Skip to main content

Advertisement

Log in

Flexible polystyrene/graphene composites with epsilon-near-zero properties

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Epsilon-near-zero (ENZ) materials are promising candidates in the fields of sensing technologies, solar energy harvesting, and electromagnetic absorbers, and most research on ENZ materials is focused at visible, infrared, and terahertz wavelengths. However, the report about ENZ materials at radio frequency is rare. In this work, flexible polystyrene/graphene (PS/GR) metacomposites exhibiting ENZ properties at radio-frequency region were fabricated by solution mixing assisted with non-solvent induced phase separation (NIPS) strategy and the hot press method. The NIPS strategy greatly improved the dispersion and distribution of GR nanosheets in PS matrix, allowing GR nanosheets to disperse in PS solution without delamination within 72 h. The microstructure, crystalline structure, chemical composition, mechanical properties, and electrical and dielectric properties were investigated. When GR content reached 30 wt%, the continuous conductive GR network was formed, and the epsilon-near-zero at around 920 kHz accompanied by the transition of permittivity from positive to negative was observed, ascribing to the resonance of the induced electric dipoles from GR nanosheets’ surfaces. The equivalent circuit analysis showed that the appearance of inductors was significant for the realization of ENZ and negative permittivity. The flexible PS/GR composites with ENZ properties at radio frequency show great potentials in the fields of wearable materials such as invisibility cloak, drug delivery, and soft robotics.

Graphical abstract

Graphene nanocomposites are designed by solution mixing assisted with non-solvent induced phase separation, and showed epsilon-near-zero properties (ε′ ~ 0) and excellent flexible properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data can be made available on request to the corresponding authors.

References

  1. Guo J, Chen Z, Abdul W, Kong J, Akhan M, Young D, Zhu J, Guo Z (2021) Tunable positive magnetoresistance of magnetic polyaniline nanocomposites. Adv Compos Hybrid Mater 4:534–542

    Article  CAS  Google Scholar 

  2. Liberal I, Engheta N (2017) The rise of near-zero-index technologies. Science 358(6370):1540–1541

    Article  CAS  Google Scholar 

  3. Huang X, Lai Y, Hang Z, Zheng H, Chan C (2011) Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat Mater 10(8):582–586

    Article  CAS  Google Scholar 

  4. Poddubny A, Iorsh I, Belov P, Kivshar Y (2013) Hyperbolic metamaterials. Nat Photonics 7(12):948–957

    Article  CAS  Google Scholar 

  5. Guo J, Li X, Chen Z, Zhu J, Mai X, Wei R, Sun K, Liu H, Chen Y, Naik N, Guo Z (2022) Magnetic NiFe2O4/polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J Mater Sci Technol 108:64–72

    Article  Google Scholar 

  6. Guo J, Li X, Liu H, Young D, Song G, Song K, Zhu J, Kong J, Guo Z (2021) Tunable magnetoresistance of core-shell structured polyaniline nanocomposites with 0-, 1-, and 2-dimensional nanocarbons. Adv Compos Hybrid Mater 4:51–64

    Article  CAS  Google Scholar 

  7. Guo J, Chen Z, Xu X, Li X, Liu H, Xi S, Abdul W, Wu Q, Zhang P, Xu B, Zhu J, Guo Z (2022) Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Adv Compos Hybrid Mater 1–9

  8. Gao S, Zhao X, Fu Q, Zhang T, Zhu J, Hou F, Ni J, Zhu C, Li T, Wang Y, Murugadoss V, Mersal G, Ibrahim M, Bahy Z, Huang M, Guo Z (2022) Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J Mater Sci Technol. https://doi.org/10.1016/j.jmst.2022.03.012

    Article  Google Scholar 

  9. Medvedev V (2022) An epsilon-near-zero-based Dallenbach absorber. Opt Mater 123:111899

    Article  CAS  Google Scholar 

  10. Tian W, Liang F, Lu D, Yu H, Zhang H (2021) Highly efficient ultraviolet high-harmonic generation from epsilon-near-zero indium tin oxide films. Photonics Res 9(3):317–323

    Article  Google Scholar 

  11. Maas R, Parsons J, Engheta N (2013) Experimental realization of an epsilon-nearzero metamaterial at visible wavelengths. Nat Photonics 7:907–912

    Article  CAS  Google Scholar 

  12. Dyachenko P, Molesky S, Petrov A (2016) Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions. Nat Commun 7:1–8

    Article  Google Scholar 

  13. Yu P, Besteiro L, Huang Y (2019) Broadband metamaterial absorbers.  Adv Opt Mater 7:1800995

    Article  CAS  Google Scholar 

  14. Caligiuri V, Palei M, Biffi G (2019) A semi-classical view on epsilon-near-zeroresonant tunneling modes in metal/insulator/metal nanocavities. Nano Lett 19:3151–3160

    Article  CAS  Google Scholar 

  15. Niu X, Hu X, Chu S (2018) Epsilon-near-zero photonics: a new platform for integrated devices. Adv Opt Mater 6:1701292

    Article  CAS  Google Scholar 

  16. Huang J (2020) Thermal metamaterials make it possible to control the flow of heat at will-2. ES Energy Environ 7:1–3

    CAS  Google Scholar 

  17. Lin W, Huang S, Ren J (2017). Anomalous transient heat conduction in fractal metamaterials. https://doi.org/10.30919/esee8c371

    Article  Google Scholar 

  18. Alshehri H, Taylor S, Liu S, Liu Y, Wang R, Wang L (2022) Selective color metamaterial absorber made of aluminum nanodisk arrays by excitation of magnetic polaritons. ES Mater Manuf. https://doi.org/10.30919/esmm5f630

    Article  Google Scholar 

  19. Sun Z, Huang X, Xia A, Yan Z, Qian L (2021) Tunable bandwidth of negative permittivity from graphene-silicon carbide ceramics. Eng Sci 16:19–25

    CAS  Google Scholar 

  20. Ma Y, Xie X, Yang W, Yu Z, Sun X, Zhang Y, Yang X, Kimura H, Hou C, Guo Z, Du W (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4:906–924

    Article  CAS  Google Scholar 

  21. Sun J, Mu Q, Kimura H, Murugadoss V, He M, Du W, Hou C (2022) Oxidative degradation of phenols and substituted phenols in the water and atmosphere: a review. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00435-0

    Article  Google Scholar 

  22. Zhai Y, Yang W, Xie X, Sun X, Wang J, Yang X, Naik N, Kimura H, Du W, Guo Z, Hou C (2022) Co3O4 nanoparticle-dotted hierarchical-assembled carbon nanosheet framework catalysts with the formation/decomposition mechanisms of Li2O2 for smart lithium–oxygen batteries. Inorg Chem Front 9:1115–1124

    Article  CAS  Google Scholar 

  23. Wu H, Sun H, Han F, Xie P, Zhong Y, Quan B, Zhao Y, Liu C, Fan R, Guo Z (2022) Negative permittivity behavior in flexible carbon nanofibers-polydimethylsiloxane films. Eng Sci 17:113–120

    CAS  Google Scholar 

  24. Zhu Q, Huang Y, Li Y, Zhou M, Xu S, Liu X, Liu C, Yuan B, Guo Z (2021) Aluminum dihydric tripolyphosphate/polypyrrole-functionalized graphene oxide waterborne epoxy composite coatings for impermeability and corrosion protection performance of metals. Adv Compos Hybrid Mater 4:780–792

    Article  CAS  Google Scholar 

  25. Luo X, Yang G, Schubert D (2021) Electrically conductive polymer composite containing hybrid graphene nanoplatelets and carbon nanotubes: synergistic effect and tunable conductivity anisotropy. Adv Compos Hybrid Mater 5:250–262

    Article  CAS  Google Scholar 

  26. Bustero I, Gaztelumendi I, Obieta I, Mendizabal M, Zurutuza A, Ortega A, Alonso B (2020) Free-standing graphene films embedded in epoxy resin with enhanced thermal properties. Adv Compos Hybrid Mater 3:31–40

    Article  CAS  Google Scholar 

  27. Shin B, Mondal S, Lee M, Kim S, Huh Y, Nah C (2021) Flexible thermoplastic polyurethane-carbon nanotube composites for electromagnetic interference shielding and thermal management. Chem Eng J 418:129282

    Article  CAS  Google Scholar 

  28. Raza Y, Raza H, Ahmad A, Quazi M, Abid M, Kazmi M, Rahman S, Zulfattah Z, Fattah I (2021) Production and investigation of mechanical properties of graphene/polystyrene nano composites. J Polym Res 28(6):1–12

    Article  CAS  Google Scholar 

  29. Nath B, Das D, Kamrupi I, Mohan K, Ahmed G, Dolui S (2015) An efficient quasi solid state dye sensitized solar cell based on polyethylene glycol/graphene nanosheet gel electrolytes. RSC Adv 5(115):95385–95393

    Article  CAS  Google Scholar 

  30. Alsharaeh E, Othman A, Aldosari M (2014) Microwave irradiation effect on the dispersion and thermal stability of RGO nanosheets within a polystyrene matrix. Materials 7(7):5212–5224

    Article  Google Scholar 

  31. Nidamanuri N, Li Y, Li Q, Dong M (2020) Graphene and graphene oxide-based membranes for gas separation. Eng Sci 9:3–16

    CAS  Google Scholar 

  32. Li Y, Yuan H, Chen Y, Wei X, Tan Y (2021) Application and exploration of nanofibrous strategy in electrode design. J Mater Sci Technol 74:189–202

    Article  CAS  Google Scholar 

  33. Zhao Y, Yang Z, Fan W, Wang Y, Li G, Cong H, Yuan H (2020) Carbon nanotube/carbon fiber electrodes via chemical vapor deposition for simultaneous determination of ascorbic acid, dopamine and uric acid. Arab J Chem 13:3266–3275

    Article  CAS  Google Scholar 

  34. Dai E, Li G, Lu G, Wang W, Han Z, Song Z, Zhang Q, Yuan H, Zhang X (2020) Tribological behavior and wear mechanism of Cu/CF/phenolic resin sandwich composites under current. J Ind Text 152808372096669

  35. Yuan H, Yu B, Cong H, Chi M, Cheng Y, Lv C (2018) Preparation of hierarchical highly ordered porous films of brominated poly(phenylene oxide) and hydrophilic SiO2/C membrane via the breath figure method. Materials 11(4):481

    Article  CAS  Google Scholar 

  36. Zhao S, Niu M, Peng P, Cheng Y, Zhao Y (2020) Edge oleylaminated graphene as ultra-stable lubricant additive for friction and wear reduction. Eng Sci 9:77–83

    CAS  Google Scholar 

  37. Oliver W, Pharr G (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  CAS  Google Scholar 

  38. Ma Q, Clarke D (1995) Size dependent hardness of silver single crystals. J Mater Res 10(4):853–863

    Article  CAS  Google Scholar 

  39. Barylski A, Aniołek K, Dercz G, Kowalewski P, Kaptacz S, Rak J, Kupka M (2021) Investigation of micromechanical properties and tribological behavior of WE43 magnesium alloy after deep cryogenic treatment combined with precipitation hardening. Materials 14(23):7343

    Article  CAS  Google Scholar 

  40. Nguyen V, Kim E, Lee S, Yun J, Choe J, Yang D, Lee H, Lee C, Yu J (2018) Evaluation of strain-rate sensitivity of selective laser melted H13 tool steel using nanoindentation tests. Metals 8(8):589

    Article  CAS  Google Scholar 

  41. Wu H, Qi Y, Wang Z, Zhao W, Li X, Qian L (2017) Low percolation threshold in flexible graphene/acrylic polyurethane composites with tunable negative permittivity. Compos Sci Technol 151:79–84

    Article  CAS  Google Scholar 

  42. Xie P, Sun W, Liu Y, Du A, Zhang Z, Wu G, Fan R (2018) Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon 129:598–606

    Article  CAS  Google Scholar 

  43. Xie P, Sun W, Du A, Hou Q, Wu G, Fan R (2021) Epsilon-negative carbon aerogels with state transition from dielectric to degenerate semiconductor. Adv Electron Mater 7:2000877

    Article  CAS  Google Scholar 

  44. Dang Z, Lin Y, Nan C (2003) Novel ferroelectric polymer composites with high dielectric constants. Adv Mater 15:1625–1629

    Article  CAS  Google Scholar 

  45. Sun K, Fan R, Yin Y, Guo J, Li X, Lei Y, An L, Cheng C, Guo Z (2017) Tunable negative permittivity with fano-like resonance and magnetic property in percolative silver/yittrium iron garnet nanocomposites. J Phys Chem C 121:7564–7571

    Article  CAS  Google Scholar 

  46. Wu H, Zhong Y, Tang Y, Huang Y, Liu G, Sun W, Xie P, Pan D, Liu C, Guo Z (2022) Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv Compos Hybrid Mater 5:419–430

    Article  CAS  Google Scholar 

  47. Qi G, Liu Y, Chen L, Xie P, Pan D, Shi Z, Quan B, Zhong Y, Liu C, Fan R, Guo Z (2021) Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv Compos Hybrid Mater 4:1226–1238

    Article  CAS  Google Scholar 

  48. Xie P, Liu Y, Feng M, Niu M, Liu C, Wu N, Sui K, Patil R, Pan D, Guo Z, Fan R (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4:173–185

    Article  CAS  Google Scholar 

  49. Zhao Y, Liu F, Zhu K, Maganti S, Zhao Z, Bai P (2022) Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00430-5

    Article  Google Scholar 

  50. Si Y, Li J, Cui B, Tang D, Yang L, Murugadoss V, Maganti S, Huang M, Guo Z (2022) Janus phenol–formaldehyde resin and periodic mesoporous organic silica nanoadsorbent for the removal of heavy metal ions and organic dyes from polluted water. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00446-x

    Article  Google Scholar 

  51. Ouyang L, Huang W, Huang M, Qiu B (2022) Polyaniline improves granulation and stability of aerobic granular sludge. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00450-1

    Article  Google Scholar 

  52. Jing X, Li Y, Zhu J, Chang L, Maganti S, Naik N, Xu B, Murugadoss V, Huang M, Guo Z (2022) Improving thermal conductivity of polyethylene/polypropylene by styrene-ethylene-propylene-styrene wrapping hexagonal boron nitride at the phase interface. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00438-x

    Article  Google Scholar 

  53. Liu M, Lan X, Zhang H, Xie P, Wu N, Yuan H, Sui K, Fan R, Liu C (2021) Iron/epoxy random metamaterials with adjustable epsilon-near-zero and epsilon-negative property. J Mater Sci Mater El 32(12):15995–16007

    Article  CAS  Google Scholar 

  54. Wu H, Mu Z, Qi G, Zhang Y, Wang X, Xie P, Wu N, Yuan H, Sui K, Fan R, Liu C (2021) Negative permittivity behavior in Ti3AlC2-polyimide composites and the regulation mechanism. J Mater Sci-Mater El 32(8):10388–10397

    Article  CAS  Google Scholar 

  55. Xie W, Yao F, Gu H, Du A, Lei Q, Naik N, Guo Z (2022) Magnetoresistive and piezoresistive polyaniline nanoarrays in-situ polymerized surrounding magnetic graphene aerogel. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00413-y

    Article  Google Scholar 

  56. Yin S, Huang Y, Deng C, Jiao Y, Wu W, Seidi F, Xiao H (2022) Hierarchically porous biochar derived from orthometric integration of wooden and bacterial celluloses for high-performance electromagnetic wave absorption. Compos Sci Technol 218:109184

    Article  CAS  Google Scholar 

  57. Chui S, Hu L (2002) Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites. Phys Rev B 65:144407

    Article  CAS  Google Scholar 

  58. Tsutaoka T, Massango H, Kasagi T, Yamamoto S, Hatakeyama K (2016) Double negative electromagnetic properties of percolated Fe53Ni47/Cu granular composites. Appl Phys Lett 108:191904

    Article  CAS  Google Scholar 

  59. Chang J, Liang G, Gu A, Cai S, Yuan L (2012) The production of carbon nanotube/epoxy composites with a very high dielectric constant and low dielectric loss by microwave curing. Carbon 50(2):689–698

    Article  CAS  Google Scholar 

  60. Wang B, Liang G, Jiao Y, Gu A, Liu L, Yuan L, Zhang W (2013) Two-layer materials of polyethylene and a carbon nanotube/cyanate ester composite with high dielectric constant and extremely low dielectric loss. Carbon 54:224–233

    Article  CAS  Google Scholar 

  61. Xie P, Wang Z, Sun K, Cheng C, Liu Y, Fan R (2017) Regulation mechanism of negative permittivity in percolating composites via building blocks. Appl Phys Lett 111(11):112903

    Article  CAS  Google Scholar 

  62. Sun K, Duan W, Lei Y, Wang Z, Tian J, Yang P, He Q, Chen M, Wu H, Zhang Z, Fan R (2022) Flexible multi-walled carbon nanotubes/polyvinylidene fluoride membranous composites with weakly negative permittivity and low frequency dispersion. Compos Part A-Appl S 156:106854

    Article  CAS  Google Scholar 

  63. Engheta N (2010) Taming light at the nanoscale. Phys World 23(9):31–34

    Article  Google Scholar 

  64. Xie P, Zhang Z, Wang Z, Sun K, Fan R (2019) Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures. Research 2019:1021368

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial support of Taif University Researchers Supporting Project number (TURSP-2020/27), Taif University, Taif, Saudi Arabia, financial support of the National Natural Science Foundation of China (52101176), Postdoctoral Applied Research Project of Qingdao, the China Postdoctoral Science Foundation [2020M671992], Postdoctoral Innovation Project of Shandong Province [202003031], Natural Science Foundation of Shandong Province [ZR2020QE006], and support from the State Key Laboratory of Bio-fibers and Eco-textiles.

Author information

Authors and Affiliations

Authors

Contributions

Zheng Zhang and Mingxiang Liu contributed equally for this work, and are both considered the first author of this work. All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Z. Zhang, M. Liu, H. Wu, Y. Wu, Y. Li, and Y. Jiang. H. Wu and P. Xie wrote the manuscript. M. Ibrahim, G. Mersal, I. El-Azab, S. El-Bahy, C. Liu, G. Liang, and M. Huang gave the meaningful advice in the polish of the manuscript. P. Xie gave financial support for this work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Haikun Wu or Peitao Xie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Liu, M., Ibrahim, M.M. et al. Flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv Compos Hybrid Mater 5, 1054–1066 (2022). https://doi.org/10.1007/s42114-022-00486-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00486-3

Keywords

Navigation