Skip to main content
Log in

Tunable negative dielectric properties of magnetic CoFe2O4/graphite-polypyrrole metacomposites

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In this work, the CoFe2O4/graphite-polypyrrole (PPy) metacomposites with negative dielectric constant were prepared by the surface-initiated-polymerization method. The dielectric constant of CoFe2O4/graphite composites is positive, while the dielectric constant of CoFe2O4/graphite-PPy composites is negative. The regulation of the negative dielectric constant of CoFe2O4/graphite-PPy metacomposites was accomplished by changing the content of CoFe2O4/graphite. The negative dielectric constant of 10.0 wt% CoFe2O4/graphite-PPy metacomposites reaches −1.82 × 103 in the measured frequency range. The crystal structure, chemical structure, and microstructure of all the samples were analyzed by the XRD, FT-IR, Raman, and SEM systematically. All the characterizations indicate that the CoFe2O4/graphite-PPy metacomposites were successfully fabricated. Meanwhile, the magnetic properties of the samples were reported in this work. The remanence, coercivity, and saturation magnetization is 10.50 emu g−1, 0.314 T, and 25.34 emu g−1 for CoFe2O4/graphite-PPy metacomposites with a CoFe2O4/graphite loading of 40.0 wt%. This work provides the guideline for fabrication of polymer-based metacomposites with tunable negative dielectric constant.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Urzhumov YA, Shvets G (2008) Optical magnetism and negative refraction in plasmonic metamaterials. Solid State Commun 146(5–6):208–220

    Article  CAS  Google Scholar 

  2. Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X (2008) Three-dimensional optical metamaterial with a negative refractive index. Nature 455(7211):376–379

    Article  CAS  Google Scholar 

  3. Cheng C, Fan R, Ren Y, Ding T, Qian L, Guo J, Li X, An L, Lei Y, Yin Y, Guo Z (2017) Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites. Nanoscale 9(18):5779–5787

    Article  CAS  Google Scholar 

  4. Xu J, Cao J, Guo M, Yang S, Yao H, Lei M, Hao Y, Bi K (2021) Metamaterial mechanical antenna for very low frequency wireless communication. Adv Compos Hybrid Mater 4(3):761–767

    Article  Google Scholar 

  5. Li T, Gao Y, Zheng K, Ma Y, Ding D, Zhang H (2019) Achieving better greenhouse effect than glass: visibly transparent and low emissivity Metal-Polymer hybrid metamaterials. ES Energy Environ 5:102–107

    Google Scholar 

  6. Guo Z, Li A, Sun Z, Yan Z, Liu H, Qian L (2021) Negative permittivity behavior in microwave frequency from cellulose-derived carbon nanofibers. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00314-0

    Article  Google Scholar 

  7. Zhu Q, Huang Y, Li Y, Zhou M, Xu S, Liu X, Liu C, Yuan B, Guo Z (2021) Aluminum dihydric tripolyphosphate/polypyrrole-functionalized graphene oxide waterborne epoxy composite coatings for impermeability and corrosion protection performance of metals. Adv Compos Hybrid Mater 4(3):780–792

    Article  CAS  Google Scholar 

  8. Sun J, Mu Q, Kimura H, Murugadoss V, He M, Du W, Hou C (2022) Oxidative degradation of phenols and substituted phenols in the water and atmosphere: a review. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00435-0

    Article  Google Scholar 

  9. Zhang D, Sun J, James LL, Castro JM (2020) Overview of ultrasonic assisted manufacturing multifunctional carbon nanotube nanopaper based polymer nanocomposites. Eng Sci 10:35–50

    CAS  Google Scholar 

  10. Yan X, Liu J, Khan MA, Sheriff S, Vupputuri S, Das R, Sun L, Young DP, Guo Z (2020) Efficient solvent-free microwave irradiation synthesis of highly conductive polypropylene nanocomposites with lowly loaded carbon nanotubes. ES Mater Manuf 9:21–33

    CAS  Google Scholar 

  11. Guo J, Chen Z, Xu XuX, Li LH, Xi S, Abdul W, Wu Q, Zhang P, Xu B, Zhu J, Guo Z (2022) Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00417-2

    Article  Google Scholar 

  12. Wei H, Gu H, Guo J, Cui D, Yan X, Liu J, Cao D, Wang X, Wei S, Guo Z (2017) Significantly enhanced energy density of magnetite/polypyrrole nanocomposite capacitors at high rates by low magnetic fields. Adv Compos Hybrid Mater 1(1):127–134

    Article  CAS  Google Scholar 

  13. Guo J, Chen Z, Abdul W, Kong J, Khan MA, Young DP, Zhu J, Guo Z (2021) Tunable positive magnetoresistance of magnetic polyaniline nanocomposites. Adv Compos Hybrid Mater 4(3):534–542

    Article  CAS  Google Scholar 

  14. Dashairya L, Sahu A, Saha P (2019) Stearic acid treated polypyrrole-encapsulated melamine formaldehyde superhydrophobic sponge for oil recovery. Adv Compos Hybrid Mater 2(1):70–82

    Article  CAS  Google Scholar 

  15. Guo J, Li X, Liu H, Young DP, Song G, Song K, Zhu J, Kong J, Guo Z (2021) Tunable magnetoresistance of core-shell structured polyaniline nanocomposites with 0-, 1-, and 2-dimensional nanocarbons. Adv Compos Hybrid Mater 4(1):51–64

    Article  CAS  Google Scholar 

  16. Sreekala PS, Honey J, Aanandan CK (2018) Development and characterization of camphor sulphonic acid doped polyaniline film with broadband negative dielectric constant for microwave applications. Mater Res Express 5(5):056302

    Article  CAS  Google Scholar 

  17. Cheng C, Fan R, Fan G, Liu H, Zhang J, Shen J, Ma Q, Wei R, Guo Z (2019) Tunable negative permittivity and magnetic performance of yttrium iron garnet/polypyrrole metacomposites at the RF frequency. J Mater Chem C 7(11):3160–3167

    Article  CAS  Google Scholar 

  18. Qu Y, Wang Z, Xie P, Wang Z, Fan R (2022) Ultraweakly and fine-tunable negative permittivity of polyaniline/nickel metacomposites with high-frequency diamagnetic response. Compos Sci Technol 217:109092

    Article  CAS  Google Scholar 

  19. Qin G, Qiu J (2019) Graphene/polypyrrole nanocomposites with high negative permittivity and low dielectric loss tangent. Ceram Int 45(5):5407–5412

    Article  CAS  Google Scholar 

  20. Xu C, Qu Y, Fan G, Ren H, Chen J, Liu Y, Wu Y, Fan R (2018) Low loading carbon nanotubes supported polypyrrole nano metacomposites with tailorable negative permittivity in radio frequency range. Org Electron 63:362–368

    Article  CAS  Google Scholar 

  21. Tian Y, Yang X, Nautiyal A, Zheng Y, Guo Q, Luo J, Zhang X (2019) One-step microwave synthesis of MoS2/MoO3@graphite nanocomposite as an excellent electrode material for supercapacitors. Adv Compos Hybrid Mater 2(1):151–161

    Article  CAS  Google Scholar 

  22. Yu M, Yu T, Chen S, Guo Z, Seok I (2020) A facile synthesis of Ag/TiO2/rGO nanocomposites with enhanced visible light photocatalytic activity. Eng Sci 7:64–69

    CAS  Google Scholar 

  23. Xie Y, Yang Y, Liu Y, Wang S, Guo X, Wang H, Cao D (2021) Paraffin/polyethylene/graphite composite phase change materials with enhanced thermal conductivity and leakage-proof. Adv Compos Hybrid Mater 4(3):543–551

    Article  CAS  Google Scholar 

  24. Wu N, Hu Q, Wei R, Mai X, Nithesh N, Pan D, Guo Z, Shi Z (2021) Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: recent progress, challenges and prospects. Carbon 176:88–105

    Article  CAS  Google Scholar 

  25. Wu N, Zhao B, Liu J, Li Y, Chen Y, Chen L, Wang M, Guo Z (2021) MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv Compos Hybrid Mater 4:707–715

    Article  CAS  Google Scholar 

  26. Holle MJ, Misak HE, Malik RA, Alarifi IM, Asmatulu R (2021) Structural analysis and wear behavior of different graphite-based brushes for aircraft starter generator application. Adv Compos Hybrid Mater 4(1):162–172

    Article  Google Scholar 

  27. Wang Q, Zhang J, Zhang Z, Hao Y, Bi K (2020) Enhanced dielectric properties and energy storage density of PVDF nanocomposites by co-loading of BaTiO3 and CoFe2O4 nanoparticles. Adv Compos Hybrid Mater 3(1):58–65

    Article  CAS  Google Scholar 

  28. Adak NC, Chhetri S, Murmu NC, Samanta P, Kuila T (2019) Analytical and experimental investigation on magnetorheological behavior of CoFe2O4-rGO-incorporated epoxy fluid composites. Adv Compos Hybrid Mater 2(2):266–278

    Article  CAS  Google Scholar 

  29. Ma Y, Xie X, Yang W, Yu Z, Sun X, Zhang Y, Yang X, Kimura H, Hou C, Guo Z, Du W (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4:906–924

    Article  CAS  Google Scholar 

  30. Zhai Y, Yang W, Xie X, Sun X, Wang J, Yang X, Naik N, Kimura H, Du W, Guo Z, Hou C (2022) Co3O4 nanoparticle-dotted hierarchical-assembled carbon nanosheet framework catalysts with the formation/decomposition mechanisms of Li2O2 for smart lithium–oxygen batteries. Inorg Chem Front 9:1115–1124

    Article  CAS  Google Scholar 

  31. Hou C, Wang B, Murugadoss V, Vupputuri S, Chao Y, Guo Z, Wang C, Du W (2020) Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng Sci 11:19–30

    CAS  Google Scholar 

  32. Jia W, Qi Y, Hu Z, Xiong Z, Luo Z, Xiang Z, Hu J, Lu W (2021) Facile fabrication of monodisperse CoFe2O4 nanocrystals@dopamine@DOX hybrids for magnetic-responsive on-demand cancer theranostic applications. Adv Compos Hybrid Mater 4:989–1001

    Article  CAS  Google Scholar 

  33. Gu H, Zhang H, Lin J, Shao Q, Young DP, Sun L, Shen TD, Guo Z (2018) Large negative giant magnetoresistance at room temperature and electrical transport in cobalt ferrite-polyaniline nanocomposites. Polymer 143:324–330

    Article  CAS  Google Scholar 

  34. Dao TD, Jeong HM (2015) Graphene prepared by thermal reduction–exfoliation of graphite oxide: effect of raw graphite particle size on the properties of graphite oxide and graphene. Mater Res Bull 70:651–657

    Article  CAS  Google Scholar 

  35. Shahc N, Aslam S, Ul-Islam M, Arain MB, Rehan T, Naeem M, Ullah MW, Yang G (2019) Fabrication of thermally stable graphite-based poly(acrylonitrile-co-acrylic acid) composite with impressive antimicrobial properties. Eng Sci 6:77–85

    Google Scholar 

  36. Xu J, Li L, Gao P, Yu L, Chen Y, Yang P, Gai S, Yang P (2015) Facile preparation of NiCo2O4 nanobelt/graphene composite for electrochemical capacitor application. Electrochim Acta 166:206–214

    Article  CAS  Google Scholar 

  37. Liang Y, Wang X, An W, Li Y, Hu J, Cui W (2019) Ag-C3N4@ppy-rGO 3D structure hydrogel for efficient photocatalysis. Appl Surf Sci 466:666–672

    Article  CAS  Google Scholar 

  38. Yang Jh, Xie X, He ZZ, Lu Y, Qi XD, Wang Y (2019) Graphene oxide-tailored dispersion of hybrid barium titanate@polypyrrole particles and the dielectric composites. Chem Eng J 355:137–149

    Article  CAS  Google Scholar 

  39. He Q, Rui K, Chen C, Yang J, Wen Z (2017) Interconnected CoFe2O4-polypyrrole nanotubes as anode materials for high performance sodium ion batteries. ACS Appl Mater Interfaces 9(42):36927–36935

    Article  CAS  Google Scholar 

  40. Zhang X, Zhang J, Chen Y, Cheng K, Yan J, Zhu K, Ye K, Wang G, Zhou L, Cao D (2019) Freestanding 3D polypyrrole@reduced graphene oxide hydrogels as binder-free electrode materials for flexible asymmetric supercapacitors. J Colloid Interface Sci 536:291–299

    Article  CAS  Google Scholar 

  41. Guo J, Gu H, Wei H, Zhang Q, Haldolaarachchige N, Li Y, Guo Z (2013) Magnetite-polypyrrole metacomposites: dielectric properties and magnetoresistance behavior. J Phys Chem C 117:10191–10202

    Article  CAS  Google Scholar 

  42. Ye S, Feng J (2014) Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors. ACS Appl Mater Interfaces 6(12):9671–9679

    Article  CAS  Google Scholar 

  43. Fang R, Guo Z, Shi Y, Jia L, Yuchang Q, Ren P (2018) Lightweight and highly efficient electromagnetic wave-absorbing of 3D CNTs/GNS@CoFe2O4 ternary composite aerogels. J Alloys Compd 768:6–14

    Article  CAS  Google Scholar 

  44. Kumar PR, Kollu P, Santhosh C, Eswara V, Kim DK, Grace AN (2013) Enhanced properties of porous CoFe2O4–reduced graphene oxide composites with alginate binders for Li-ion battery applications. New J Chem 38:3654–3661

    Article  Google Scholar 

  45. Roscher S, Hoffmann R, Ambacher O (2019) Determination of the graphene–graphite ratio of graphene powder by Raman 2D band symmetry analysis. Anal Methods 11(9):1224–1228

    Article  CAS  Google Scholar 

  46. Zhao C, Jing T, Tian J, Guo J, Wu M, Shi D, Zhao Z, Guo Z (2021) Visible light-driven photoelectrochemical enzyme biosensor based on reduced graphene oxide/titania for detection of glucose. J Nanostruct Chem. https://doi.org/10.1007/s40097-021-00455-0

    Article  Google Scholar 

  47. Tai Z, Zhang Q, Liu Y, Liu H, Dou S (2017) Activated carbon from the graphite with increased rate capability for the potassium ion battery. Carbon 123:54–61

    Article  CAS  Google Scholar 

  48. Mittal H, Khanuja M (2021) Hydrothermal in-situ synthesis of MoSe2-polypyrrole nanocomposite for efficient photocatalytic degradation of dyes under dark and visible light irradiation. Sep Purif Technol 254:117508

    Article  CAS  Google Scholar 

  49. Costa LC, Rubinger CPL, Martins CR (2007) Dielectric and morphological properties of PANI-DBSA blended with polystyrene sulfonic acid. Synth Met 157(22–23):945–950

    Article  CAS  Google Scholar 

  50. Singh HH, Sharma HB (2020) Structural transport and magnetic properties of (1-x)BiFeO3-xCo0.7Ni0.3Fe2O4 nanocomposite samples (x = 0.0, 0.2, 0.5, 0.8, 1.0). Adv Compos Hybrid Mater 3(4):609–620

  51. Kakade AB, Deshpande SK, Kulkarni SB (2021) Electrical conductivity and modulus studies of x[CNFO]-(1-x)[0.5BCT-0.5BZT] multiferroic with dielectric magnetic and magneto-dielectric properties. Eng Sci. https://doi.org/10.30919/es8d485

  52. Pedrosa FJ, Rial J, Golasinski KM, Rodríguez-Osorio M, Salas G, Granados D, Camarero J, Bollero A (2016) Tunable nanocrystalline CoFe2O4 isotropic powders obtained by co-precipitation and ultrafast ball milling for permanent magnet applications. RSC Adv 6(90):87282–87287

    Article  CAS  Google Scholar 

  53. Guo J, Li X, Chen Z, Zhu J, Mai X, Wei R, Sun K, Liu H, Chen Y, Naik N, Guo Z (2022) Magnetic NiFe2O4/polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J Mater Sci Technol 108:64–72

    Article  Google Scholar 

  54. Routray KL, Saha S, Behera D (2017) Effect of CNTs blending on the structural dielectric and magnetic properties of nanosized cobalt ferrite. Mater Sci Eng B 226:199–205

    Article  CAS  Google Scholar 

  55. Tsutaoka T, Massango H, Kasagi T, Yamamoto S, Hatakeyama K (2016) Double negative electromagnetic properties of percolated Fe53Ni47/Cu granular composites. Appl Phys Lett 108(19):191904

    Article  CAS  Google Scholar 

  56. Gu H, Huang Y, Zhang X, Wang Q, Zhu J, Shao L, Haldolaarachchige N, Young DP, Wei S, Guo Z (2012) Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properties. Polymer 53(3):801–809

    Article  CAS  Google Scholar 

  57. Kou X, Yao X, Qiu J (2016) Negative permittivity and negative permeability of multi-walled carbon nanotubes/polypyrrole nanocomposites. Org Electron 38:42–47

    Article  CAS  Google Scholar 

  58. Wang Z, Sun K, Xie P, Liu Y, Gu Q, Fan R (2020) Permittivity transition from positive to negative in acrylic polyurethane-aluminum composites. Compos Sci Technol 188:107969

    Article  CAS  Google Scholar 

Download references

Funding

The work is supported by the Research Starting Foundation of Shaanxi University of Science and Technology (grant no. 2019QNBJ-01), the Research Foundation for Thousand Young Talent Plan of Shaanxi province of China, the National Natural Science Foundation of China (grant no. 51972200), the National Natural Science Foundation of China (grant no. 51902192), the Natural Science Basic Research Program of Shaanxi (program no. 2022JQ-441), the Taif University Researchers Supporting Project number (TURSP-2020/267), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang Guo or Jianfeng Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 184 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Chen, Z., El-Bahy, Z.M. et al. Tunable negative dielectric properties of magnetic CoFe2O4/graphite-polypyrrole metacomposites. Adv Compos Hybrid Mater 5, 899–906 (2022). https://doi.org/10.1007/s42114-022-00485-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00485-4

Keywords

Navigation