Skip to main content

Advertisement

Log in

Flexible, yet robust polyaniline coated foamed polylactic acid composite electrodes for high-performance supercapacitors

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Polylactic acid (PLA) has promising potentials for transient electronic applications due to its biodegradability and biocompatibility, which is expected to help alleviate electronic waste disposal problems. Recently, PLA has been used as the polymer substrate to fabricate green and flexible supercapacitors (SCs). However, the intrinsic fracture textile and limited electroactive materials deposited on the PLA substrate resulting in poor energy storage performance still remain challenging. Herein, a facile approach has been proposed to prepare flexible, yet robust electrodes of polyaniline coated on foamed PLA (PANI-fo-PLA). Aniline monomers were directly polymerized on the porous foamed PLA (fo-PLA) which was prepared via a simple nonsolvent-induced-phase-separation (NIPS) method. The fo-PLA endows the PANI-fo-PLA electrode with superior flexibility (a fracture strain of 34.70%) and high mechanical strength (a fracture strength of 77.80 MPa) which are significantly higher than those values of solvent-cast PLA films; meanwhile, the porous structure provides rich sites for the growth of PANI, which thus significantly increases the loadings of electroactive materials, and facilitates the ion transportation during the energy storage process. Employing PVA/H2SO4 as the gel electrolyte, the symmetric PANI-fo-PLA//PANI-fo-PLA SC delivers a high areal capacitance of 27.73 mF cm−2 (@0.05 mA cm−2), which is more than one hundred times higher than that of the SC based on electrodes of PANI grown on non-porous PLA film. The SC retains 66.29% of its original capacitance even bent at 90°, demonstrating its great potentials for flexible wearable electronics. Moreover, the PANI-PLA can be readily degraded in alkaline solutions within 2 h under sonication. This work paves the way to fabricate flexible, transient, and high performance energy storage devices from PLA.

Graphical abstract

A flexible, robust, and degradable PANI-fo-PLA electrode with high electrochemical energy storage performance has been prepared via a both time- and energy- saving approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pan D, Su F, Liu H, Liu C, Umar A, Castañeda L, Algadi H, Wang C, Guo Z (2021) Research progress on catalytic pyrolysis and reuse of waste plastics and petroleum sludge. ES Mater Manuf 11:3–15

    CAS  Google Scholar 

  2. Mao L, Hu S, Gao Y, Wang L (2020) Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation. Adv Healthcare Mater 9(19):e2000872

    Article  CAS  Google Scholar 

  3. Wang R, Mu L, Bao Y, Lin H (2020) Holistically engineered polymer-polymer and polymer-ion interactions in biocompatible polyvinyl alcohol blends for high-performance triboelectric devices in self-powered wearable cardiovascular monitorings. Adv Mater 32(32):e2002878

    Article  CAS  Google Scholar 

  4. Zhang J, Hu S, Shi Z, Wang Y, Lei Y, Han J, Xiong Y, Sun J, Zheng L, Sun Q, Yang G, Wang ZL (2021) Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface. Nano Energy 89:106354

    Article  CAS  Google Scholar 

  5. Lee MH, Lee J, Jung S, Kang D, Park MS (2021) A biodegradable secondary battery and its biodegradation mechanism for eco-friendly energy-storage systems. Adv Mater 33(10):e2004902

    Article  CAS  Google Scholar 

  6. Li W, Liu Q, Zhang Y, Chang’an L, He Z (2020) Biodegradable materials and green processing for green electronics. Adv Mater 32(33):e2001591

    Article  CAS  Google Scholar 

  7. Feng T, Liang B, Bi H, Han Y (2021) A sandwich-like structure composite electrospun membrane of polylactic acid/nano-hydroxyapatite and polyvinyl alcohol/sodium alginate/nano-hydroxyapatite for skull defect repair. Mater Des 209:109957

    Article  CAS  Google Scholar 

  8. Zhang Y, Li T, Shiu B, Sun F, Ren H, Zhang X, Lou C, Lin J (2020) Processing and characterizations of short fluoroalkyl chain /polyurethane-polylactic acid/low melt polylactic acid Janus nonwoven medical covers using spray coating. Prog Org Coat 147:105736

    Article  CAS  Google Scholar 

  9. Mohamad N, Mazween MM, Tawakkal ISMA, Talib RA et al (2020) Development of active agents filled polylactic acid films for food packaging application. Int J Biol Macromol 163:1451–1457

    Article  CAS  Google Scholar 

  10. Wang D, Sun Z, Sun J, Liu F (2021) Preparation and characterization of polylactic acid nanofiber films loading perilla essential oil for antibacterial packaging of chilled chicken. Int J Biol Macromol 192:379–388

    Article  CAS  Google Scholar 

  11. Hu Q, Zhou J, Qiu B, Wang Q, Song G, Guo Z (2021) Synergistically improved methane production from anaerobic wastewater treatment by iron/polyaniline composite. Adv Compos Hybrid Mater 4(2):265–273

    Article  CAS  Google Scholar 

  12. Zhuang Z, Wang W, Wei Y, Li T, Ma M, Ma Y (2021) Preparation of polyaniline nanorods/manganese dioxide nanoflowers core/shell nanostructure and investigation of electrochemical performances. Adv Compos Hybrid Mater 4(4):938–945

    Article  CAS  Google Scholar 

  13. Wei Y, Luo W, Zhuang Z, Dai B, Ding J, Li T, Ma M, Yin X, Ma Y (2021) Fabrication of ternary MXene/MnO2/polyaniline nanostructure with good electrochemical performances. Adv Compos Hybrid Mater 4(4):1082–1091

    Article  CAS  Google Scholar 

  14. Chai J, Hu Q, Qiu B (2021) Conductive polyaniline improves Cr(VI) bio-reduction by anaerobic granular sludge. Adv Compos Hybrid Mater 4(4):1137–1145

    Article  CAS  Google Scholar 

  15. Baskakov SA, Baskakova YB, Lyskov NV, Dremova NN (2018) Fabrication of current collector using a composite of polylactic acid and carbon nano-material for metal-free supercapacitors with graphene oxide separators and microwave exfoliated graphite oxide electrodes. Electrochim Acta 260:557–563

    Article  CAS  Google Scholar 

  16. Wang Q, Du P, Liu J, Liu D, Niu J, Liu P (2019) Facile strategy for mass production of polymer-supported film electrodes for high performance flexible symmetric solid-state supercapacitors. Appl Surf Sci 487:295–303

    Article  CAS  Google Scholar 

  17. Wei H, Li G, Wan T, Chen A (2021) Polyaniline growing on polylactic acid substrate towards flexible and biodegradable supercapacitors. Acta Mater Compos Sin 38:1–10 (in Chinese)

    Google Scholar 

  18. Wang Q, Wang H, Du P, Liu J, Liu D, Liu P (2019) Porous polylactic acid/carbon nanotubes/polyaniline composite film as flexible free-standing electrode for supercapacitors. Electrochim Acta 294:312–324

    Article  CAS  Google Scholar 

  19. He L, Song F, Li D, Zhao X, Wang X, Wang Y (2020) Strong and tough polylactic acid based composites enabled by simultaneous reinforcement and interfacial compatibilization of microfibrillated cellulose. ACS Sustain Chem Eng 8(3):1573–1582

    Article  CAS  Google Scholar 

  20. Scaffaro R, Maio A, Gulino EF, Micale GDM (2020) PLA-based functionally graded laminates for tunable controlled release of carvacrol obtained by combining electrospinning with solvent casting. React Funct Polym 148:104490

    Article  CAS  Google Scholar 

  21. Shirahase T, Akasaka S, Asai S (2020) Organic solvent-free fabrication of mesoporous polymer monolith from miscible PLLA/PMMA blend. Polymer 203:122742

    Article  CAS  Google Scholar 

  22. Zhang J, Yang S, Yang X, Xi Z, Zhao L, Cen L, Lu E, Yang Y (2018) Novel fabricating process for porous polyglycolic acid scaffolds by melt-foaming using supercritical carbon dioxide. ACS Biomater Sci Eng 4(2):694–706

    Article  CAS  Google Scholar 

  23. Gong P, Zhai S, Lee R, Zhao C, Buahom P, Li G, Park CB (2018) Environmentally friendly polylactic acid-based thermal insulation foams blown with supercritical CO2. Ind Eng Chem Res 57(15):5464–5471

    Article  CAS  Google Scholar 

  24. Hatami T, Flores Johner J, de Castro K, Innocentini Mei L, Adeodato Vieira M, Meireles MA (2020) New insight into a step-by-step modeling of supercritical CO2 foaming to fabricate poly(ε-caprolactone) scaffold. Ind Eng Chem Res 59(45):20033–20044

    Article  CAS  Google Scholar 

  25. Xu J, Zhang L, Li D, Bao J (2020) Foaming of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with supercritical carbon dioxide: foaming performance and crystallization behavior. ACS Omega 5(17):9839–9845

    Article  CAS  Google Scholar 

  26. Cheng H, Lu Z, Gao Q, Zuo Y, Liu X, Guo Z, Liu C, Shen C (2021) PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng Sci 16:331–340

    CAS  Google Scholar 

  27. Wei H, Zhu J, Wu S, Wei S, Guo Z (2013) Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. Polymer 54(7):1820–1831

    Article  CAS  Google Scholar 

  28. Aswathy NR, Kumar SA, Mohanty S, Nayak SK, Palai AK (2021) Polyaniline/multi-walled carbon nanotubes filled biopolymer based flexible substrate electrodes for supercapacitor applications. J Energy Storage 35:102256

    Article  Google Scholar 

  29. Dong H, Li Y, Chai H, Cao Y, Chen X (2019) Hydrothermal synthesis of CuCo2S4 nano-structure and N-doped graphene for high-performance aqueous asymmetric supercapacitors. ES Energy Environ 4:19–26

    Google Scholar 

  30. Wei H, Gu H, Guo J, Wei S, Guo Z (2013) Electropolymerized polyaniline nanocomposites from multi-walled carbon nanotubes with tuned surface functionalities for electrochemical energy storage. J Electrochem Soc 160(7):G3038–G3045

    Article  CAS  Google Scholar 

  31. Rezabeigi E, Wood-Adams PM, Drew RAL (2014) Isothermal ternary phase diagram of the polylactic acid-dichloromethane-hexane system. Polymer 55(14):3100–3106

    Article  CAS  Google Scholar 

  32. Chang Y, Liu X, Yang H, Zhang L, Cui Z, Niu M, Liu H, Chen J (2016) Nonsolvent-assisted fabrication of multi-scaled polylactide as superhydrophobic surfaces. Soft Matter 12(10):2766–2772

    Article  CAS  Google Scholar 

  33. Ingle R, Shaikh S, Bhujbal P, Pathan H, Tabhane V (2020) Polyaniline doped with protonic acids: optical and morphological studies. ES Mater Manuf 8:54–59

    CAS  Google Scholar 

  34. Yu P, Zhang Z, Zheng L, Teng F, Hu L, Fang X (2016) A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors. Adv Energy Mater 6(20):1601111

    Article  CAS  Google Scholar 

  35. Guo J, Li X, Liu H, Young DP, Song G, Song K, Zhu J, Kong J, Guo Z (2021) Tunable magnetoresistance of core-shell structured polyaniline nanocomposites with 0-, 1-, and 2-dimensional nanocarbons. Adv Compos Hybrid Mater 4(1):51–64

    Article  CAS  Google Scholar 

  36. Wei H, Li A, Kong D, Li Z, Cui D, Li T, Dong B, Guo Z (2021) Polypyrrole/reduced graphene aerogel film for wearable piezoresistic sensors with high sensing performances. Adv Compos Hybrid Mater 4(1):86–95

    Article  CAS  Google Scholar 

  37. Narimissa E, Gupta R, Bhaskaran M, Sriram S (2012) Influence of nano-graphite platelet concentration on onset of crystalline degradation in polylactide composites. Polym Degrad Stab 97(5):829–832

    Article  CAS  Google Scholar 

  38. Luo W, Zhang L, Wang W, Ouyang L, Xue H (2019) Polyaniline-modified hierarchical graphene fiber for ultrahigh-performance electrochemical supercapacitor with carbon fiber in core as current collector. Energ Technol 7(11):1900522

    Article  CAS  Google Scholar 

  39. Yao F, Xie W, Yang M, Zhang H, Gu H, Du A, Naik N, Young DP, Lin J, Guo Z (2021) Interfacial polymerized copolymers of aniline and phenylenediamine with tunable magnetoresistance and negative permittivity. Mater Today Phys 21:100502

    Article  CAS  Google Scholar 

  40. Li S, Yang C, Sarwar S, Nautiyal A, Zhang P, Du H, Liu N, Yin J, Deng K, Zhang X (2019) Facile synthesis of nanostructured polyaniline in ionic liquids for high solubility and enhanced electrochemical properties. Adv Compos Hybrid Mater 2(2):279–288

    Article  CAS  Google Scholar 

  41. Vyas S, Shukla A, Shivhare S, Bagal V, Upadhyay N (2021) High performance conducting nanocomposites polyaniline (PANI)-CuO with enhanced antimicrobial activity for biomedical applications. ES Mater Manuf 15:46–52

    Google Scholar 

  42. Han Y, Ding J, Zhang J, Li Q (2021) Fabrication and characterization of polylactic acid coaxial antibacterial nanofibers embedded with cinnamaldehyde/tea polyphenol with food packaging potential. Int J Biol Macromol 184:739–749

    Article  CAS  Google Scholar 

  43. Kung C, Wang T, Lin H, ChienHsin Y (2021) A high-performance covalently bonded self-doped polyaniline–graphene assembly film with superior stability for supercapacitors. J Power Sources 490:229538

    CAS  Google Scholar 

  44. Wei H, Wang H, Li A, Li H, Cui D, Dong M, Lin J, Fan J, Zhang J, Hou H, Shi Y, Zhou D, Guo Z (2020) Advanced porous hierarchical activated carbon derived from agricultural wastes toward high performance supercapacitors. J Alloy Compd 820:153111

    Article  CAS  Google Scholar 

  45. Guo J, Chen Z, Abdul W, Kong J, Khan MA, Young DP, Zhu J, Guo Z (2021) Tunable positive magnetoresistance of magnetic polyaniline nanocomposites. Adv Compos Hybrid Mater 4(3):534–542

    Article  CAS  Google Scholar 

  46. Zhang Y, Zhao Y, Peng Z, Yao B, Alsaid Y, Hua M, Wu D, Qiu Y, Pei Q, Zhu X, He Z, He X (2021) Ultrastretchable polyaniline-based conductive organogel with high strain sensitivity. ACS Mater Lett 3(10):1477–1483

    Article  CAS  Google Scholar 

  47. Wei H, Gu H, Guo J, Wei S, Liu J, Guo Z (2013) Silica doped nanopolyaniline with endured electrochemical energy storage and the magnetic field effects. J Phys Chem C 117(25):13000–13010

    Article  CAS  Google Scholar 

  48. Li Y, Zhou M, Xia Z, Gong Q, Liu X, Yang Y, Gao Q (2020) Facile preparation of polyaniline covalently grafted to isocyanate functionalized reduced graphene oxide nanocomposite for high performance flexible supercapacitors. Colloids Surf A 602:125172

    Article  CAS  Google Scholar 

  49. Wei H, Xue Q, Li A, Wan T, Huang Y, Cui D, Pan D, Dong B, Wei R, Naik N, Guo Z (2021) Dendritic core-shell copper-nickel alloy@metal oxide for efficient non-enzymatic glucose detection. Sens Actuators B Chem 337:129687

    Article  CAS  Google Scholar 

  50. Zhu Q, Huang Y, Li Y, Zhou M, Xu S, Liu X, Liu C, Yuan B, Guo Z (2021) Aluminum dihydric tripolyphosphate/polypyrrole-functionalized graphene oxide waterborne epoxy composite coatings for impermeability and corrosion protection performance of metals. Adv Compos Hybrid Mater 4(3):780–792

    Article  CAS  Google Scholar 

  51. Zhao W, Chen T, Wang W, Jin B, Peng J, Bi S, Jiang M, Liu S, Zhao Q, Huang W (2020) Conductive Ni3(HITP)2MOFs thin films for flexible transparent supercapacitors with high rate capability. Sci Bull 65(21):1803–1811

    Article  CAS  Google Scholar 

  52. Zhang CJ, Anasori B, SeralAscaso A, Park S (2017) Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv Mater 29(36):1702678

    Article  CAS  Google Scholar 

  53. Liu J, Ye J, Pan F, Wang X, Zhu Y (2018) Solid-state yet flexible supercapacitors made by inkjet-printing hybrid ink of carbon quantum dots/graphene oxide platelets on paper. Sci China Mater 62(4):545–554

    Article  CAS  Google Scholar 

  54. Chen Q, Meng Y, Hu C, Zhao Y, Shao H, Chen N, Qu L (2014) MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. J Power Sources 247:32–39

    Article  CAS  Google Scholar 

  55. Li J, Levitt A, Kurra N, Juan K, Noriega N, Xiao X, Wang X, Wang H, Alshareef HN, Gogotsi Y (2019) MXene-conducting polymer electrochromic microsupercapacitors. Energy Storage Mater 20:455–461

    Article  Google Scholar 

  56. Elsawy MA, Kim KH, Park JW, Deep A (2017) Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew Sustain Energy Rev 79:1346–1352

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (51703162). Dr. Huige Wei also expresses her thanks to Young Elite Scientists Sponsorship Program by Tianjin (TJSQNTJ-2018–03). The authors also acknowledge the financial support of Taif University Researchers Supporting Project number (TURSP-2020/05), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dapeng Cui or Huige Wei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guixing Li and Lin Wang contributed equally to this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1874 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Wang, L., Lei, X. et al. Flexible, yet robust polyaniline coated foamed polylactic acid composite electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 5, 853–863 (2022). https://doi.org/10.1007/s42114-022-00501-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00501-7

Keywords

Navigation