

  77. Zhang F, Jia Z, Wang Z, Zhang C, Wang B, Xu B et al (2021) Tailoring nanoparticles composites derived from metal-organic framework as electromagnetic wave absorber. Mater Today Phys 20:100475

    Article  CAS  Google Scholar 

  78. Zhang H, Jia Z, Wang B, Wu X, Sun T, Liu X et al (2021) Construction of remarkable electromagnetic wave absorber from heterogeneous structure of Co-CoFe2O4@ mesoporous hollow carbon spheres. Chem Eng J 421:129960

    Article  CAS  Google Scholar 

  79. Zhang S, Cheng B, Gao Z, Lan D, Zhao Z, Wei F et al (2021) Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: an overview of recent advances and prospects. J Alloy Compd 893:162343

    Article  CAS  Google Scholar 

  80. Zheng T, Jia Z, Zhan Q, Ling M, Su Y, Wang B et al (2022) Self-assembled multi-layered hexagonal-like MWCNTs/MnF2/CoO nanocomposite with enhanced electromagnetic wave absorption. Carbon 186:262–272

    Article  CAS  Google Scholar 

  81. Zhou X, Jia Z, Zhang X, Wang B, Liu X, Xu B et al (2021) Electromagnetic wave absorption performance of NiCo2X4 (X= O, S, Se, Te) spinel structures. Chem Eng J 420:129907

    Article  CAS  Google Scholar 

  82. Luo J, Shen P, Yao W, Jiang C, Xu J (2016) Synthesis, characterization, and microwave absorption properties of reduced graphene oxide/strontium ferrite/polyaniline nanocomposites. Nanoscale Res Lett 11:141

    Article  CAS  Google Scholar 

  83. Luo J, Zhang K, Cheng M, Gu M, Sun X (2020) MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem Eng J 380:122625

    Article  CAS  Google Scholar 

  84. Luo J, Yue L, Ji H, Zhang K, Yu N (2019) Investigation on the optimization, design and microwave absorption properties of BaTb0.2Eu0.2Fe11.6O19/PANI decorated on reduced graphene oxide nanocomposites. J Mater Sci 54(8):6332–6346

    Article  CAS  Google Scholar 

  85. Wang Y, Lu X, Chen Y, Lai H, Teng S, Quan B (2021) Organic–inorganic hybrid-reinforced flexible and robust 2D papers for high-efficiency microwave-absorbing films. J Mater Chem A 9(43):24503–24509

    Article  CAS  Google Scholar 

  86. Quan B, Gu W, Sheng J, Lv X, Mao Y, Liu L et al (2021) From intrinsic dielectric loss to geometry patterns: dual-principles strategy for ultrabroad band microwave absorption. Nano Res 14(5):1495–1501

    Article  CAS  Google Scholar 

  87. Cheng C, Fan R, Wang Z, Shao Q, Guo X, Xie P et al (2017) Tunable and weakly negative permittivity in carbon/silicon nitride composites with different carbonizing temperatures. Carbon 125:103–112

    Article  CAS  Google Scholar 

  88. Zhao Y, Yang Z, Fan W, Wang Y, Li G, Cong H et al (2020) Carbon nanotube/carbon fiber electrodes via chemical vapor deposition for simultaneous determination of ascorbic acid, dopamine and uric acid. Arab J Chem 13(1):3266–3275

    Article  CAS  Google Scholar 

  89. Wang C, Wang X, Lu H et al (2018) Cellulose-derived hierarchical porous carbon for high-performance flexible supercapacitors. Carbon 140:139–147

    Article  CAS  Google Scholar 

  90. Gu J, Cui K, Niu S, Ge Y, Liu Y, Ma Z et al (2021) Smart configuration of cobalt hexacyanoferrate assembled on carbon fiber cloths for fast aqueous flexible sodium ion pseudocapacitor. J Colloid Interf Sci 594:522–530

    Article  CAS  Google Scholar 

  91. Luo Y, Wang C, Wang X (2021) Fast energy storage performance of CoFe2O4/CNTs hybrid aerogels for potassium ion battery. J Colloid Interf Sci 600:820–827

    Article  CAS  Google Scholar 

  92. Wang C, Zhang J, Wang X, Lin C, Zhao X (2020) Hollow rutile cuboid arrays grown on carbon fiber cloth as a flexible electrode for sodium-ion batteries. Adv Funct Mater 30(45):2002629

    Article  CAS  Google Scholar 

  93. Wu H, Zhang Y, Yin R, Zhao W, Li X, Qian L (2018) Magnetic negative permittivity with dielectric resonance in random Fe3O4@ graphene-phenolic resin composites. Advd Compos Hybrid Mater 1:168–176

    Article  CAS  Google Scholar 

  94. Wu H, Yin R, Zhang Y, Wang Z, Xie P, Qian L (2017) Synergistic effects of carbon nanotubes on negative dielectric properties of graphene-phenolic resin composites. J Phys Chem C 121(22):12037–12045

    Article  CAS  Google Scholar 

  95. Gijare M, Chaudhari S, Ekar S, Garje A (2021) Reduced graphene oxide based electrochemical nonenzymatic human serum glucose sensor. ES Mater Manuf 14:110–119

    Google Scholar 

  96. Kakade P, Kachere A, Rondiya S, Bhosale S (2021) Graphene oxide assisted synthesis of magnesium oxide nanorods. ES Mater Manuf 12:63–71

    CAS  Google Scholar 

  97. Liu H, Mao Y (2021) Graphene oxide-based nanomaterials for uranium adsorptive uptake. ES Mater Manuf 13:3–22

    CAS  Google Scholar 

  98. Nidamanuri N, Li Y, Li Q, Dong M (2020) Graphene and graphene oxide-based membranes for gas separation. Eng Sci 9(7):3–16

    CAS  Google Scholar 

  99. Wu J (2021) Multichannel absorption enhancement in graphene based on metal-photonic crystal hetero-structure. ES Energy Environ 13:25–30

    CAS  Google Scholar 

  100. Yang H, Li Q, Wang Z, Wu H, Wu Y, Hou P et al (2021) Effect of graphene on microstructure and mechanical properties of Si3N4/SiC ceramics. ES Mater Manuf 12:29–34

    CAS  Google Scholar 

  101. Yu Z, Bai Y, Wang J, Li Y (2021) Effects of functional additives on structure and properties of polycarbonate-based composites filled with hybrid chopped carbon fiber/graphene nanoplatelet fillers. ES Energy Environ 12(2):66–76

    Google Scholar 

  102. Zhao S, Niu M, Peng P, Cheng Y, Zhao Y (2019) Edge oleylaminated graphene as ultra-stable lubricant additive for friction and wear reduction. Eng Sci 9(2):77–83

    Google Scholar 

  103. Zhou Y, Wang P, Ruan G, Xu P, Ding Y (2021) Synergistic effect of P [MPEGMA-IL] modified graphene on morphology and dielectric properties of PLA/PCL blends. ES Mater Manuf 11:20–29

    CAS  Google Scholar 

  104. Sun L, Shi Z, He B, Wang H, Liu S, Huang M et al (2021) Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: a novel design targeting for advanced energy storage capacitors. Adv Funct Mater 31(35):2100280

    Article  CAS  Google Scholar 

  105. Sun S, Shi Z, Sun L, Liang L, Dastan D, He B et al (2021) Achieving concurrent high energy density and efficiency in all-polymer layered paraelectric/ferroelectric composites via introducing a moderate layer. ACS Appl Mater Interf 13(23):27522–27532

    Article  CAS  Google Scholar 

  106. Qu Y, Fan G, Liu D, Gao Y, Xu C, Zhong J et al (2018) Functional nano-units prepared by electrostatic self-assembly for three-dimension carbon networks hosted in CaCu3Ti4O12 ceramics towards radio-frequency negative permittivity. J Alloy Compd 743:618–625

    Article  CAS  Google Scholar 

  107. Xie X, Wang B, Wang Y, Ni C, Sun X, Du W (2021) Spinel structured MFe2O4 (M= Fe Co, Ni, Mn, Zn) and their composites for microwave absorption: a review. Chem Eng J 428:131160

    Article  CAS  Google Scholar 

  108. Xie X, Zhang B, Wang Q, Zhao X, Wu D, Wu H et al (2021) Efficient microwave absorber and supercapacitors derived from puffed-rice-based biomass carbon: Effects of activating temperature. J Colloid Interf Sci 594:290–303

    Article  CAS  Google Scholar 

  109. Gao X, Wang B, Wang K, Xu S, Liu S, Liu X et al (2021) Design of Ti3C2Tx/TiO2/PANI multi-layer composites for excellent electromagnetic wave absorption performance. J Colloid Interf Sci 583:510–521

    Article  CAS  Google Scholar 

  110. Hou T, Jia Z, Dong Y, Liu X, Wu G (2021) Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem Eng J 432:133919

    Google Scholar 

  111. Hou T, Jia Z, Wang B, Li H, Liu X, Chi Q et al (2021) Metal-organic framework-derived NiSe2-CoSe2@C/Ti3C2Tx composites as electromagnetic wave absorbers. Chem Eng J 422:130079

    Article  CAS  Google Scholar 

  112. Liu J, Jia Z, Zhou W, Liu X, Zhang C, Xu B et al (2022) Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption. Chem Eng J 429:132253

    Article  CAS  Google Scholar 

  113. Lv H, Yang Z, Liu B, Wu G, Lou Z, Fei B et al (2021) A flexible electromagnetic wave-electricity harvester. Nat Commun 12:834

    Article  CAS  Google Scholar 

  114. Wang C, Jia Z, He S, Zhou J, Zhang S, Tian M et al (2021) Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation. J Mater Sci Technol 108:236–243

    Article  Google Scholar 

  115. Wang J, Jia Z, Liu X, Dou J, Xu B, Wang B et al (2021) Construction of 1D heterostructure NiCo@ C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett 13(1):1–16

    Article  CAS  Google Scholar 

  116. Shi Y, Pan K, Moloney M, Qiu J (2021) Strain sensing metacomposites of polyaniline/silver nanoparticles/carbon foam. Compos Part A: Appl Sci Manuf 144:106351

    Article  CAS  Google Scholar 

  117. Dai J, Luo H, Moloney M, Qiu J (2020) Adjustable graphene/polyolefin elastomer epsilon-near-zero metamaterials at radiofrequency range. ACS Appl Mater Interf 12(19):22019–22028

    Article  CAS  Google Scholar 

  118. Jiao Z, D’hooge D, Cardon L, Qiu J (2020) Elegant design of carbon nanotube foams with double continuous structure for metamaterials in a broad frequency range. J Mater Chem C 8(9):3226–3234

    Article  CAS  Google Scholar 

  119. Luo H, Qiu J (2019) Carbon nanotube/polyolefin elastomer metacomposites with adjustable radio-frequency negative permittivity and negative permeability. Adv Electron Mater 5(6):1900011

    Article  CAS  Google Scholar 

  120. Ni J, Zhan R, Qiu J (2020) Constructing honeycomb conductive rings in graphene foam/epoxy resin metacomposites for adjustable negative permittivity, low dielectric loss tangent and mechanical enhancement. Org Electron 82:105706

    Article  CAS  Google Scholar 

  121. Yao X, Kou X, Qiu J (2016) Multi-walled carbon nanotubes/polyaniline composites with negative permittivity and negative permeability. Carbon 107:261–267

    Article  CAS  Google Scholar 

  122. Sun K, Xie P, Wang Z, Su T, Shao Q, Ryu J et al (2017) Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer 125:50–57

    Article  CAS  Google Scholar 

  123. Sun K, Dong J, Wang Z, Wang Z, Fan G, Hou Q et al (2019) Tunable negative permittivity in flexible graphene/PDMS metacomposites. J Phys Chem C 123(38):23635–23642

    Article  CAS  Google Scholar 

  124. Wu H, Qi Y, Wang Z, Zhao W, Li X, Qian L (2017) Low percolation threshold in flexible graphene/acrylic polyurethane composites with tunable negative permittivity. Compos Sci Technol 151:79–84

    Article  CAS  Google Scholar 

  125. Chen Y, Wang Y, Li Z, Wang D, Yuan H, Zhang H et al (2021) A flame retarded polymer-based composite solid electrolyte improved by natural polysaccharides. Compos Commun 26:100774

    Article  Google Scholar 

  126. Li Y, Yuan H, Chen Y, Wei X, Sui K, Tan Y (2021) Application and exploration of nanofibrous strategy in electrode design. J Mater Sci Technol 74:189–202

    Article  CAS  Google Scholar 

  127. Wang Z, Yuan H, Zhang Y, Wang D, Ju J, Tan Y (2021) Recent progress in organic color-tunable phosphorescent materials. J Mater Sci Technol 101:264–284

    Article  Google Scholar 

  128. Yuan H, Li G, Dai E, Lu G, Huang X, Hao L et al (2020) Ordered Honeycomb-Pattern Membrane. Chinese J Chem 38(12):1767–1779

    Article  CAS  Google Scholar 

  129. Jiang H, Fan L, Yan S, Li F, Li H, Tang J (2019) Tough and electro-responsive hydrogel actuators with bidirectional bending behavior. Nanoscale 11(5):2231–2237

    Article  CAS  Google Scholar 

  130. Jiang H, Tang J (2020) Zirconium hydroxide cross-linked nanocomposite hydrogel with high mechanical strength and fast electro-response. ACS Appl Polym Mater 2(9):3821–3827

    Article  CAS  Google Scholar 

  131. Yin J, Fan W, Xu Z, Duan J, Xia Y, Nie Z et al (2021) Precisely defining local gradients of stimuli‐responsive hydrogels for complex 2D‐to‐4D shape evolutions. Small 2104440

  132. Sun W, Du A, Feng Y, Shen J, Huang S, Tang J et al (2016) Super black material from low-density carbon aerogels with subwavelength structures. ACS Nano 10(10):9123–9128

    Article  CAS  Google Scholar 

  133. Xie P, Sun W, Liu Y, Du A, Zhang Z, Wu G et al (2018) Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon 129:598–606

    Article  CAS  Google Scholar 

  134. Xie P, Sun W, Du A, Hou Q, Wu G, Fan R (2021) Epsilon-negative carbon aerogels with state transition from dielectric to degenerate semiconductor. Adv Electron Mater 7(3):2000877

    Article  CAS  Google Scholar 

  135. Yin F, Yan K, Shen L, Bao N (2021) Metallic ferromagnetic selenospinel composites of CuCr2Se4–CdCr2Se4 with double negative electromagnetic parameters. Appl Phys Lett 118(18):181904

    Article  CAS  Google Scholar 

  136. Yan K, Fan R, Shi Z, Chen M, Qian L, Wei Y et al (2014) Negative permittivity behavior and magnetic performance of perovskite La1−xSrxMnO3 at high-frequency. J Mater Chem C 2(6):1028–1033

    Article  CAS  Google Scholar 

  137. Fan G, Wang Z, Sun K, Liu Y, Fan R (2021) Doped ceramics of indium oxides for negative permittivity materials in MHz-kHz frequency regions. J Mater Sci Technol 61:125–131

    Article  CAS  Google Scholar 

  138. Fan G, Wang Z, Wei Z, Liu Y, Fan R (2020) Negative dielectric permittivity and high-frequency diamagnetic responses of percolated nickel/rutile cermets. Compos A: Appl Sci Manuf 139:106132

    Article  CAS  Google Scholar 

  139. Fan G, Wang Z, Sun K, Liu Y, Fan R (2020) Doping-dependent negative dielectric permittivity realized in mono-phase antimony tin oxide ceramics. J Mater Chem C 8(33):11610–11617

    Article  CAS  Google Scholar 

  140. Gu H, Zhang H, Ma C, Lyu S, Yao F, Liang C et al (2017) Polyaniline assisted uniform dispersion for magnetic ultrafine barium ferrite nanorods reinforced epoxy metacomposites with tailorable negative permittivity. J Phys Chem C 121(24):13265–13273

    Article  CAS  Google Scholar 

  141. Xu X, Fu Q, Gu H, Guo Y, Zhou H, Zhang J et al (2020) Polyaniline crystalline nanostructures dependent negative permittivity metamaterials. Polymer 188:122129

    Article  CAS  Google Scholar 

  142. Xie P, Fan R, Zhang Z, Li B, Chen M, Liu Y (2018) Tunable negative permittivity and permeability of yttrium iron garnet/polyaniline composites in radio frequency region. J Mater Sci: Mater Electron 29(7):6119–6124

    CAS  Google Scholar 

  143. Cheng C, Fan R, Fan G, Liu H, Zhang J, Shen J et al (2019) Tunable negative permittivity and magnetic performance of yttrium iron garnet/polypyrrole metacomposites at the RF frequency. J Mater Chem C 7(11):3160–3167

    Article  CAS  Google Scholar 

  144. Fan G, Wang Z, Ren H, Liu Y, Fan R (2021) Dielectric dispersion of copper/rutile cermets: dielectric resonance, relaxation, and plasma oscillation. Scripta Mater 190:1–6

    Article  CAS  Google Scholar 

Download references

Funding

This research is financially supported by the National Natural Science Foundation of China (51773187, 51871146, 52101176), Postdoctoral Applied Research Project of Qingdao, the China Postdoctoral Science Foundation [2020M671992], Postdoctoral Innovation Project of Shandong Province [202003031], Natural Science Foundation of Shandong Province [ZR2020QE006], Innovation Program of the Shanghai Municipal Education Commission (Grant No. 18CG56), and support from State Key Laboratory of Bio-fibers and Eco-textiles.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhicheng Shi, Yao Liu, Kelan Yan or Chunzhao Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, P., Shi, Z., Feng, M. et al. Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv Compos Hybrid Mater 5, 679–695 (2022). https://doi.org/10.1007/s42114-022-00479-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00479-2

Keywords

Navigation