Skip to main content

Advertisement

Log in

Electrospun healthcare nanofibers from medicinal liquor of Phellinus igniarius

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Although the healthcare market has billions of dollars in trade every year in this nano era, the nano products for healthcare remain limited. In this study, polyvinylpyrrolidone was used as a filament-forming matrix and drug carrier, and Phellinus igniarius (PI) was explored as a raw medicinal material. Coaxial electrospinning was implemented to transfer a traditional healthcare product (medicinal liquor) from PI into a nano healthcare product, that is, medicinal core–shell nanofibers. A homemade Teflon-coated concentric spinneret was utilized for setting up the coaxial electrospinning apparatus. The micro-formation mechanism of core–shell nanostructures from the spinneret was disclosed. The prepared core–shell nanofibers were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy, by which they were demonstrated to have a linear morphology with an evident core–shell structure. In addition, the active ingredients (primarily polysaccharides) from PI were presented in the nanofibers in an amorphous state, indicating good compatibility with the polymeric matrix. Homemade methods and ex vivo permeation tests were explored to evaluate the functional performance of medicinal core–shell nanofibers, which could be quickly dissolved to release the loaded active ingredients when they encountered water and ensured a rapid permeation effect. The present study pioneered a potential application to more people of electrospun core–shell healthcare nano products from traditional medicinal liquor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Agarwal A, Rao GK, Majumder S, Shandilya M, Rawat V, Purwar R, Verma M, Srivastava CM (2022) Natural protein-based electrospun nanofibers for advanced healthcare applications: progress and challenges. 3 Biotech 12(4):92. https://doi.org/10.1007/s13205-022-03152-z

  2. Meftahi A, Samyn P, Geravand SA, Khajavi R, Alibkhshi S, Bechelany M, Barhoum A (2022) Nanocelluloses as skin biocompatible materials for skincare, cosmetics, and healthcare: formulations, regulations, and emerging applications. Carbohyd Polym 278:118956. https://doi.org/10.1016/j.carbpol.2021.118956

    Article  CAS  Google Scholar 

  3. Liu ZQ, Ramakrishna S, Liu XL (2020) Electrospinning and emerging healthcare and medicine possibilities. APL Bioeng 4(3):030901. https://doi.org/10.1063/5.0012309

    Article  CAS  Google Scholar 

  4. Huesca-Uriostegui K, Garcia-Valderrama EJ, Gutierrez-Uribe JA, Antunes-Ricardo M, Guajardo-Flores D (2022) Nanofiber systems as herbal bioactive compounds carriers: current applications in healthcare. Pharmaceutics 14(1):191. https://doi.org/10.3390/pharmaceutics14010191

    Article  CAS  Google Scholar 

  5. Guo F, Zhou YF, Zhang F, Yuan F, Yuan YZ, Yao WY (2014) Idiopathic mesenteric phlebosclerosis associated with long-term use of medical liquor: two case reports and literature review. World J Gastroentero 20(18):5561–5566. https://doi.org/10.3748/wjg.v20.i18.5561

    Article  Google Scholar 

  6. Chan TYK (2011) Causes and prevention of herb-induced aconite poisonings in Asia. Hum Exp Toxicol 30(12):2023–2026. https://doi.org/10.1177/0960327111407224

    Article  Google Scholar 

  7. Huang CY, Cheng YH, Chen SD (2022) Hot air-assisted radio frequency (HARF) drying on wild bitter gourd extract. Foods 11(8):1173. https://doi.org/10.3390/foods11081173

    Article  CAS  Google Scholar 

  8. Gao Y, Wu SM, Sun YQ, Cong RH, Xiao JY, Ma FL (2019) Effect of freeze dried, hot air dried and fresh onions on the composition of volatile sulfocompounds in onion oils. Dry Technol 37(11):1427–1440. https://doi.org/10.1080/07373937.2018.1504062

    Article  CAS  Google Scholar 

  9. Klaric M, Pervan S, Biosic M (2017) Influence of lyophilisation and oven-drying on extraction yield of oregonin from European black alder (Alnus glutinosa (L.) gaertn.) bark. Drvna Ind 68(3):205–210. https://doi.org/10.5552/drind.2017.1649

  10. Hazarika U, Gosztola B (2020) Lyophilization and its effects on the essential oil content and composition of herbs and spices - a review. Acta Sci Polon-Techn 19(4):467–473. https://doi.org/10.17306/J.AFS.2020.0853

  11. Sivan M, Madheswaran D, Valtera J, Kostakova EK, Lukas D (2022) Alternating current electrospinning: the impacts of various high-voltage signal shapes and frequencies on the spinnability and productivity of polycaprolactone nanofibers. Mater Design 213:110308. https://doi.org/10.1016/j.matdes.2021.110308

    Article  CAS  Google Scholar 

  12. Salehipour M, Rezaei S, Haddad R, Mogharabi-Manzari M (2022) Preparation of electrospun hybrid polyacrylonitrile nanofibers containing TiO2/Fe3O4 and their capsaicinoids adsorption applications. Vietnam J Chem 60(3):267–280. https://doi.org/10.1002/vjch.202100105

    Article  CAS  Google Scholar 

  13. Chen W, Zhao P, Yang YY, Yu DG (2022) Electrospun beads-on-the-string nanoproducts: preparation and drug delivery application. Curr Drug Deliv. https://doi.org/10.2174/1567201819666220525095844

    Article  Google Scholar 

  14. Pan D, Yang G, Abo-Dief HM, Dong JW, Su FM, Liu CT et al (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett 14(1):118. https://doi.org/10.1007/s40820-022-00863-z

    Article  CAS  Google Scholar 

  15. Wang M, Tan Y, Li D, Xu G, Yin D, Xiao Y, Xu T, Chen X, Zhu X, Shi X (2021) Negative isolation of circulating tumor cells using a microfluidic platform integrated with streptavidin-functionalized PLGA nanofibers. Adv Fiber Mater 3(3):192–202. https://doi.org/10.1007/s42765-021-00075-x

    Article  CAS  Google Scholar 

  16. Kose MD, Ungun N, Bayraktar O (2021) Eggshell membrane based turmeric extract loaded orally disintegrating films. Curr Drug Deliv. https://doi.org/10.2174/1567201818666210708123449

    Article  Google Scholar 

  17. Feng XC, Hao JS (2021) Identifying new pathways and targets for wound healing and therapeutics from natural sources. Curr Drug Deliv 18(8):1052–1072. https://doi.org/10.2174/1567201818666210111101257

    Article  Google Scholar 

  18. Ji Y, Song W, Xu L, Yu DG, Annie-Bligh SW (2022) A review on electrospun poly(amino acid) nano-fibers and their applications of hemostasis and wound healing. Biomolecules 12:794. https://doi.org/10.3390/biom12060794

    Article  CAS  Google Scholar 

  19. Wang P, Song T, Abo-Dief HM, Song J, Alanazi AK, Fan BY et al (2022) Effect of carbon nanotubes on the interface evolution and dielectric properties of polylactic acid/ethylene-vinyl acetate copolymer nanocomposites. Adv Compos Hybrid Mater 5(2):1100–1110. https://doi.org/10.1007/s42114-022-00489-0

    Article  CAS  Google Scholar 

  20. Zhang CT, Sun JX, Lyu S, Lu ZY, Li T, Yang Y, Li B, Han H, Wu BY, Sun HY, Li DD, Huang JT, Sun DZ (2022) Poly(lactic acid)/artificially cultured diatom frustules nanofibrous membranes with fast and controllable degradation rates for air filtration. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00474-7

    Article  Google Scholar 

  21. Cui Z, Marcelle SSA, Zhao M, Wu J, Liu X, Si J, Wang Q (2022) Thermoplastic polyurethane/titania/polydopamine (TPU/TiO2/PDA) 3-D porous composite foam with outstanding oil/water separation performance and photocatalytic dye degradation. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00503-5

    Article  Google Scholar 

  22. Li JK, Guan SM, Su JJ, Liang JH, Cui LL, Zhang K (2021) The development of hyaluronic acids used for skin tissue regeneration. Curr Drug Deliv 18(7):836–846. https://doi.org/10.2174/1567201817666201202094513

    Article  CAS  Google Scholar 

  23. Yu DG, Wang M, Ge R (2021) Strategies for sustained drug release from electrospun multi-layer nanostructures. WIRES Nanomed Nanobiotechnol 14(3):e1772. https://doi.org/10.1002/wnan.1772

    Article  CAS  Google Scholar 

  24. Kazsoki A, Palcso B, Alpar A, Snoeck R, Andrei G, Zelko R (2022) Formulation of acyclovir (core)-dexpanthenol (sheath) nanofibrous patches for the treatment of herpes labialis. Int J Pharma 611:121354. https://doi.org/10.1016/j.ijpharm.2021.121354

    Article  CAS  Google Scholar 

  25. Omer S, Forgach L, Zelko R, Sebe I (2021) Scale-up of electrospinning: market overview of products and devices for pharmaceutical and biomedical purposes. Pharmaceutics 13(2):286. https://doi.org/10.3390/pharmaceutics13020286

    Article  CAS  Google Scholar 

  26. Xu X, Lv H, Zhang M, Wang M, Zhou Y, Liu Y, Yu DG (2022) Recent progresses of electrospun nanofibers and their applications in treating heavy metal wastewater. Front Chem Sci Eng 2022(7):28

    Google Scholar 

  27. Liu Y, Chen X, Yu DG, Liu H, Liu Y, Liu P (2021) Electrospun PVP-core/PHBV-shell nanofibers to eliminate tailing off for an improved sustained release of curcumin. Mol Pharm 18(11):4170–4178. https://doi.org/10.1021/acs.molpharmaceut.1c00559

    Article  CAS  Google Scholar 

  28. Yuan Z, Sheng D, Jiang L, Shafifiq M, Khan AUR, Hashim R, Chen Y, Li B, Xie X, Chen J, Morsi Y, Mo XM, Chen SY (2022) Vascular endothelial growth factor-capturing aligned electrospun polycaprolactone/gelatin nanofibers promote patellar ligament regeneration. Acta Biomater 140:233–246. https://doi.org/10.1016/j.actbio.2021.11.040

    Article  CAS  Google Scholar 

  29. Zhou K, Wang M, Zhou Y, Sun M, Xie Y, Yu DG (2022) Comparisons of antibacterial performances between electrospun polymer@drug nanohybrids with drug-polymer nanocomposites. Adv Compos Hybrid Mater 5:1–13. https://doi.org/10.1007/s42114-021-00389-9

    Article  CAS  Google Scholar 

  30. He H, Wu M, Zhu J, Yang Y, Ge R, Yu DG (2021) Engineered spindles of little molecules around electrospun nanofibers for biphasic drug release. Adv Fiber Mater 4(2):305–317. https://doi.org/10.1007/s42765-021-00112-9

    Article  CAS  Google Scholar 

  31. Liu Y, Chen X, Gao Y, Liu YY, Yu DG, Liu P (2022) Electrospun core–sheath nanofibers with variable shell thickness for modifying curcumin release to achieve a better antibacterial performance. Biomolecules 2022:14

    Google Scholar 

  32. Lv H, Guo S, Zhang G, He W, Wu Y, Yu DG (2021) Electrospun structural hybrids of acyclovir-polyacrylonitrile at acyclovir for modifying drug release. Polymers 13(24):4286. https://doi.org/10.3390/polym13244286

    Article  CAS  Google Scholar 

  33. Huang C, Dong J, Zhang Y, Chai S, Wang X, Kang S (2022) Gold nanoparticles-loaded polyvinylpyrrolidone/ethylcellulose coaxial electrospun nanofibers with enhanced osteogenic capability for bone tissue regeneration. Mater Des 212:110240. https://doi.org/10.1016/j.matdes.2021.110240

    Article  CAS  Google Scholar 

  34. Xu H, Zhang F, Wang M, Lv H, Yu DG, Liu X, Shen H (2022) Electrospun hierarchical structural films for effective wound healing. Biomater Adv 136:212795. https://doi.org/10.1016/j.bioadv.2022.212795

  35. Zhao K, Lu ZH, Zhao P, Kang SX, Yang YY, Yu DG (2021) Modified tri–axial electrospun functional core–shell nanofibrous membranes for natural photodegradation of antibiotics. Chem Eng J 425:131455. https://doi.org/10.1016/j.cej.2021.131455

    Article  CAS  Google Scholar 

  36. Liu Y, Chen X, Gao Y, Yu DG, Liu P (2022) Elaborate design of shell component for manipulating the sustained release behavior from core–shell nanofibres. J Nanobiotechnol 20(1):244. https://doi.org/10.1186/s12951-022-01463-0

    Article  CAS  Google Scholar 

  37. Liu H, Wang H, Lu X, Murugadoss V, Huang M, Yang H, Wan F, Yu DG, Guo Z (2022) Electrospun structural nanohybrids combining three composites for fast helicide delivery. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00478-3

    Article  Google Scholar 

  38. Lv H, Zhang M, Wang P, Xu X, Liu Y, Yu DG (2022) Ingenious construction of Ni(DMG)2/TiO2-decorated porous nanofibers for the highly efficient photodegradation of pollutants in water. Colloid Surface A 650:129561. https://doi.org/10.1016/j.colsurfa.2022.129561

    Article  CAS  Google Scholar 

  39. Gao SL, Zhao XH, Fu Q, Zhang TC, Zhu J, Hou FH et al (2022) Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J Mater Sci Technol 156:152–160. https://doi.org/10.1016/j.jmst.2022.03.012

    Article  Google Scholar 

  40. Du Y, Zhang X, Liu P, Yu DG, Ge R (2022) Electrospun nanofibers-based glucose sensors for glucose detection. Front Chem 10:944428. https://doi.org/10.3389/fchem.2022.944428

    Article  CAS  Google Scholar 

  41. Zhou Y, Liu Y, Zhang M, Feng Z, Yu DG, Wang K (2022) Electrospun nanofiber membranes for air filtration: a review. Nanomaterials 12(7):1077. https://doi.org/10.3390/nano12071077

    Article  CAS  Google Scholar 

  42. Xu X, Zhang M, Lv H, Zhou Y, Yang Y, Yu DG (2022) Electrospun polyacrylonitrile-based lace nanostructures and their Cu(II) adsorption. Sep Purif Technol 288:120643. https://doi.org/10.1016/j.seppur.2022.120643

    Article  CAS  Google Scholar 

  43. Xu L, Liu Y, Zhou W, Yu DG (2022) Electrospun medical sutures for wound healing: a review. Polymers 14(9):1637. https://doi.org/10.3390/polym14091637

    Article  CAS  Google Scholar 

  44. Wang YB, Xu HX, Wu M, Yu DG (2022) Nanofibers-based food packaging. ES Food Agrof 7:1–24. https://doi.org/10.30919/esfaf598

  45. Zhang X, Guo S, Qin Y, Li C (2021) Functional electrospun nanocomposites for efficient oxygen reduction reaction. Chem Res Chinese Universities 37(3):379–393. https://doi.org/10.1007/s40242-021-1123-5

    Article  CAS  Google Scholar 

  46. Panthi G, Ranjit R, Khadka S, Gyawali KR, Kim HY, Park M (2020) Characterization and antibacterial activity of rice grain-shaped ZnS nanoparticles immobilized inside the polymer electrospun nanofibers. Adv Compos Hybrid Mater 3(1):8–15. https://doi.org/10.1007/s42114-020-00141-9

    Article  CAS  Google Scholar 

  47. Yu DG (2021) Preface—bettering drug delivery knowledge from pharmaceutical techniques and excipients. Curr Drug Deliv 18:2–3. https://doi.org/10.2174/156720181801201203091653

    Article  CAS  Google Scholar 

  48. Zhang Y, Li S, Xu Y, Shi X, Zhang M, Huang Y, Liang Y, Chen Y, Ji W, Kim JR et al (2022) Engineering of hollow polymeric nanosphere-supported imidazolium-based ionic liquids with enhanced antimicrobial activities. Nano Res. https://doi.org/10.1007/s12274-022-4160-6

    Article  Google Scholar 

  49. Ma Y, Li D, Xiao Y, Ouyang Z, Shen M, Shi X (2021) LDH-doped electrospun short fibers enable dual drug loading and multistage release for chemotherapy of drug-resistant cancer cells. New J Chem 45(30):13421–13428. https://doi.org/10.1039/d1nj02159a

    Article  CAS  Google Scholar 

  50. Liu X, Zhang M, Song W, Zhang Y, Yu DG, Liu Y (2022) Electrospun core (HPMC-acetaminophen)-shell (PVP-sucralose) nanohybrids as orodispersible drug delivery devices. Gels 8:357. https://doi.org/10.3390/gels8060357

    Article  CAS  Google Scholar 

  51. Tang Y, Varyambath A, Ding Y, Chen B, Huang X, Zhang Y et al (2022) Porous organic polymers for drug delivery: hierarchical pore structures, variable morphologies, and biological properties. Biomater. https://doi.org/10.1039/d2bm00719c

    Article  Google Scholar 

  52. Yu DG, Lv H (2022) Preface-striding into nano drug delivery. Curr Drug Deliv 19(1):1–3

    Article  CAS  Google Scholar 

  53. Zhang Y, Song W, Lu Y, Xu Y, Wang C, Yu DG, Kim I (2022) Recent advances in poly(α-L-glutamic acid)-based nanomaterials for drug delivery. Biomolecules 12(5):636. https://doi.org/10.3390/biom12050636

    Article  CAS  Google Scholar 

  54. Krysiak ZJ, Stachewicz U (2022) Electrospun fibers as carriers for topical drug delivery and release in skin bandages and patches for atopic dermatitis treatment. WIREs Nanomed Nanobiotechnol 14:e1829. https://doi.org/10.1002/wnan.1829

    Article  CAS  Google Scholar 

  55. Mitragotri S, Burke P, Langer R (2014) Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 13(9):655–672. https://doi.org/10.1038/nrd4363

    Article  CAS  Google Scholar 

  56. Bakadia BM, Zhong A, Li X, e Boni1 BOO, Ahmed AAQ, Souho T, Zheng R, Shi Z, Shi D, Lamboni L, Yang G (2022) Biodegradable and injectable poly(vinyl alcohol) microspheres in silk sericin-based hydrogel for the controlled release of antimicrobials: application to deep full-thickness burn wound healing. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00467-6

  57. Song Y, Huang H, He D, Yang M, Wang H, Zhang H, Li J, Li Y, Wang C (2021) Gallic acid/2-hydroxypropyl-β-cyclodextrin inclusion complexes electrospun nanofibrous webs: fast dissolution, improved aqueous solubility and antioxidant property of gallic acid. Chem Res Chinese Universities 37(3):450–455. https://doi.org/10.1007/s40242-021-0014-0

    Article  CAS  Google Scholar 

  58. Guo S, Jiang W, Shen L, Zhang G, Gao Y, Yang YY, Yu DG (2022) Electrospun hybrid films for fast and convenient delivery of active herbs extracts. Membranes 12(4):398. https://doi.org/10.3390/membranes12040398

    Article  CAS  Google Scholar 

  59. Kang S, Hou S, Chen X, Yu DG, Wang L, Li X, Williams GR (2020) Energy-saving electrospinning with a concentric Teflon-core rod spinneret to create medicated nanofibers. Polymers 12(10):2421. https://doi.org/10.3390/polym12102421

    Article  CAS  Google Scholar 

  60. Ziyadi H, Baghali M, Bagherianfar M, Mehrali F, Faridi-Majidi R (2021) An investigation of factors affecting the electrospinning of poly (vinyl alcohol)/kefiran composite nanofibers. Adv Compos Hybrid Mater 4(3):768–779. https://doi.org/10.1007/s42114-021-00230-3

    Article  CAS  Google Scholar 

  61. Ning T, Zhou Y, Xu H, Guo S, Wang K, Yu DG (2021) Orodispersible membranes from a modified coaxial electrospinning for fast dissolution of diclofenac sodium. Membranes 11(11):802. https://doi.org/10.3390/membranes11110802

    Article  CAS  Google Scholar 

  62. Liu H, Jiang W, Yang Z, Chen X, Yu DG, Shao J (2022) Hybrid films prepared from a combination of electrospinning and casting for offering a dual-phase drug release. Polymers 14(11). https://doi.org/10.3390/polym14112132

  63. Sun YQ, Huo JX, Zhong S, Zhu JX, Li YG, Li XJ (2021) Chemical structure and anti-inflammatory activity of a branched polysaccharide isolated from Phellinus baumii. Carbohyd Polym 268:118214. https://doi.org/10.1016/j.carbpol.2021.118214

    Article  CAS  Google Scholar 

  64. Yang K, Zhang S, Ying YM, Li YG, Cai M, Guan RF, Hu JR, Sun PL (2020) Cultivated fruit body of Phellinus baumii: a potentially sustainable antidiabetic resource. ACS Omega 5(15):8596–8604. https://doi.org/10.1021/acsomega.9b04478

    Article  CAS  Google Scholar 

  65. Choi EH, Park KJ, Kang J, Lee SY (2020) The development of new functional ingredients for menopausal women and cardiovascular health. Food Sci Ind 53(4):374–381

    Google Scholar 

  66. Zhang HN, Chen RB, Zhang JS, Bu QT, Wang WH, Liu YF, Li Q, Guo Y, Zhang L, Yang Y (2019) The integration of metabolome and proteome reveals bioactive polyphenols and hispidin in ARTP mutagenized phellinus baumii. Sci Rep-Uk 9:16172. https://doi.org/10.1038/s41598-019-52711-7

    Article  CAS  Google Scholar 

  67. Zhang HN, Jiang FC, Qu DH, Wang WH, Dong YT, Zhang JS, Wu D, Yang Y (2019) Employment of ARTP to generate Phellinus baumii (agaricomycetes) strain with high flavonoids production and validation by liquid fermentation. Int J Med Mushrooms 21(12):1207–1221. https://doi.org/10.1615/IntJMedMushrooms.2019032976

    Article  Google Scholar 

  68. Min GJ, Bong-Sik Y, Kang HW (2020) Comparison of antioxidant activities and polyphenolic compounds of extracts from artificially cultivated Sanghwang mushroom species, Phellinus linteus and P. baumii. J Mushrooms 18(1): 29–36. https://doi.org/10.14480/JM.2020.18.1.29

  69. Kim JH, Kwon KM, Yang JH, Ki B, Kim DK (2019) Antioxidative-activity of Phellinus baumii Pilat in Caenorhabditis elegans. Korean J Pharmacog 50(4):299–304

    CAS  Google Scholar 

  70. Yoon, KN, Soo LT (2020) Various physiological effects from fruiting body extracts of Phellinus baumii. J Mushrooms 18(3):260–267. https://doi.org/10.14480/JM.2020.18.3.260

  71. Yang K, Zhang S, Geng Y, Tian BM, Cai M, Guan RF, Li YG, Ye BW, Sun PL (2021) Anti-inflammatory properties in vitro and hypoglycaemic effects of phenolics from cultivated fruit body of Phellinus baumii in type 2 diabetic mice. Molecules 26(8):2285. https://doi.org/10.3390/molecules26082285

    Article  CAS  Google Scholar 

  72. Yoo JH, Lee YS, Ku S, Lee HJ (2020) Phellinus baumii enhances the immune response in cyclophosphamide-induced immunosuppressed mice. Nutr Res 75:15–31. https://doi.org/10.1016/j.nutres.2019.12.005

    Article  CAS  Google Scholar 

  73. Yang Y, Zhang L, Chen Q, Lu WL, Li N (2020) Antitumor effects of extract of the oak bracket medicinal mushroom, Phellinus baumii (Agaricomycetes), on human melanoma cells A375 in vitro and in vivo. Int J Med Mushrooms 22(2):197–209. https://doi.org/10.1615/IntJMedMushrooms.2020033687

    Article  Google Scholar 

  74. Gong L, Liu G, Bai J, Liu DL, He YH (2021) Optimization of extraction of Phellinus igniarius and antioxidant and antibacterial activities of lyophilized powder. Food Res Develop 42:143–149

    CAS  Google Scholar 

  75. Su Y, Li L (2020) Structural characterization and antioxidant activity of polysaccharide from four auriculariales. Carbohyd Polym 229:115407. https://doi.org/10.1016/j.carbpol.2019.115407

    Article  CAS  Google Scholar 

  76. Chang C, Zhao JH, Yu WJ, Chen QH, Qin LW, Wu XL, Liu FX, Fan YG (2021) Extraction technology and determination of polysaccharide from Sanghuangporus vaninii. Chem Reagents 43:973–978

    Google Scholar 

  77. Ding Y (2017) Chemical constituents of the medicinal fungus Phellinus igniarius. PhD thesis, Anhui Medical University, Hefei, China

  78. Wang YY, Ma HL, Ding ZC, Yang Y, Wang WH, Zhang HN, Yan JK (2019) Three-phase partitioning for the direct extraction and separation of bioactive exopolysaccharides from the cultured broth of Phellinus baumii. Int J Biol Macromol 123:201–209. https://doi.org/10.1016/j.ijbiomac.2018.11.065

    Article  CAS  Google Scholar 

  79. Wang M, Yu DG, Williams GR, Annie Bligh SW (2022) Co-loading of inorganic nanoparticles and natural oil in the Electrospun Janus nanofibers for a synergetic antibacterial effect. Pharmaceutics 14:1208. https://doi.org/10.3390/pharmaceutics14061208

    Article  CAS  Google Scholar 

  80. Brimo N, Serdaroglu DC, Uysal B (2021) Comparing antibiotic pastes with electrospun nanofibers as modern drug delivery systems for regenerative endodontics. Curr Drug Deliv 18:7. https://doi.org/10.2174/1567201819666211216140947

    Article  Google Scholar 

  81. Liu Y, Lv H, Liu Y, Gao Y, Kim HY, Ouyang Y, Yu DG (2022) Progresses on electrospun metal–organic frameworks nanofibers and their wastewater treatment applications. Mater Today Chem 25:100974. https://doi.org/10.1016/j.mtchem.2022.100974

    Article  CAS  Google Scholar 

  82. Zhan L, Deng J, Ke Q, Li X, Ouyang Y, Huang C, Liu X, Qian Y (2021) Grooved fibers: preparation principles through electrospinning and potential applications. Adv Fiber Mater 4(2):203–213. https://doi.org/10.1007/s42765-021-00116-5

    Article  CAS  Google Scholar 

  83. Madheswaran D, Sivan M, Valtera J, Kostakova EK, Egghe T, Asadian M et al (2022) Composite yarns with antibacterial nanofibrous sheaths produced by collectorless alternating-current electrospinning for suture applications. J Appl Polym Sci 139(13):e51851. https://doi.org/10.1002/app.51851

    Article  CAS  Google Scholar 

  84. Chen W, Wang C, Gao YY, Wu Y, Wu GM, Shi XW, Du YM, Deng HB (2020) Incorporating chitin derived glucosamine sulfate into nanofibers via coaxial electrospinning for cartilage regeneration. Carbohyd Polym 229:115544. https://doi.org/10.1016/j.carbpol.2019.115544

    Article  CAS  Google Scholar 

  85. Ghazalian M, Afshar S, Rostami A, Rashedi S, Bahrami SH (2022) Fabrication and characterization of chitosan-polycaprolactone core-shell nanofibers containing tetracycline hydrochloride. Colloid Surface A 636:128163. https://doi.org/10.1016/j.colsurfa.2021.128163

    Article  CAS  Google Scholar 

  86. Chen J, Zhang G, Zhao Y, Zhou M, Zhong A, Sun J (2022) Promotion of skin regeneration through co axial electrospun fibers loaded with basic fibroblast growth factor. Adv Compos Hybrid Mater 5:1–15. https://doi.org/10.1007/s42114-022-00439-w

    Article  CAS  Google Scholar 

  87. Song X, Jiang Y, Zhang W, Elfawal G, Wang K, Jiang D, Hong H, Wu J, He C, Mo X et al (2022) Transcutaneous tumor vaccination combined with anti-programmed death-1 monoclonal antibody treatment produces a synergistic antitumor effect. Acta Biomater 140:247–260. https://doi.org/10.1016/j.actbio.2021.11.033

    Article  CAS  Google Scholar 

  88. Qi GY, Liu Y, Chen LL, Xie PT, Pan D, Shi ZC et al (2021) Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv Compos Hybrid Mater 4(4):1226–1238. https://doi.org/10.1007/s42114-021-00368-0

    Article  CAS  Google Scholar 

  89. Xie PT, Shi ZC, Feng M, Sun K, Liu Y, Yan KL et al (2022) Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv Compos Hybrid Mater 5(2):679–695. https://doi.org/10.1007/s42114-022-00479-2

    Article  Google Scholar 

  90. Zhang Z, Liu MX, Ibrahim MM, Wu HK, Wu Y, Li Y et al (2022) Flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv Compos Hybrid Mater 5(2):1054–1066. https://doi.org/10.1007/s42114-022-00486-3

    Article  CAS  Google Scholar 

  91. Wu H, Zhong YM, Tang YX, Huang YQ, Liu G, Sun WT et al (2022) Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv Compos Hybrid Mater 5(1):419–430. https://doi.org/10.1007/s42114-021-00378-y

    Article  CAS  Google Scholar 

  92. Xie PT, Liu Y, Feng M, Niu M, Liu CZ, Wu NN et al (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4(1):173–185. https://doi.org/10.1007/s42114-020-00202-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Natural Science Foundation of China (grant No. 81874034), Natural Science Foundation of Shanghai (Nos. 20ZR1439000 and 21ZR1459500), Municipal Commission of Health and Family Planning Foundation of Shanghai (No. 202140413), Medical Health Science and Technology Innovation Plan of Jinan (No.201805038, 201907085, and 202019182), Science and Technology Innovation Project of Medical Staff in Shandong province, Natural Science Foundation of Shandong Province (No.ZR2020QH264), and Key Research and Development Project of Shandong Province (No. 2019GSF108002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Liu, Deng-Guang Yu or Xuhua Lu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Zhang, X., Liu, P. et al. Electrospun healthcare nanofibers from medicinal liquor of Phellinus igniarius. Adv Compos Hybrid Mater 5, 3045–3056 (2022). https://doi.org/10.1007/s42114-022-00551-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00551-x

Keywords

Navigation