Skip to main content
Log in

The weakly negative permittivity with low-frequency-dispersion behavior in percolative carbon nanotubes/epoxy nanocomposites at radio-frequency range

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

As one of the basic component materials of metamaterials, natural negative dielectric constant (permittivity) materials have attracted more and more attentions; however, the frequency-dispersion mechanism of negative permittivity, especially the preferable low-frequency-dispersion behavior, still needs to be further explored. In this work, we fabricated the carbon nanotubes (CNTs)/epoxy composites by mechanical mixing and pressure forming. By gradually controlling the CNT content, a percolation phenomenon occurred and the conductive mechanism was changed from hopping conductivity to metal-like conductivity. The Debye model was used to describe the dielectric relaxation when the CNT content was below the percolation threshold; the negative permittivity comes from the plasma oscillation of free electrons in CNT networks when the CNT content is exceeding the percolation threshold explained by Drude model; the equivalent circuit analysis was used to analyze a capacitive-inductive transition. Most importantly, a low-frequency-dispersion and weakly negative permittivity occurred in the composites when the CNT content was slightly higher than the percolation threshold, a new Debye-Drude model was put forward to explain the novel frequency dispersion phenomenon of negative permittivity. Our work provides a new method to explain the phenomenon of low-frequency dispersion and will facilitate applications of negative permittivity materials.

Graphical abstract

The low-frequency-dispersion weakly negative permittivity was achieved in the percolative composites slightly above percolation threshold, a new Debye-Drude model was put forward to explain the novel phenomenon

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

Data can be made available on request to the corresponding authors.

References

  1. Caloz C, Itoh T, Rennings A (2008) CRLH metamaterial leaky-wave and resonant antennas. IEEE Antenn Propag M 50(5):25–39. https://doi.org/10.1109/MAP.2008.4674709

    Article  Google Scholar 

  2. Sun L, Shi Z, He B et al (2021) Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: a novel design targeting advanced energy storage capacitors. Adv Funct Mater 31(35):2100280. https://doi.org/10.1002/adfm.202100280

    Article  CAS  Google Scholar 

  3. Xu Q, Liu X, Wan B et al (2018) In2O3 nanowire field-effect transistors with Sub-60 mV/dec subthreshold swing stemming from negative capacitance and their logic applications. ACS Nano 12(9):9608–9616. https://doi.org/10.1021/acsnano.8b05604

    Article  CAS  Google Scholar 

  4. Rensberg J, Zhou Y, Richter S et al (2017) Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers. Phys Rev Appl 8(1):014009. https://doi.org/10.1103/PhysRevApplied.8.014009

    Article  Google Scholar 

  5. Zhao B, Park CB (2017) Tunable electromagnetic shielding properties of conductive poly(vinylidene fluoride)/Ni chain composite films with negative permittivity. J Mater Chem C 5(28):6954–6961. https://doi.org/10.1039/C7TC01865G

    Article  CAS  Google Scholar 

  6. Smith DR, Pendry JB, Wiltshire MCK (2004) Metamaterials and negative refractive index. Science 305(5685):788–792. https://doi.org/10.1126/science.1096796

    Article  CAS  Google Scholar 

  7. Xie P, Li Y, Hou Q et al (2020) Tunneling-induced negative permittivity in Ni/MnO nanocomposites by a bio-gel derived strategy. J Mater Chem C 8(9):3029–3039. https://doi.org/10.1039/C9TC06378A

    Article  CAS  Google Scholar 

  8. Xie P, Wang Z, Zhang Z et al (2018) Silica microsphere templated self-assembly of a three-dimensional carbon network with stable radio-frequency negative permittivity and low dielectric loss. J Mater Chem C 6(19):5239–5249. https://doi.org/10.1039/C7TC05911F

    Article  CAS  Google Scholar 

  9. Shi Z, Fan R, Zhang Z et al (2012) Random composites of nickel networks supported by porous alumina toward double negative materials. Adv Mater 24(17):2349–2352. https://doi.org/10.1002/adma.201200157

    Article  CAS  Google Scholar 

  10. Zhang L, Cui T (2021) Space-time-coding digital metasurfaces: principles and applications. Research 9802673. https://doi.org/10.34133/2021/9802673

  11. Huang Z, Zhao S, Zhang Y et al (2021) Tunable fluid-type metasurface for wide-angle and multifrequency water-air acoustic transmission. Research:9757943. https://doi.org/10.34133/2021/9757943

  12. Seo B-J, Ueda T, Itoh T et al (2006) Isotropic left handed material at optical frequency with dielectric spheres embedded in negative permittivity medium. Appl Phys Lett 88(16):161122. https://doi.org/10.1063/1.2196871

    Article  CAS  Google Scholar 

  13. Moerland RJ, van Hulst NF, Gersen H et al (2005) Probing the negative permittivity perfect lens at optical frequencies using near-field optics and single molecule detection. Opt Express 13(5):1604–1614. https://doi.org/10.1364/OPEX.13.001604

    Article  Google Scholar 

  14. Qu Y, Wu J, Wang Z et al (2021) Radio-frequency epsilon-negative property and diamagnetic response of percolative Ag/CCTO metacomposites. Scripta Mater 203:114067. https://doi.org/10.1016/j.scriptamat.2021.114067

    Article  CAS  Google Scholar 

  15. Wang Z, Sun K, Xie P et al (2020) Design and analysis of negative permittivity behaviors in barium titanate/nickel metacomposites. Acta Mater 185:412–419. https://doi.org/10.1016/j.actamat.2019.12.034

    Article  CAS  Google Scholar 

  16. Qu Y, Wang Z, Xie P et al (2022) Ultraweakly and fine-tunable negative permittivity of polyaniline/nickel metacomposites with high-frequency diamagnetic response. Compos Sci Technol 217:109092. https://doi.org/10.1016/j.compscitech.2021.109092

    Article  CAS  Google Scholar 

  17. Liu M, Lan X, Zhang H et al (2021) Iron/epoxy random metamaterials with adjustable epsilon-near-zero and epsilon-negative property. J Mater Sci-Mater El 32:15995–16007. https://doi.org/10.1007/s10854-021-06150-8

  18. Wu N, Zhao B, Chen X et al (2022) Dielectric properties and electromagnetic simulation of molybdenum disulfide and ferric oxide-modified Ti3C2TX MXene hetero-structure for potential microwave absorption. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00490-7

  19. Wang J, Shi Z, Mao F et al (2017) Bilayer polymer metacomposites containing negative permittivity layer for new high-k materials. ACS Appl Mater Inter 9(2):1793–1800. https://doi.org/10.1021/acsami.6b12786

    Article  CAS  Google Scholar 

  20. Cheng C, Fan R, Ren Y et al (2017) Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites. Nanoscale 9(18):5779–5787. https://doi.org/10.1039/C7NR01516J

    Article  CAS  Google Scholar 

  21. Dai J, Luo H, Moloney M et al (2020) Adjustable graphene/polyolefin elastomer epsilon-near-zero metamaterials at radiofrequency range. ACS Appl Mater Inter 12(19):22019–22028. https://doi.org/10.1021/acsami.0c02979

    Article  CAS  Google Scholar 

  22. Gao S, Zhao X, Fu Q et al (2022) Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J Mater Sci Technol 126:152–160. https://doi.org/10.1016/j.jmst.2022.03.012

    Article  Google Scholar 

  23. Zhao Z, Zhao R, Bai P et al (2022) AZ91 alloy nanocomposites reinforced with Mg-coated graphene: Phases distribution, interfacial microstructure, and property analysis. J Alloy Coumpd 902:163484. https://doi.org/10.1016/j.jallcom.2021.163484

    Article  CAS  Google Scholar 

  24. Li Y, Yuan H, Chen Y et al (2021) Application and exploration of nanofibrous strategy in electrode design. J Mater Sci Technol 74:189–202. https://doi.org/10.1016/j.jmst.2020.10.015

    Article  CAS  Google Scholar 

  25. Shi Y, Pan K, Gerard Moloney M et al (2021) Strain sensing metacomposites of polyaniline/silver nanoparticles/carbon foam. Compos Part A-Appl S 144:106351. https://doi.org/10.1016/j.compositesa.2021.106351

    Article  CAS  Google Scholar 

  26. Wu H, Sun H, Han F et al (2022) Negative permittivity behavior in flexible carbon nanofibers- polydimethylsiloxane films. Eng Sci 17:113–120. https://doi.org/10.30919/es8d576

  27. Qi G, Liu Y, Chen L et al (2021) Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv Compos Hybrid Mater 4:1226–1238. https://doi.org/10.1007/s42114-021-00368-0

    Article  CAS  Google Scholar 

  28. Xie P, Liu Y, Feng M et al (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4:173–185. https://doi.org/10.1007/s42114-020-00202-z

    Article  CAS  Google Scholar 

  29. Wu N, Hu Q, Wei R et al (2021) Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: recent progress, challenges and prospects. Carbon 176:88–105. https://doi.org/10.1016/j.carbon.2021.01.124

    Article  CAS  Google Scholar 

  30. Wu H, Zhong Y, Tang Y et al (2022) Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv Compos Hybrid Mater 5:419–430. https://doi.org/10.1007/s42114-021-00378-y

    Article  CAS  Google Scholar 

  31. Xie P, Zhang Z, Wang Z et al (2019) Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures. Research 1021368. https://doi.org/10.34133/2019/1021368

  32. Zhai Y, Yang W, Xie X et al (2022) Co3O4 nanoparticles dotted hierarchical-assembled carbon nanosheet frameworks catalysts with formation/decomposition mechanisms of Li2O2 for smart lithium-oxygen batteries. Inorg Chem Front 9:1115–1124. https://doi.org/10.1039/d1qi01260f

    Article  CAS  Google Scholar 

  33. Chen L, Mao S, Wang P et al (2021) Visible light driven hot-electron injection by pd nanoparticles: fast response in metal–semiconductor photodetection. Adv Optical Mater 9:2001505. https://doi.org/10.1002/adom.202001505

    Article  CAS  Google Scholar 

  34. Liu J, Mao S, Song S et al (2021) Towards applicable photoacoustic micro-fluidic pumps: Tunable excitation wavelength and improved stability by fabrication of Ag-Au alloying nanoparticles. J Alloy Compd 884:161091. https://doi.org/10.1016/j.jallcom.2021.161091

    Article  CAS  Google Scholar 

  35. Wang C, Zhang J, Wang X et al (2020) Hollow rutile cuboid arrays grown on carbon fiber cloth as a flexible electrode for sodium-ion batteries. Adv Function Mater 30(45):2002629. https://doi.org/10.1002/adfm.202002629

    Article  CAS  Google Scholar 

  36. Qi S, Lin M, Qi P et al (2022) Interfacial and build-in electric fields rooting in gradient polyelectrolyte hydrogel boosted heavy metal removal. Chem Eng J 444:136541. https://doi.org/10.1016/j.cej.2022.136541

    Article  CAS  Google Scholar 

  37. Xia M, Pan N, Zhang C et al (2022) Self-powered multifunction ionic skins based on gradient polyelectrolyte hydrogels. ACS Nano 16:4714–4725. https://doi.org/10.1021/acsnano.1c11505

    Article  CAS  Google Scholar 

  38. Yin J, Fan W, Xu Z et al (2022) Digitally defining local gradients of stimuli-responsive hydrogels for complex 2D-to-4D shape evolutions. Small 18:2104440. https://doi.org/10.1002/smll.202104440

    Article  CAS  Google Scholar 

  39. González MG, Cabanelas JC, Baselga J (2012) Applications of FTIR on epoxy resins - identification, monitoring the curing process, phase separation and water uptake. Infrared Spectroscopy - Materials Science, Engineering and Technology 13:262–284. https://doi.org/10.5772/36323

    Article  Google Scholar 

  40. Wu H, Mu Z, Qi G et al (2021) Negative permittivity behavior in Ti3AlC2-polyimide composites and the regulation mechanism. J Mater Sci: Mater Electron 32(8):10388–10397. https://doi.org/10.1007/s10854-021-05695-y

    Article  CAS  Google Scholar 

  41. Mantas PQ (1999) Dielectric response of materials: extension to the Debye model. J Eur Ceram Soc 19(12):2079–2086. https://doi.org/10.1016/S0955-2219(98)00273-8

    Article  CAS  Google Scholar 

  42. Yin F, Yan K, Shen L et al (2021) Metallic ferromagnetic selenospinel composites of CuCr2Se4–CdCr2Se4 with double negative electromagnetic parameters. Appl Phys Lett 118(18):181904. https://doi.org/10.1063/5.0049612

    Article  CAS  Google Scholar 

  43. Xie P, Sun K, Wang Z et al (2017) Negative permittivity adjusted by SiO2-coated metallic particles in percolative composites. J Alloy Compd 725:1259–1263. https://doi.org/10.1016/j.jallcom.2017.04.248

    Article  CAS  Google Scholar 

  44. Xie P, Wang Z, Sun K et al (2017) Regulation mechanism of negative permittivity in percolating composites via building blocks. Appl Phys Lett 111:112903. https://doi.org/10.1063/1.4994234

    Article  CAS  Google Scholar 

  45. Xie P, Zhang Z, Liu K et al (2017) C/SiO2 meta-composite: overcoming the λ/a relationship limitation in metamaterials. Carbon 125:1–8. https://doi.org/10.1016/j.carbon.2017.09.021

    Article  CAS  Google Scholar 

  46. Xie P, Fan R, Zhang Z et al (2018) Tunable negative permittivity and permeability of yttrium iron garnet/polyaniline composites in radio frequency region. J Mater Sci: Mater Electron 29:6119–6124. https://doi.org/10.1007/s10854-018-8588-0

    Article  CAS  Google Scholar 

  47. Xie P, Li H, He B et al (2018) Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption. J Mater Chem C 6:8812. https://doi.org/10.1039/c8tc02127a

    Article  CAS  Google Scholar 

  48. Xie P, Sun W, Du A et al (2021) Epsilon-negative carbon aerogels with state transition from dielectric to degenerate semiconductor. Adv Electron Mater 7:2000877. https://doi.org/10.1002/aelm.202000877

    Article  CAS  Google Scholar 

Download references

Funding

This research is financially supported by the National Natural Science Foundation of China [52101176], the China Postdoctoral Science Foundation [2020M671992], Postdoctoral Innovation Project of Shandong Province [202003031], Natural Science Foundation of Shandong Province [ZR2020QE006], Guangdong Basic and Applied Basic Research Foundation [2021A1515110883], Innovation Program of the Shanghai Municipal Education Commission [Grant No. 2019–01-07–00-10-E00053], Postdoctoral Applied Research Project of Qingdao, and support by State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University). The Deanship of Scientific Research at Umm Al-Qura University supported this work through Grant Code: (22UQU4320141DSR11).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by M. Liu, H. Wu, Y. Wu, G. Li, W. Li, and Y. Wei. M. Liu and P. Xie wrote the manuscript. C. Liu, G. Liang, K. Sun, R. Fan, and P. Xie gave the meaningful advice in the analysis of the performance of nanocomposites. P. Xie, R. Pashameah, H. Abo-Dief, S. El-Bahy, and R. Fan gave financial support for this work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Peitao Xie or Chunzhao Liu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5487 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Wu, H., Wu, Y. et al. The weakly negative permittivity with low-frequency-dispersion behavior in percolative carbon nanotubes/epoxy nanocomposites at radio-frequency range. Adv Compos Hybrid Mater 5, 2021–2030 (2022). https://doi.org/10.1007/s42114-022-00541-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00541-z

Keywords

Navigation