Skip to main content

Advertisement

Log in

Dielectric properties and electromagnetic simulation of molybdenum disulfide and ferric oxide-modified Ti3C2TX MXene hetero-structure for potential microwave absorption

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

As newly emerged 2D materials, Ti3C2TX MXene have exhibited great potential to be used as high-performance microwave absorption materials (MAs). In this study, multilayer accordion-like Ti3C2TX MXene coated by molybdenum disulfide (Ti3C2TX@MoS2) and ferric oxide (Ti3C2TX@Fe2O3) were fabricated through hydrothermal method. The dielectric properties of the paraffin wax consisting of 50 wt% Ti3C2TX, Ti3C2TX@MoS2, and Ti3C2TX@Fe2O3 were evaluated in 2–18 GHz, respectively. It is found that Ti3C2TX@MoS2 and Ti3C2TX@Fe2O3 displayed enhanced impedance matching than pure Ti3C2TX. The as-fabricated composites showed great potential for microwave absorption, for sample Ti3C2TX@MoS2 (mass ratio 1:1), which has the largest reflection loss (RL) value of − 60.2 dB at 16.6 GHz. The Ti3C2TX@Fe2O3 achieved optimal RL of − 18.6 dB at 17.4 GHz with thickness of 1.97 mm, and the effective absorption bandwidth (EAB) achieved 4.3 GHz (13.4–17.7 GHz) corresponding to thickness of 2.25 mm. The attenuation mechanisms were clarified by high-frequency structure simulator (HFSS). The interface polarization and multi-scattering make the dominant contributions for the improved microwave absorption.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Qi G, Liu Y, Chen L, Xie P, Pan D, Shi Z, Quan B, Zhong Y, Liu C, Fan R, Guo Z (2021) Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv Compos Hybrid Mater 4:1226–1238. https://doi.org/10.1007/s42114-021-00368-0

    Article  CAS  Google Scholar 

  2. Wu N, Hu Q, Wei R, Mai X, Naik N, Pan D, Guo Z, Shi Z (2021) Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: recent progress, challenges and prospects. Carbon 176:88–105. https://doi.org/10.1016/j.carbon.2021.01.124

    Article  CAS  Google Scholar 

  3. Wu N, Zhao B, Liu J, Li Y, Chen Y, Chen L, Wang M, Guo Z (2021) MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv Compos Hybrid Mater 4:707–7015. https://doi.org/10.1007/s42114-021-00307-z

    Article  CAS  Google Scholar 

  4. Wang W, Deng X, Liu D, Luo F, Cheng H, Cao T, Li Y, Deng Y, Xie W (2022) Broadband radar-absorbing performance of square-hole structure. Adv Compos Hybrid Mater 5:525–535. https://doi.org/10.1007/s42114-021-00376-0

    Article  CAS  Google Scholar 

  5. Luo F, Liu D, Cao T, Cheng H, Kuang J, Deng Y, Xie W (2021) Study on broadband microwave absorbing performance of gradient porous structure. Adv Compos Hybrid Mater 4:591–601. https://doi.org/10.1007/s42114-021-00275-4

    Article  CAS  Google Scholar 

  6. Cheng H, Liu Z, Gao Q, Zuo Y, Liu X, Guo Z, Liu C, Shen C (2021) PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng Sci 16:331–340. https://doi.org/10.30919/es8d518

    Article  CAS  Google Scholar 

  7. Yue L, Zhong B, Xia L, Zhang T, Yu Y, Huang X (2021) Three-dimensional network-like structure formed by silicon coated carbon nanotubes for enhanced microwave absorption. J Colloid Interface Sci 582:177–186. https://doi.org/10.1016/j.jcis.2020.08.024

    Article  CAS  Google Scholar 

  8. Zhang Y, Li S, Tang X, Fan W, Lan Q, Li L, Ma P, Dong W, Wang Z, Liu T (2022) Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption. J Mater Sci Technol 102:97–104. https://doi.org/10.1016/j.jmst.2021.07.011

    Article  Google Scholar 

  9. Guo J, Chen Z, Xu X, Li X, Liu H, Xi S, Abdul W, Wu Q, Zhang P, Xu BB, Zhu J, Guo Z (2022) Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Adv Compos Hybrid Mater. In press. https://doi.org/10.1007/s42114-022-00417-2

  10. Pu L, Li S, Zhang Y, Zhu H, Fan W, Ma P, Dong W, Wang Z, Liu T (2021) Polyimide-based graphene composite foams with hierarchical impedance gradient for efficient electromagnetic absorption. J Mater Chem C 9:2086–2094. https://doi.org/10.1039/D0TC04951D

    Article  CAS  Google Scholar 

  11. Li S, Tang X, Zhang Y, Lan Q, Hu Z, Li L, Zhang N, Ma P, Dong W, Tjiu W, Wang Z, Liu T (2022) Corrosion-resistant graphene-based magnetic composite foams for efficient electromagnetic absorption. ACS Appl Mater Interfaces 14:8297–8310. https://doi.org/10.1021/acsami.1c23439

    Article  CAS  Google Scholar 

  12. Xin T, Zhao Y, Mahjoub R, Jiang J, Yadav A, Nomoto K, Niu R, Tang S, Ji F, Quadir Z, Miskovic D, Daniels J, Xu W, Liao X, Chen LQ, Hagihara K, Li X, Ringer S, Ferry M (2021) Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition. Sci Adv 7:eabf3039. https://doi.org/10.1126/sciadv.abf3039

  13. Liu C, Xu D, Weng J, Zhou S, Li W, Wan Y, Jiang S, Zhou D, Wang J, Huang Q (2020) Phase change materials application in battery thermal management system: a review. Materials 13:4622. https://doi.org/10.3390/ma13204622

    Article  CAS  Google Scholar 

  14. Zhao Y, Yang Z, Fan W, Wang Y, Li G, Cong H, Yuan H (2020) Carbon nanotube/carbon fiber electrodes via chemical vapor deposition for simultaneous determination of ascorbic acid, dopamine and uric acid. Arab J Chem 13:3266–3275. https://doi.org/10.1016/j.arabjc.2018.11.002

    Article  CAS  Google Scholar 

  15. Shao W, Liu D, Cao T, Cheng H, Kuang J, Deng Y, Xie W (2021) Study on favorable comprehensive properties of superhydrophobic coating fabricated by polytetrafluoroethylene doped with graphene. Adv Compos Hybrid Mater 4:521–533. https://doi.org/10.1007/s42114-021-00243-y

    Article  CAS  Google Scholar 

  16. Ma Y, Xie X, Yang W, Yu Z, Sun X, Zhang Y, Yang X, Kimura H, Hou C, Guo Z, Du W (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4:906–924. https://doi.org/10.1007/s42114-021-00358-2

    Article  CAS  Google Scholar 

  17. Guo J, Li X, Liu H, Young D, Song G, Song K, Zhu J, Kong J, Guo Z (2021) Tunable magnetoresistance of core-shell structured polyaniline nanocomposites with 0-, 1-, and 2-dimensional nanocarbons. Adv Compos Hybrid Mater 4:51–64. https://doi.org/10.1007/s42114-021-00211-6

    Article  CAS  Google Scholar 

  18. Guo J, Chen Z, Abdul W, Kong J, Khan M, Young D, Zhu J, Guo Z (2021) Tunable positive magnetoresistance of magnetic polyaniline nanocomposites. Adv Compos Hybrid Mater 4:534–542. https://doi.org/10.1007/s42114-021-00242-z

    Article  CAS  Google Scholar 

  19. Guo J, Li X, Chen Z, Zhu J, Mai X, Wei R, Sun K, Liu H, Chen Y, Naik N, Guo Z (2022) Magnetic NiFe2O4/polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J Mater Sci Technol 108:64–72. https://doi.org/10.1016/j.jmst.2021.08.049

    Article  Google Scholar 

  20. Wu H, Zhong Y, Tang Y, Huang Y, Liu G, Sun W, Xie P, Pan D, Liu C, Guo Z (2022) Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv Compos Hybrid Mater 5:419–430. https://doi.org/10.1007/s42114-021-00378-y

    Article  CAS  Google Scholar 

  21. Zhai Y, Yang W, Xie X, Sun X, Wang J, Yang X, Naik N, Kimura H, Du W, Guo Z, Hou C (2022) Co3O4 nanoparticle-dotted hierarchical-assembled carbon nanosheet framework catalysts with the formation/decomposition mechanisms of Li2O2 for smart lithium–oxygen batteries. Inorg Chem Front 9:1115–1124. https://doi.org/10.1039/D1QI01260F

    Article  CAS  Google Scholar 

  22. Wu H, Sun H, Han F, Xie P, Zhong Y, Quan B, Zhao Y, Liu C, Fan R, Guo Z (2022) Negative permittivity behavior in flexible carbon nanofibers-polydimethylsiloxane films. Eng Sci 17:113–120. https://doi.org/10.30919/es8d576

    Article  CAS  Google Scholar 

  23. Pu L, Zhang J, Jiresse N, Gao Y, Zhou H, Naik N, Gao P, Guo Z (2022) N-doped MXene derived from chitosan for the highly effective electrochemical properties as supercapacitor. Adv Compos Hybrid Mater 5:356–369. https://doi.org/10.1007/s42114-022-00417-2

    Article  CAS  Google Scholar 

  24. Cao M-S, Cai Y-Z, He P, Shu J-C, Cao W-Q, Yuan J (2019) 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem Eng J 359:1265–1302. https://doi.org/10.1016/j.cej.2018.11.051

    Article  CAS  Google Scholar 

  25. Tan L, Wei C, Zhang Y, An Y, Xiong S, Feng J (2022) Long-life and dendrite-free zinc metal anode enabled by a flexible, green and self-assembled zincophilic biomass engineered MXene based interface. Chem Eng J 431:134277. https://doi.org/10.1016/j.cej.2021.134277

    Article  CAS  Google Scholar 

  26. Fan Z, Wang D, Yuan Y, Wang Y, Cheng Z, Liu Y, Xie Z (2020) A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem Eng J 381:122696. https://doi.org/10.1016/j.cej.2019.122696

    Article  CAS  Google Scholar 

  27. Cao W-T, Chen F-F, Zhu Y-J, Zhang Y-G, Jiang Y-Y, Ma M-G, Chen F (2018) Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12:4583–4593. https://doi.org/10.1021/acsnano.8b00997

    Article  CAS  Google Scholar 

  28. Ma W, Chen H, Hou S, Huang Z, Huang Y, Xu S, Fan F, Chen Y (2019) Compressible highly stable 3D porous MXene/GO foam with a tunable high-performance stealth property in the terahertz band. ACS Appl Mater Interfaces 11:25369–25377. https://doi.org/10.1021/acsami.9b03406

    Article  CAS  Google Scholar 

  29. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253. https://doi.org/10.1002/adma.201102306

    Article  CAS  Google Scholar 

  30. Liang L, Yang R, Han G, Feng Y, Zhao B, Zhang R, Wang Y, Liu C (2020) Enhanced electromagnetic wave-absorbing performance of magnetic nanoparticles-anchored 2D Ti 3C2Tx MXene. ACS Appl Mater Interfaces 12:2644–2654. https://doi.org/10.1021/acsami.9b18504

    Article  CAS  Google Scholar 

  31. Wen C, Li X, Zhang R, Xu C, You W, Liu Z, Zhao B, Che R (2021) High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano acsnano:1c08957. https://doi.org/10.1021/acsnano.1c08957

  32. Liang L, Han G, Li Y, Zhao B, Zhou B, Feng Y, Ma J, Wang Y, Zhang R, Liu C (2019) Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl Mater Interfaces 11:25399–25409. https://doi.org/10.1021/acsami.9b07294

    Article  CAS  Google Scholar 

  33. Li X, You W, Wang L, Liu J, Wu Z, Pei K, Li Y, Che R (2019) Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property. ACS Appl Mater Interfaces 11:44536–44544. https://doi.org/10.1021/acsami.9b11861

    Article  CAS  Google Scholar 

  34. Li X, Wen C, Yang L, Zhang R, Li X, Li Y, Che R (2021) MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy. Carbon 175:509–518. https://doi.org/10.1016/j.carbon.2020.11.089

    Article  CAS  Google Scholar 

  35. Li Y, Gao Y, Fan B, Guan L, Zhao B, Zhang R (2021) Tailoring microwave electromagnetic responses in Ti3C2Tx MXene with Fe3O4 nanoparticle decoration via a solvothermal method. J Phys Chem C 125:19914–19924. https://doi.org/10.1021/acs.jpcc.1c05977

    Article  CAS  Google Scholar 

  36. Wang S, Li D, Zhou Y, Jiang L (2020) Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano 14:8634–8645. https://doi.org/10.1021/acsnano.0c03013

    Article  CAS  Google Scholar 

  37. Wang J, Liu L, Jiao S, Ma K, Lv J, Yang J (2020) Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv Funct Mater 30:2002595. https://doi.org/10.1002/adfm.202002595

    Article  CAS  Google Scholar 

  38. Li X, Yin X, Xu H, Han M, Li M, Liang S, Cheng L, Zhang L (2018) Ultralight MXene-coated, interconnected SiCnws three-dimensional lamellar foams for efficient microwave absorption in the X-Band. ACS Appl Mater Interfaces 10:34524–34533. https://doi.org/10.1021/acsami.8b13658

    Article  CAS  Google Scholar 

  39. Xie P, Liu Y, Feng M, Niu M, Liu C, Wu N, Sui K, Patil R, Pan D, Guo Z, Fan R (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4:173–185. https://doi.org/10.1007/s42114-020-00202-z

    Article  CAS  Google Scholar 

  40. Chen H, Huang Z, Huang Y, Zhang Y, Ge Z, Qin B, Liu Z, Shi Q, Xiao P, Yang Y, Zhang T, Chen Y (2017) Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon 124:506–514. https://doi.org/10.1016/j.carbon.2017.09.007

    Article  CAS  Google Scholar 

  41. Tong Y, He M, Zhou Y, Nie S, Zhong X, Fan L, Huang T, Liao Q, Wang Y (2018) Three-dimensional hierarchical architecture of the TiO2/Ti3C2Tx/RGO ternary composite aerogel for enhanced electromagnetic wave absorption. ACS Sustain Chem Eng 6:8212–8222. https://doi.org/10.1021/acssuschemeng.7b04883

    Article  CAS  Google Scholar 

  42. Li L-X, Zhang G-C, Sun W-J, Zhang H-Y, Wang S-X, Wei J-L, He J-H, Song K, Lu J-M (2022) Construction of ultra-small Pt nanoparticles@Ti3C2Tx MXene electrocatalyst for efficient and stable electrochemical hydrodechlorination of chloramphenicol. Chem Eng J 433:134415. https://doi.org/10.1016/j.cej.2021.134415

    Article  CAS  Google Scholar 

  43. Guo Z, Zhou W, Arshad N, Zhang Z, Yan D, Irshad MS, Yu L, Wang X (2022) Excellent energy capture of hierarchical MoS2 nanosheets coupled with MXene for efficient solar evaporators and thermal packs. Carbon 186:19–27. https://doi.org/10.1016/j.carbon.2021.09.066

    Article  CAS  Google Scholar 

  44. Gao Z, Jia Z, Wang K, Liu X, Bi L, Wu G (2020) Simultaneous enhancement of recoverable energy density and efficiency of lead-free relaxor-ferroelectric BNT-based ceramics. Chem Eng J 402:125951. https://doi.org/10.1016/j.cej.2020.125951

    Article  CAS  Google Scholar 

  45. Xu X, Ran F, Fan Z, Cheng Z, Lv T, Shao L, Liu Y (2020) bimetallic metal–organic framework-derived pomegranate-like nanoclusters coupled with CoNi-doped graphene for strong wideband microwave absorption. ACS Appl Mater Interfaces 12:17870–17880. https://doi.org/10.1021/acsami.0c01572

    Article  CAS  Google Scholar 

  46. Ma J, Zhang X, Liu W, Ji G (2016) Direct synthesis of MOF-derived nanoporous CuO/carbon composites for high impedance matching and advanced microwave absorption. J Mater Chem C 4:11419–11426. https://doi.org/10.1039/C6TC04048A

    Article  CAS  Google Scholar 

  47. Yin Y, Liu X, Wei X, Li Y, Nie X, Yu R, Shui J (2017) Magnetically aligned Co–C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl Mater Interfaces 9:30850–30861. https://doi.org/10.1021/acsami.7b10067

    Article  CAS  Google Scholar 

  48. Liu P, Yao Z, Ng V, Zhou J, Kong L, Yue K (2018) Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos A 115:371–382. https://doi.org/10.1016/j.compositesa.2018.10.014

    Article  CAS  Google Scholar 

  49. Yang H, Dai J, Liu X, Lin Y, Wang J, Wang L, Wang F (2017) Layered PVB/Ba3Co2Fe24 O41/Ti3C2 Mxene composite: enhanced electromagnetic wave absorption properties with high impedance match in a wide frequency range. Mater Chem Phys 200:179–186. https://doi.org/10.1016/j.matchemphys.2017.05.057

    Article  CAS  Google Scholar 

  50. Dai B, Zhao B, Xie X, Su T, Fan B, Zhang R, Yang R (2018) Novel two-dimensional Ti3C2Tx MXenes/nano-carbon sphere hybrids for high-performance microwave absorption. J Mater Chem C 6:5690–5697. https://doi.org/10.1039/C8TC01404C

    Article  CAS  Google Scholar 

  51. Qian Y, Wei H, Dong J, Du Y, Fang X, Zheng W, Sun Y, Jiang Z (2017) Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption. Ceram Int 43:10757–10762. https://doi.org/10.1016/j.ceramint.2017.05.082

    Article  CAS  Google Scholar 

  52. Han M, Yin X, Wu H, Hou Z, Song C, Li X, Zhang L, Cheng L (2016) Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl Mater Interfaces 8:21011–21019. https://doi.org/10.1021/acsami.6b06455

    Article  CAS  Google Scholar 

  53. Liu Z, Cui Y, Li Q, Zhang Q, Zhang B (2022) Fabrication of folded MXene/MoS2 composite microspheres with optimal composition and their microwave absorbing properties. J Colloid Interface Sci 607:633–644. https://doi.org/10.1016/j.jcis.2021.09.009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Xiaoli Fan from Shiyanjia Lab (www.shiyanjia.com) for the XRD analysis.

Funding

The authors acknowledge the financial support of Taif University Researchers Supporting Project number (TURSP-2020/05), Taif University, Taif, Saudi Arabia. The authors also acknowledge the support from the Natural Science Foundation of Shandong Province (ZR2021QE164), the National Natural Science Foundation of China (No. 51872173), the Taishan Scholar Foundation of Shandong Province (No. tsqn201812068), the Youth Innovation Technology Project of Higher School in Shandong Province (No. 2019KJA013), and Science and Technology Special Project of Qingdao City (No. 20–3-4–3-nsh).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nannan Wu or Jian Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PARTIAL 9980 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, N., Zhao, B., Chen, X. et al. Dielectric properties and electromagnetic simulation of molybdenum disulfide and ferric oxide-modified Ti3C2TX MXene hetero-structure for potential microwave absorption. Adv Compos Hybrid Mater 5, 1548–1556 (2022). https://doi.org/10.1007/s42114-022-00490-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00490-7

Keywords

Navigation