Skip to main content

Advertisement

Log in

Integrated approaches for waste to biohydrogen using nanobiomediated towards low carbon bioeconomy

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Current energy demand and environmental pollution issues are growing due to global urbanization and development in many countries, leading to amplified energy/material consumption, serious and irreparable damage to the ecosystem with simultaneous waste formation. The world energy demand is mainly accomplished by finite fossil fuel-based reserves, which have a crucial impact on the ecosystem/environment, and consequently, there is a need for a sustainable and/or low-carbon bioeconomy. Hydrogen (H2) generation from renewable biomass/waste is a promising bioenergy system that can generate low-carbon hydrogen and reduce GHG (greenhouse gas) emissions by 2050. Waste-to-biohydrogen (WtBH) can become a portion of the zero-emissions fuel replacement for natural gas and serve as one of the sustainable cleaner hydrogen sources which are environmentally friendly and economically feasible. In this view, bio-H2 is considered appropriate because of its high potential as a green, clean, and sustainable carbon-neutral energy source in the emerging low-carbon hydrogen bioeconomy. Nanostructured systems based on renewable biomass/waste sources depict a high potential to produce sustainable and low carbon biohydrogen economy because of their excellent physicochemical structures, such as high efficiency, high surface/volume ratio, non/low-toxicity, high chemical/mechanical stability, biodegradability/biocompatibility, availability, sustainability, cost-effectiveness, and unusual electrical/mechanical and magnetic properties. Renewable biomass and waste materials are extensively considered green sources to prepare greener and more sustainable sorts of mono- or bi-metallic nanomaterials using facile approaches. This review summarizes the deployment of thermochemical and biochemical approaches for WtBH using nanobiocatalysts towards a low-carbon bioeconomy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data availability

No data was used for research described in the article.

Abbreviations

AC:

activated carbon

Atm:

atmospheres

BPS:

banana pseudo-stem

Bio-MtH:

biomass to hydrogen

CH4:

methane

CNT:

carbon nanotube

CO:

carbon monoxide

CO2:

carbon dioxide

DFT:

density functional theory

EG:

ethylene glycol

GHG:

greenhouse gas

Gly:

glycerol

GNS:

graphene nanosheet

H2:

hydrogen

HDPE:

high-density polyethylene

HT:

hydrothermal

IEA:

International Energy Agency

IM:

impregnation

LC:

life cycle

LDPE:

low-density polyethylene

MNP:

metal nanoparticle

MSW:

municipal solid waste

MW:

municipal wastewater

MWCNT:

multi-walled carbon nanotube

NP:

nanoparticle

PAD:

photo-assisted deposition

PE:

polyethylene

PET:

polyethylene-terephthalate

PP:

polypropylene

QDs:

quantum dots

ROS:

reactive oxygen species

S/B :

steam to biomass ratio

UV:

ultraviolet

SCW:

supercritical water

Vis:

visible

VLI:

visible light irradiation

WP:

waste plastic

WtH:

waste-to-hydrogen

WtBH:

waste-to-biohydrogen

WWTP:

wastewater treatment plant

References

  1. Azam M, Gohar A, Bekun FV (2022) Estimating the energy consumption function: evidence from across the globe. Environ Sci Pollut R 29:59060–59075

    Article  Google Scholar 

  2. Hassan H, Javidani AM, Mohammadi A, Pahlavanzadeh H, Abedi-Farizhendi S, Mohammadi AH (2021) Effects of graphene oxide nanosheets and Al2O3 nanoparticles on CO2 uptake in semi-clathrate hydrates. Chem Eng Technol 44:48–57

    Article  CAS  Google Scholar 

  3. Wu X, Liu R, Zhao J, Fan Z (2021) Advanced carbon materials with different spatial dimensions for supercapacitors. Nano Mater Sci 3:241–267

    Article  CAS  Google Scholar 

  4. Rogelj J, EaIM-DV, et al. editors (2019) Global Warming of 1.5 C. IPCC Special Report 2018. Intergovernmental Panel on Climate Change 93-174 (IPCC, WMO, 2018)

  5. BP SRowEBP, (2019); IEA, World Energy Outlook 2019 (IA, 201); A. Kahan, “EIA projects nearly 50% increase in world energy usage by 2050, led by growth in Asia” (US Energy Information Administration, 2019), https://www.eia.gov/todayinenergy/detail.php?id=41433

  6. Helm D (2012) The carbon crunch: how we’re getting climate change wrong—and how to fix it. Yale University Press, The Carbon Crunch

    Book  Google Scholar 

  7. Yadav VG, Yadav GD, Patankar SC (2020) The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-à-vis sustainability and the environment. Clean Technol Environ Policy 22:1757–1774

    Article  Google Scholar 

  8. Cherni JA, Kentish J (2007) Renewable energy policy and electricity market reforms in China. Energy Policy 35:3616–3629

    Article  Google Scholar 

  9. Zhang YHP (2013) Next generation biorefineries will solve the food, biofuels, and environmental trilemma in the energy-food-water nexus. Energy Sci Eng 1:27–41

    Article  CAS  Google Scholar 

  10. Nasrollahzadeh M, Sajjadi M (2021) An introduction to green chemistry. Biopolymer-based metal nanoparticle chemistry for sustainable applications: Volume 1: Classification. Properties and Synthesis 1

  11. Acomb JC, Wu C, Williams PT (2015) Effect of growth temperature and feedstock: catalyst ratio on the production of carbon nanotubes and hydrogen from the pyrolysis of waste plastics. J Anal Appl Pyrol 113:231–238

    Article  CAS  Google Scholar 

  12. Beurskens LW, Hekkenberg M (2011) Renewable energy projections as published in the national renewable energy action plans of the European member states. Executive summary. Member States, European Environment Agency, Copenhagen, Denmark

  13. Kalt G, Kranzl L, Matzenberger J (2012) Bioenergy in the context of the EU 2020-and 2050-policy targets: technology priorities, opportunities and barriers, Energy Challenge and Environmental Sustainability, Venice, Italy. Int Assoc Energ Econ

  14. Schulze ED, Körner C, Law BE, Haberl H, Luyssaert S (2012) Large‐scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral, Wiley Online Library. Gcb Bioenerg 611-616

  15. Cherubini F, Guest G, Strømman AH (2013) Bioenergy from forestry and changes in atmospheric CO2: reconciling single stand and landscape level approaches. J Environ Manage 129:292–301

    Article  CAS  Google Scholar 

  16. Kalt G, Baumann M, Lauk C, Kastner T, Kranzl L, Schipfer F, Lexer M, Rammer W, Schaumberger A, Schriefl E (2016) Transformation scenarios towards a low-carbon bioeconomy in Austria. Energy Strategy Rev 13:125–133

    Article  Google Scholar 

  17. Zhang Z, Chen K, Zhao Q, Huang M, Ouyang X (2021) Electrocatalytic and photocatalytic performance of noble metal doped monolayer MoS2 in the hydrogen evolution reaction: a first principles study. Nano Mater Sci 3:89–94

    Article  CAS  Google Scholar 

  18. Romanos J, Barakat F, Abou Dargham S (2018) Nanoporous graphene monolith for hydrogen storage. Mater Today-Proc 5:17478–17483

    Article  CAS  Google Scholar 

  19. Song T, Wang JW, Su L, Xu HY, Bai XY, Zhou LN, Tu WX (2021) Promotion effect of rhenium on MoS2/ReS2@CdS nanostructures for photocatalytic hydrogen production. Mol Catal 516:111939

    Article  CAS  Google Scholar 

  20. Xu ZN, Wang YH, Zhuang JY, Li YW, Jia LS (2022) High temperature hydrothermal etching of g-C3N4 for synthesis of N doped carbon quantum dots-supported CdS photocatalyst to enhance visible light driven hydrogen generation. Mol Catal 517:111900

    Article  CAS  Google Scholar 

  21. Rosen MA, Koohi-Fayegh S (2016) The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems. Energy Ecol Environ 1:10–29

    Article  Google Scholar 

  22. Romanos J, Beckner M, Prosniewski M, Rash T, Lee M, Robertson JD, Firlej L, Kuchta B, Pfeifer P (2019) Boron-neutron capture on activated carbon for hydrogen storage. Sci Rep-Uk 9:2971

    Article  Google Scholar 

  23. Gabrielli P, Poluzzi A, Kramer GJ, Spiers C, Mazzotti M, Gazzani M (2020) Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage. Renew Sustain Energy Rev 121

  24. Sutter D, Van der Spek M, Mazzotti M (2019) 110th Anniversary: evaluation of CO2-based and CO2-free synthetic fuel systems using a net-zero-CO2-emission framework. Ind Eng Chem Res 58:19958–19972

    Article  CAS  Google Scholar 

  25. Mohazzab BF, Jaleh B, Nasrollahzadeh M, Khazalpour S, Sajjadi M, Varma RS (2020) Upgraded valorization of biowaste: laser-assisted synthesis of Pd/calcium lignosulfonate nanocomposite for hydrogen storage and environmental remediation. ACS Omega 5:5888–5899

    Article  CAS  Google Scholar 

  26. Davis SJ, Lewis NS, Shaner M, Aggarwal S, Arent D, Azevedo IL, Benson SM, Bradley T, Brouwer J, Chiang Y-M (2018) Net-zero emissions energy systems. Science 360:9793

    Article  Google Scholar 

  27. Fan Z, Friedmann SJ (2021) Low-carbon production of iron and steel: technology options, economic assessment, and policy. Joule 5:829–862

    Article  CAS  Google Scholar 

  28. Becattini V, Gabrielli P, Mazzotti M (2021) Role of carbon capture, storage, and utilization to enable a net-zero-CO2-emissions aviation sector. Ind Eng Chem Res 60:6848–6862

    Article  CAS  Google Scholar 

  29. Gabrielli P, Gazzani M, Mazzotti M (2020) The role of carbon capture and utilization, carbon capture and storage, and biomass to enable a net-zero-CO2 emissions chemical industry. Ind Eng Chem Res 59:7033–7045

    Article  CAS  Google Scholar 

  30. Hu G, Xu S, Liu S (2005) Development of researches on catalysts for hydrogen production by catalytic gasification of biomass. Chem Ind Forest Prod 25:161–164

    Google Scholar 

  31. Full J, Trauner M, Miehe R, Sauer A (2021) Carbon-negative hydrogen production (HyBECCS) from organic waste materials in Germany: how to estimate bioenergy and greenhouse gas mitigation potential. Energies 14:7741

    Article  CAS  Google Scholar 

  32. Ml Besson, Gallezot P, Pinel C (2014) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114:1827–1870

    Article  Google Scholar 

  33. Aziz M, Darmawan A, Juangsa FB (2021) Hydrogen production from biomasses and wastes: a technological review. Int J Hydrogen Energy 46:33756–33781

    Article  CAS  Google Scholar 

  34. Dincer I (2012) Green methods for hydrogen production. Int J Hydrog Energy 37:1954–1971

    Article  CAS  Google Scholar 

  35. Fasolini A, Cucciniello R, Paone E, Mauriello F, Tabanelli T (2019) A short overview on the hydrogen production via aqueous phase reforming (APR) of cellulose, C6–C5 sugars and polyols. Catalysts 9:917

    Article  CAS  Google Scholar 

  36. Weide T, Hernandez Regalado RE, Brügging E, Wichern M, Wetter C (2020) Biohydrogen production via dark fermentation with pig manure and glucose using pH-dependent feeding. Chem Eng Technol 43:1578–1587

    Article  CAS  Google Scholar 

  37. Lin C-Y, Nguyen TM-L, Chu C-Y, Leu H-J, Lay C-H (2018) Fermentative biohydrogen production and its byproducts: a mini review of current technology developments. Renew Sust Energ Rev 82:4215–4220

    Article  CAS  Google Scholar 

  38. Soares JF, Confortin TC, Todero I, Mayer FD, Mazutti MA (2020) Dark fermentative biohydrogen production from lignocellulosic biomass: technological challenges and future prospects. Renew Sust Energ Rev 117

  39. Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sust Energ Rev 67:597–611

    Article  CAS  Google Scholar 

  40. Yiin CL, Quitain AT, Yusup S, Uemura Y, Sasaki M, Kida T (2018) Sustainable green pretreatment approach to biomass-to-energy conversion using natural hydro-low-transition-temperature mixtures. Bioresour Technol 261:361–369

    Article  CAS  Google Scholar 

  41. Terrell E, Theegala CS (2019) Thermodynamic simulation of syngas production through combined biomass gasification and methane reformation. Sustain Energy Fuels 3:1562–1572

    Article  CAS  Google Scholar 

  42. Mun T-Y, Kim J-S (2013) Air gasification of dried sewage sludge in a two-stage gasifier. Part 2: calcined dolomite as a bed material and effect of moisture content of dried sewage sludge for the hydrogen production and tar removal. Int J Hydrogen Energy 38:5235–5242

    Article  CAS  Google Scholar 

  43. Fu Q, Wang D, Li X, Yang Q, Xu Q, Ni B-J, Wang Q, Liu X (2021) Towards hydrogen production from waste activated sludge: principles, challenges and perspectives. Renew Sust Energ Rev 135

  44. Baeyens J, Zhang H, Nie J, Appels L, Dewil R, Ansart R, Deng Y (2020) Reviewing the potential of bio-hydrogen production by fermentation. Renew Sust Energ Rev 131

  45. Rambabu K, Bharath G, Thanigaivelan A, Das DB, Show PL, Banat F (2021) Augmented biohydrogen production from rice mill wastewater through nano-metal oxides assisted dark fermentation. Bioresour Technol 319

  46. Hameed RMA, Abutaleb A, Zouli N, Yousef A (2022) Facile synthesis of electrospun transition metallic nanofibrous mats with outstanding activity for ethylene glycol electro-oxidation in alkaline solution. Mol Catal 522:112186

    Article  CAS  Google Scholar 

  47. Massaro A, Pecoraro A, Hernandez S, Talarico G, Munoz-Garcia AB, Pavone M (2022) Oxygen evolution reaction at the Mo/W-doped bismuth vanadate surface: assessing the dopant role by DFT calculations. Mol Catal 517:112036

    Article  CAS  Google Scholar 

  48. Meenu PC, Datta SP, Singh SA, Dinda S, Chakraborty C, Roy S (2021) A compendium on metal organic framework materials and their derivatives as electrocatalyst for methanol oxidation reaction. Mol Catal 510:111710

    Article  CAS  Google Scholar 

  49. Arun A, Malrautu P, Laha A, Ramakrishna S (2021) Gelatin nanofibers in drug delivery systems and tissue engineering. Eng Sci 16:71–81

    CAS  Google Scholar 

  50. Xu J, Zhu P, El Azab IH, Bin XuB, Guo Z, Elnaggar AY, Mersal GAM, Liu X, Zhi Y, Lin Z, Algadi H, Shan S (2022) An efficient bifunctional Ni-Nb2O5 nanocatalysts for the hydrodeoxygenation of anisole. Chin J Chem Eng 49:187–197

    Article  Google Scholar 

  51. Nan J, Guo S, Alhashmialameer D, He Q, Meng Y, Ge R, El-Bahy SM, Naik N, Murugadoss V, Huang M, Xu BB, Shao Q, Guo Z (2022) Hydrothermal microwave synthesis of Co3O4/In2O3 nanostructures for photoelectrocatalytic reduction of Cr(VI). ACS Appl Nano Mater 5:8755–8766

    Article  CAS  Google Scholar 

  52. Zhao Z, Zhao R, Bai P, Du W, Guan R, Tie D, Naik N, Huang M, Guo Z (2022) AZ91 alloy nanocomposites reinforced with Mg-coated graphene: phases distribution, interfacial microstructure, and property analysis. J Alloys Compounds 902

  53. Shi C, Yuan W, Qu K, Shi J, Eqi M, Tan X, Huang Z, Gándara FG, Pan D, Naik N, Zhang Y, Guo Z (2021) Gold/titania nanorod assembled urchin-like photocatalysts with an enhanced hydrogen generation by photocatalytic biomass reforming. Eng Sci 16:374–386

    CAS  Google Scholar 

  54. Manjushree SG, Adarakatti PS, Udayakumar V, Almalki ASA (2022) Hexagonal cerium oxide decorated on beta-Ni(OH)(2) nanosheets stabilized by reduced graphene oxide for effective sensing of H2O2. Carbon Lett 32:591–604

    Article  Google Scholar 

  55. Karimi-Maleh H, Khataee A, Karimi F, Baghayeri M, Fu L, Rouhi J, Karaman C, Karaman O, Boukherroub R (2022) A green and sensitive guanine-based DNA biosensor for idarubicin anticancer monitoring in biological samples: a simple and fast strategy for control of health quality in chemotherapy procedure confirmed by docking investigation. Chemosphere 291:132928

    Article  CAS  Google Scholar 

  56. Deka MJ, Chowdhury D, Nath BK (2022) Recent development of modified fluorescent carbon quantum dots-based fluorescence sensors for food quality assessment. Carbon Lett 32:1131–1149

    Article  Google Scholar 

  57. Ghalkhani M, Zare N, Karimi F, Karaman C, Alizadeh M, Vasseghian Y (2022) Recent advances in Ponceau dyes monitoring as food colorant substances by electrochemical sensors and developed procedures for their removal from real samples. Food Chem Toxicol 161:112830

    Article  CAS  Google Scholar 

  58. Kandathil V, Veetil AK, Patra A, Moolakkil A, Kempasiddaiah M, Somappa SB, Rout CS, Patil SA (2021) A green and sustainable cellulosic-carbon-shielded Pd-MNP hybrid material for catalysis and energy storage applications. J Nanostructure Chem 11:395–407

    Article  CAS  Google Scholar 

  59. Karimi-Maleh H, Karaman C, Karaman O, Karimi F, Vasseghian Y, Fu L, Baghayeri M, Rouhi J, Kumar PS, Show PL, Rajendran S, Sanati AL, Mirabi A (2022) Nanochemistry approach for the fabrication of Fe and N co-decorated biomass-derived activated carbon frameworks: a promising oxygen reduction reaction electrocatalyst in neutral media. J Nanostructure Chem 12:429–439

    Article  CAS  Google Scholar 

  60. Hosseinzadeh K, Moghaddam MAE, Asadi A, Mogharrebi AR, Jafari B, Hasani MR, Ganji DD (2021) Effect of two different fins (longitudinal-tree like) and hybrid nano-particles (MoS2 - TiO2) on solidification process in triplex latent heat thermal energy storage system. Alex Eng J 60:1967–1979

    Article  Google Scholar 

  61. Romanos J, Abou Dargham S, Prosniewski M, Roukos R, Barakat F, Pfeifer P (2018) Structure-function relations for gravimetric and volumetric methane storage capacities in activated carbon. Acs Omega 3:15119–15124

    Article  CAS  Google Scholar 

  62. Vryzas Z, Nalbandian L, Zaspalis VT, Kelessidis VC (2019) How different nanoparticles affect the rheological properties of aqueous Wyoming sodium bentonite suspensions. J Petrol Sci Eng 173:941–954

    Article  CAS  Google Scholar 

  63. Yu HS, Li P, Zhang LW, Zhu YX, Al-Zahrani FA, Ahmed K (2020) Application of optical fiber nanotechnology in power communication transmission. Alex Eng J 59:5019–5030

    Article  Google Scholar 

  64. Wang S, Arnaud L, Essaidi S, Blaize S, Kostcheev S, Bruyant A, Hmima A, Hadjar Y, Macias D, Adam PM, Foli EAD, Nicolas R, Vincent R (2022) Plasmonic origami: tuning optical properties by periodic folding of a gold nano film. J Opt Soc Am B 39:1400–1409

    Article  CAS  Google Scholar 

  65. Zhang L, Song TT, Shi LX, Wen N, Wu ZJ, Sun CY, Jiang DW, Guo ZH (2021) Recent progress for silver nanowires conducting film for flexible electronics. J Nanostructure Chem 11:323–341

    Article  CAS  Google Scholar 

  66. Wang WY, Zhou CR, Song WN, Wei LG, Wu P (2022) Preparation of ethanediamine-doped carbon quantum dots and their applications in white LEDs and fluorescent TLC plate. Carbon Lett 32:581–589

    Article  CAS  Google Scholar 

  67. Fathy RM, Mahfouz AY (2021) Eco-friendly graphene oxide-based magnesium oxide nanocomposite synthesis using fungal fermented by-products and gamma rays for outstanding antimicrobial, antioxidant, and anticancer activities. J Nanostructure Chem 11:301–321

    Article  CAS  Google Scholar 

  68. Musa SF, Yeat TS, Kamal LZM, Tabana YM, Ahmed MA, El Ouweini A, Lim V, Keong LC, Sandai D (2018) Pleurotus sajor-caju can be used to synthesize silver nanoparticles with antifungal activity against Candida albicans. J Sci Food Agr 98:1197–1207

    Article  CAS  Google Scholar 

  69. Bechnak L, Khalil C, El Kurdi R, Khnayzer RS, Patra D (2020) Curcumin encapsulated colloidal amphiphilic block co-polymeric nanocapsules: colloidal nanocapsules enhance photodynamic and anticancer activities of curcumin. Photoch Photobio Sci 19:1088–1098

    Article  CAS  Google Scholar 

  70. Xian LL, Chia L, Georgess D, Luo L, Shuai S, Ewald AJ, Resar LMS (2019) Genetic engineering of primary mouse intestinal organoids using magnetic nanoparticle transduction viral vectors for frozen sectioning. Jove-J Vis Exp e57040

  71. Vishnu D, Dhandapani B, Ramakrishnan SR, Pandian PK, Raguraman T (2021) Fabrication of surface-engineered superparamagnetic nanocomposites (Co/Fe/Mn) with biochar from groundnut waste residues for the elimination of copper and lead metal ions. J Nanostructure Chem 11:215–228

    Article  CAS  Google Scholar 

  72. Lekshmi GS, Tamilselvi R, Prasad K, Bazaka O, Levchenko I, Bazaka K, Mohandas M (2021) Growth of rGO nanostructures via facile wick and oil flame synthesis for environmental remediation. Carbon Lett 31:763–777

    Article  Google Scholar 

  73. Yang F, Deng D, Pan X, Fu Q, Bao X (2015) Understanding nano effects in catalysis. Natl Sci Rev 2:183–201

    Article  CAS  Google Scholar 

  74. Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z (2019) An introduction to nanotechnology. Elsevier, Interface Science and Technology, pp 1–27

    Book  Google Scholar 

  75. Sanusi IA, Suinyuy TN, Lateef A, Kana GEB (2020) Effect of nickel oxide nanoparticles on bioethanol production: process optimization, kinetic and metabolic studies. Proc Biochem 92:386–400

    Article  Google Scholar 

  76. Singh N, Singh S, Mathesh M (2020) Recent trends in nanobiocatalysis for biofuel production. CRC Press, Nanobiotechnology for sustainable bioenergy and biofuel production, pp 150–176

    Google Scholar 

  77. Mumtaz M, Baqar Z, Hussain N, Bilal M, Azam HMH, Iqbal HMN (2022) Application of nanomaterials for enhanced production of biodiesel, biooil, biogas, bioethanol, and biohydrogen via lignocellulosic biomass transformation. Fuel 315:122840

    Article  CAS  Google Scholar 

  78. Resasco DE, Wang B, Sabatini D (2018) Distributed processes for biomass conversion could aid UN sustainable development goals. Nat Catal 1:731–735

    Article  Google Scholar 

  79. Cao L, Iris KM, Xiong X, Tsang DCW, Zhang S, Clark JH, Hu C, Ng YH, Shang J, Ok YS (2020) Biorenewable hydrogen production through biomass gasification: a review and future prospects. Environ Res 186

  80. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  81. Sajjadi M, Ahmadpoor F, Nasrollahzadeh M, Ghafuri H (2021) Lignin-derived (nano)materials for environmental pollution remediation: current challenges and future perspectives. Int J Biol Macromol 178:394–423

    Article  CAS  Google Scholar 

  82. Jiang B, Zhang Y, Guo T, Zhao H, Jin Y (2018) Structural characterization of lignin and lignin-carbohydrate complex (LCC) from ginkgo shells (Ginkgo biloba L.) by comprehensive NMR spectroscopy. Polymers 10:736

  83. Chakar FS, Ragauskas AJ (2004) Review of current and future softwood kraft lignin process chemistry. Ind Crops Prod 20:131–141

    Article  CAS  Google Scholar 

  84. Guan J, Wang Q, Li X, Luo Z, Cen K (2007) Thermodynamic analysis of a biomass anaerobic gasification process for hydrogen production with sufficient CaO. Renew Energ 32:2502–2515

    Article  CAS  Google Scholar 

  85. Han L, Wang Q, Yang Y, Yu C, Fang M, Luo Z (2011) Hydrogen production via CaO sorption enhanced anaerobic gasification of sawdust in a bubbling fluidized bed. Int J Hydrogen Energ 36:4820–4829

    Article  CAS  Google Scholar 

  86. Lu B, Ju Y, Abe T, Kawamoto K (2017) Hydrogen-enriched producer gas production and chemical conversion to usable gas product through biomass gasification using NiO nanoparticles dispersed on SBA-15. J NanoSci Nanotech 17:6190–6197

    Article  CAS  Google Scholar 

  87. Puig-Arnavat M, Bruno JC, Coronas A (2010) Review and analysis of biomass gasification models. Renew Sust Energ Rev 14:2841–2851

    Article  CAS  Google Scholar 

  88. Howaniec N, Smoliński A (2014) Effect of fuel blend composition on the efficiency of hydrogen-rich gas production in co-gasification of coal and biomass. Fuel 128:442–450

    Article  CAS  Google Scholar 

  89. Hantoko D, Yan M, Prabowo B, Susanto H, Li X, Chen C (2019) Aspen Plus modeling approach in solid waste gasification. Curr Develop Biotechnol Bioeng Elsevier 259-281

  90. Gökkaya DS, Sert M, Sağlam M, Yüksel M, Ballice L (2020) Hydrothermal gasification of the isolated hemicellulose and sawdust of the white poplar (Populus alba L). J Supercrit Fluids 162:104846

  91. Jorapur R, Rajvanshi AK (1997) Sugarcane leaf-bagasse gasifiers for industrial heating applications. Biomass Bioenerg 13:141–146

    Article  Google Scholar 

  92. Sandeep K, Dasappa S (2014) Oxy-steam gasification of biomass for hydrogen rich syngas production using downdraft reactor configuration. Int J Energy Res 38:174–188

    Article  CAS  Google Scholar 

  93. Kruse A (2008) Supercritical water gasification. Biofuels. Bioprod Biorefin 2:415–437

    Article  CAS  Google Scholar 

  94. Yu J, Tian FJ, McKenzie LJ, Li CZ (2006) Char-supported nano iron catalyst for water-gas-shift reaction: hydrogen production from coal/biomass gasification. Proc Saf Environ Prot 84:125–130

    Article  CAS  Google Scholar 

  95. Kruse A, Dinjus E (2003) Hydrogen from methane and supercritical water. Angew Chem Int Ed 42:909–911

    Article  CAS  Google Scholar 

  96. Sharma A, Nakagawa H, Miura K (2006) Uniform dispersion of Ni nano particles in a carbon based catalyst for increasing catalytic activity for CH4 and H2 production by hydrothermal gasification. Fuel 85:2396–2401

    Article  CAS  Google Scholar 

  97. Raheem A, Ji G, Memon A, Sivasangar S, Wang W, Zhao M, Taufiq-Yap YH (2018) Catalytic gasification of algal biomass for hydrogen-rich gas production: parametric optimization via central composite design. Energ Convers Manag 158:235–245

    Article  CAS  Google Scholar 

  98. Antal MJ Jr, Allen SG, Schulman D, Xu X, Divilio RJ (2000) Biomass gasification in supercritical water. Ind Eng Chem Res 39:4040–4053

    Article  CAS  Google Scholar 

  99. Xu X, Antal MJ Jr (1998) Gasification of sewage sludge and other biomass for hydrogen production in supercritical water. Environ Prog 17:215–220

    Article  CAS  Google Scholar 

  100. Knez Ž, Markočič E, Hrnčič MK, Ravber M, Škerget M (2015) High pressure water reforming of biomass for energy and chemicals: a short review. J Supercrit Fluids 96:46–52

    Article  CAS  Google Scholar 

  101. Norouzi O, Safari F, Jafarian S, Tavasoli A, Karimi A (2017) Hydrothermal gasification performance of Enteromorpha intestinalis as an algal biomass for hydrogen-rich gas production using Ru promoted Fe–Ni/γ-Al2O3 nanocatalysts. Energ Convers Manag 141:63–71

    Article  CAS  Google Scholar 

  102. Guo LJ, Lu YJ, Zhang XM, Ji CM, Guan Y, Pei AX (2007) Hydrogen production by biomass gasification in supercritical water: a systematic experimental and analytical study. Catal Today 129:275–286

    Article  CAS  Google Scholar 

  103. Lu YJ, Guo LJ, Ji CM, Zhang XM, Hao XH, Yan QH (2006) Hydrogen production by biomass gasification in supercritical water: a parametric study. Int J Hydrog Energ 31:822–831

    Article  CAS  Google Scholar 

  104. Matsumura Y, Minowa T, Potic B, Kersten SRA, Prins W, van Swaaij WPM, van de Beld B, Elliott DC, Neuenschwander GG, Kruse A (2005) Biomass gasification in near-and super-critical water: status and prospects. Biomass Bioenerg 29:269–292

    Article  CAS  Google Scholar 

  105. Matsumura Y, Sasaki M, Okuda K, Takami S, Ohara S, Umetsu M, Adschiri T (2006) Supercritical water treatment of biomass for energy and material recovery. Combust Sci Technol 178:509–536

    Article  CAS  Google Scholar 

  106. Correa CR, Kruse A (2018) Supercritical water gasification of biomass for hydrogen production–Review. J Supercrit Fluids 133:573–590

    Article  Google Scholar 

  107. Azadi P, Khan S, Strobel F, Azadi F, Farnood R (2012) Hydrogen production from cellulose, lignin, bark and model carbohydrates in supercritical water using nickel and ruthenium catalysts. Appl Catal B 117:330–338

    Article  Google Scholar 

  108. Mehrani R, Barati M, Tavasoli A, Karimi A (2015) Hydrogen production via supercritical water gasification of bagasse using Ni–Cu/γ-Al2O3 nano-catalysts. Environ Technol 36:1265–1272

    Article  CAS  Google Scholar 

  109. Jafarian S, Tavasoli A, Karimi A, Norouzi O (2017) Steam reforming of bagasse to hydrogen and synthesis gas using ruthenium promoted NiFe/γAl2O3nano-catalysts. Int J Hydrog Energ 42:5505–5512

    Article  CAS  Google Scholar 

  110. Jafarian S, Tavasoli A, Karimi A (2015) Hydrogen rich gas production via steam gasification of bagasse over bimetallic Ni-Fe/γ-Al 2 O 3 nano-catalysts. Petroleum & Coal 57

  111. Bru K, Blin J, Julbe A, Volle G (2007) Pyrolysis of metal impregnated biomass: an innovative catalytic way to produce gas fuel. J Anal Appl Pyrol 78:291–300

    Article  CAS  Google Scholar 

  112. Khelfa A, Bensakhria A, Weber JV (2013) Investigations into the pyrolytic behaviour of birch wood and its main components: primary degradation mechanisms, additivity and metallic salt effects. J Anal Appl Pyrol 101:111–121

    Article  CAS  Google Scholar 

  113. Collard F-X, Blin J, Bensakhria A, Valette J (2012) Influence of impregnated metal on the pyrolysis conversion of biomass constituents. J Anal Appl Pyrol 95:213–226

    Article  CAS  Google Scholar 

  114. Graham RG, Bergougnou MA, Overend RP (1984) Fast pyrolysis of biomass. J Anal Appl Pyrol 6:95–135

    Article  CAS  Google Scholar 

  115. Mettler MS, Vlachos DG, Dauenhauer PJ (2012) Top ten fundamental challenges of biomass pyrolysis for biofuels. Energ Environ Sci 5:7797–7809

    Article  CAS  Google Scholar 

  116. Lédé J (1997) Chemical engineering aspects of solid (biomass) particle pyrolysis: a review of the possible rate limiting factors. Developments in thermochemical biomass conversion. Bridgwater, A., Boocock, D. G. B., Eds 1:104-116

  117. Richardson Y, Blin J, Volle G, Motuzas J, Julbe A (2010) In situ generation of Ni metal nanoparticles as catalyst for H2-rich syngas production from biomass gasification. Appl Catal A: Gen 382:220–230

    Article  CAS  Google Scholar 

  118. Richardson Y, Motuzas J, Julbe A, Volle G, Blin J (2013) Catalytic investigation of in situ generated Ni metal nanoparticles for tar conversion during biomass pyrolysis. J Phys Chem 117:23812–23831

    CAS  Google Scholar 

  119. Sheikhdavoodi MJ, Almassi M, Ebrahimi-Nik M, Kruse A, Bahrami H (2015) Gasification of sugarcane bagasse in supercritical water; evaluation of alkali catalysts for maximum hydrogen production. J Energ Inst 88:450–458

    Article  CAS  Google Scholar 

  120. Rashidi M, Tavasoli A (2015) Hydrogen rich gas production via supercritical water gasification of sugarcane bagasse using unpromoted and copper promoted Ni/CNT nanocatalysts. J Supercrit Fluids 98:111–118

    Article  CAS  Google Scholar 

  121. Barati M, Babatabar M, Tavasoli A, Dalai AK, Das U (2014) Hydrogen production via supercritical water gasification of bagasse using unpromoted and zinc promoted Ru/γ-Al2O3 nanocatalysts. Fuel Proc Technol 123:140–148

    Article  CAS  Google Scholar 

  122. Tavasoli A, Barati M, Karimi A (2015) Conversion of sugarcane bagasse to gaseous and liquid fuels in near-critical water media using K2O promoted Cu/γ-Al2O3–MgO nanocatalysts. Biomass Bioenerg 80:63–72

    Article  CAS  Google Scholar 

  123. Salimi M, Tavasoli A, Balou S, Hashemi H, Kohansal K (2018) Influence of promoted bimetallic Ni-based catalysts and micro/mesopores carbonaceous supports for biomass hydrothermal conversion to H2-rich gas. Appl Catal B 239:383–397

    Article  CAS  Google Scholar 

  124. Kumar A, Reddy SN (2019) In situ sub-and supercritical water gasification of nano-nickel (Ni2+) impregnated biomass for H2 production. Ind Eng Chem Res 58:4780–4793

    Article  CAS  Google Scholar 

  125. Kumar A, Reddy SN (2022) Hydrothermal treatment of metal impregnated biomass for the generation of H2 and nanometal carbon hybrids. Environ Res 205

  126. Kumar A, Reddy SN (2020) Subcritical and supercritical water in-situ gasification of metal (Ni/Ru/Fe) impregnated banana pseudo-stem for hydrogen rich fuel gas mixture. Int J Hydrog Energy 45:18348–18362

    Article  CAS  Google Scholar 

  127. Ighalo JO, Adeniyi AG (2021) Modelling of thermochemical energy recovery processes for switchgrass (Panicum virgatum). Ind Chem Eng 63:240–251

    CAS  Google Scholar 

  128. Ajala EO, Ighalo JO, Ajala MA, Adeniyi AG, Ayanshola AM (2021) Sugarcane bagasse: a biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresour Bioproc 8:1–25

    Article  Google Scholar 

  129. El Naggar AMA, El Sayed HA, Elsalamony RA, Abd Elrazak A (2015) Biomass to fuel gas conversion through a low pyrolysis temperature induced by gamma radiation: an experimental and simulative study. RSC Adv 5:77897–77905

    Article  Google Scholar 

  130. Ansari MH, Jafarian S, Tavasoli A, Karimi A, Rashidi M (2014) Hydrogen rich gas production via nano-catalytic pyrolysis of bagasse in a dual bed reactor. J Nat Gas Sci Eng 19:279–286

    Article  Google Scholar 

  131. Elliott DC, Sealock LJ Jr, Baker EG (1993) Chemical processing in high-pressure aqueous environments. 2. Development of catalysts for gasification. Ind Eng Chem Res 32:1542–1548

    Article  CAS  Google Scholar 

  132. Minowa T, Zhen F, Ogi T (1998) Cellulose decomposition in hot-compressed water with alkali or nickel catalyst. J Supercrit Fluids 13:253–259

    Article  CAS  Google Scholar 

  133. Li S, Lu Y, Guo L, Zhang X (2011) Hydrogen production by biomass gasification in supercritical water with bimetallic Ni-M/γAl2O3 catalysts (M= Cu, Co and Sn). Int J Hydrog Energ 36:14391–14400

    Article  CAS  Google Scholar 

  134. Huang L, Xie J, Chen R, Chu D, Hsu AT (2010) Nanorod alumina-supported Ni-Zr-Fe/Al2O3 catalysts for hydrogen production in auto-thermal reforming of ethanol. Mater Res Bulletin 45:92–96

    Article  CAS  Google Scholar 

  135. Lu Y, Li S, Guo L (2013) Hydrogen production by supercritical water gasification of glucose with Ni/CeO2/Al2O3: effect of Ce loading. Fuel 103:193–199

    Article  CAS  Google Scholar 

  136. Li J, Yan R, Xiao B, Liang DT, Du L (2008) Development of nano-NiO/Al2O3 catalyst to be used for tar removal in biomass gasification. Environ Sci Technol 42:6224–6229

    Article  CAS  Google Scholar 

  137. Lu Y, Li S, Guo L, Zhang X (2010) Hydrogen production by biomass gasification in supercritical water over Ni/γAl2O3 and Ni/CeO2-γAl2O3 catalysts. Int J Hydrog Energ 35:7161–7168

    Article  CAS  Google Scholar 

  138. Chakinala AG, Brilman DWF, van Swaaij WPM, Kersten SRA (2010) Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. Ind Eng Chem Res 49:1113–1122

    Article  CAS  Google Scholar 

  139. Torres D, Arcelus-Arrillaga P, Millan M, Pinilla JL, Suelves I (2017) Enhanced reduction of few-layer graphene oxide via supercritical water gasification of glycerol. Nanomaterials 7:447

    Article  Google Scholar 

  140. Yan B, Wu J, Xie C, He F, Wei C (2009) Supercritical water gasification with Ni/ZrO2 catalyst for hydrogen production from model wastewater of polyethylene glycol. J Supercrit Fluids 50:155–161

    Article  CAS  Google Scholar 

  141. Taylor AD, DiLeo GJ, Sun K (2009) Hydrogen production and performance of nickel based catalysts synthesized using supercritical fluids for the gasification of biomass. Appl Catal B 93:126–133

    Article  CAS  Google Scholar 

  142. Sato T, Furusawa T, Ishiyama Y, Sugito H, Miura Y, Sato M, Suzuki N, Itoh N (2006) Effect of water density on the gasification of lignin with magnesium oxide supported nickel catalysts in supercritical water. Ind Eng Chem Res 45:615–622

    Article  CAS  Google Scholar 

  143. Osada M, Sato T, Watanabe M, Adschiri T, Arai K (2004) Low-temperature catalytic gasification of lignin and cellulose with a ruthenium catalyst in supercritical water. Energy & Fuels 18:327–333

    Article  CAS  Google Scholar 

  144. Yamaguchi A, Hiyoshi N, Sato O, Bando KK, Osada M, Shirai M (2009) Hydrogen production from woody biomass over supported metal catalysts in supercritical water. Catal Today 146:192–195

    Article  CAS  Google Scholar 

  145. Guo Y, Wang S, Yeh T, Savage PE (2015) Catalytic gasification of indole in supercritical water. Appl Catal B 166:202–210

    Article  Google Scholar 

  146. Chen Y, Yi L, Li S, Yin J, Jin H (2020) Catalytic gasification of sewage sludge in near and supercritical water with different catalysts. Chem Eng J 388

  147. Maxim F, Poenaru I, Toma EE, Stoian GS, Teodorescu F, Hornoiu C, Tanasescu S (2021) Functional materials for waste-to-energy processes in supercritical water. Energies 14:7399

    Article  CAS  Google Scholar 

  148. Nanda S, Reddy SN, Dalai AK, Kozinski JA (2016) Subcritical and supercritical water gasification of lignocellulosic biomass impregnated with nickel nanocatalyst for hydrogen production. Int J Hydrog Energy 41:4907–4921

    Article  CAS  Google Scholar 

  149. Soomro A, Chen S, Ma S, Xiang W (2018) Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process. Energ Environ 29:839–867

    Article  CAS  Google Scholar 

  150. Hao X, Guo L, Zhang X, Guan Y (2005) Hydrogen production from catalytic gasification of cellulose in supercritical water. Chem Eng J 110:57–65

    Article  CAS  Google Scholar 

  151. Rei M-H, Lin F-S, Su T-B (1986) Catalytic gasification of rice hull. (II) the steam reforming reaction. Appl Catal 26:27–37

    Article  CAS  Google Scholar 

  152. Hauserman WB (1994) High-yield hydrogen production by catalytic gasification of coal or biomass. Int J Hydrogen Energ 19:413–419

    Article  CAS  Google Scholar 

  153. Iriondo A, Güemez MB, Barrio VL, Cambra JF, Arias PL, Sánchez-Sánchez MC, Navarro RM, Fierro JLG (2010) Glycerol conversion into H2 by steam reforming over Ni and PtNi catalysts supported on MgO modified γ-Al2O3. Stud Surf Sci Catal Elsevier 449-452

  154. Bernardo P, Jansen JC (2015) Polymeric membranes for the purification of hydrogen. Elsevier, Compendium of hydrogen energy, pp 419–443

    Google Scholar 

  155. Maciel AV, Job AE, da Nova Mussel W, De Brito W, VnMD Pasa (2011) Bio-hydrogen production based on catalytic reforming of volatiles generated by cellulose pyrolysis: an integrated process for ZnO reduction and zinc nanostructures fabrication. Biomass Bioenerg 35:1121–1129

    Article  CAS  Google Scholar 

  156. Ryczkowski R, Ruppert AM, Przybysz P, Chałupka K, Grams J (2017) Hydrogen production from biomass woodchips using Ni/CaO–ZrO2 catalysts. React Kinet Mech Catal 121:97–107

    Article  CAS  Google Scholar 

  157. Lu Y, Jin H, Zhang R (2019) Evaluation of stability and catalytic activity of Ni catalysts for hydrogen production by biomass gasification in supercritical water. Carbon Resour Convers 2:95–101

    Article  CAS  Google Scholar 

  158. Jin H, Lu Y, Guo L, Zhang X, Pei A (2014) Hydrogen production by supercritical water gasification of biomass with homogeneous and heterogeneous catalyst. Adv Condens Matter Phys 2014:Article ID 160565

  159. Li J, Xiao B, Yan R, Liu J (2009) Development of a nano-Ni-La-Fe/Al2O3 catalyst to be used for syn-gas production and tar removal after biomass gasification. BioResources 4:1520–1535

    CAS  Google Scholar 

  160. Liu Y, Yu H, Liu J, Chen D (2019) Catalytic characteristics of innovative Ni/slag catalysts for syngas production and tar removal from biomass pyrolysis. Int J Hydrogen Energ 44:11848–11860

    Article  CAS  Google Scholar 

  161. Prabhahar RSS, Nagaraj P, Jeyasubramanian K (2020) Promotion of bio oil, H2 gas from the pyrolysis of rice husk assisted with nano silver catalyst and utilization of bio oil blend in CI engine. Int J Hydrog Energ 45:16355–16371

    Article  Google Scholar 

  162. Shanmuganandam K, Thanikaikarasan S, Ramanan MV, Anichai J, Sebastian PJ (2020) Enhancement of hydrogen energy from Casuarina equisetifolia using NiO-Pr2O3/TiO2 and NiO/TiO2 nano composites. Int J Hydrog Energ 45:4152–4160

    Article  CAS  Google Scholar 

  163. Li J, Liu J, Liao S, Yan R (2010) Hydrogen-rich gas production by air-steam gasification of rice husk using supported nano-NiO/γ-Al2O3 catalyst. Int J Hydrogen Energ 35:7399–7404

    Article  CAS  Google Scholar 

  164. Feng Y, Xiao B, Goerner K, Naidu R (2015) The influence of catalyst and temperature on pine sawdust gasification performance by an externally heated gasifier. Energy Sources A: Recovery Util. Environ Eff 37:1033–1038

    CAS  Google Scholar 

  165. Li J, Xiao B, Yan R, Xu X (2009) Development of a supported tri-metallic catalyst and evaluation of the catalytic activity in biomass steam gasification. Bioresour Technol 100:5295–5300

    Article  CAS  Google Scholar 

  166. Lv P, Chang J, Wang T, Fu Y, Chen Y, Zhu J (2004) Hydrogen-rich gas production from biomass catalytic gasification. Energ Fuels 18:228–233

    Article  Google Scholar 

  167. Wu C, Williams PT (2009) Ni/CeO2/ZSM-5 catalysts for the production of hydrogen from the pyrolysis–gasification of polypropylene. Int J Hydrog Energ 34:6242–6252

    Article  CAS  Google Scholar 

  168. Xu T, Xu J, Wu Y (2022) Hydrogen-rich gas production from two-stage catalytic pyrolysis of pine sawdust with calcined dolomite. Catalysts 12:131

  169. Sutton D, Kelleher B, Ross JRH (2001) Review of literature on catalysts for biomass gasification. Fuel Proc Technol 73:155–173

    Article  CAS  Google Scholar 

  170. Xu T, Zheng X, Xu J, Wu Y (2022) Hydrogen-rich gas production from two-stage catalytic pyrolysis of pine sawdust with nano-NiO/Al2O3 catalyst. Catalysts 12:256

    Article  CAS  Google Scholar 

  171. Chen F, Wu C, Dong L, Vassallo A, Williams PT, Huang J (2016) Characteristics and catalytic properties of Ni/CaAlOx catalyst for hydrogen-enriched syngas production from pyrolysis-steam reforming of biomass sawdust. Appl Catal B 183:168–175

    Article  CAS  Google Scholar 

  172. Dong L, Wu C, Ling H, Shi J, Williams PT, Huang J (2017) Promoting hydrogen production and minimizing catalyst deactivation from the pyrolysis-catalytic steam reforming of biomass on nanosized NiZnAlOx catalysts. Fuel 188:610–620

    Article  CAS  Google Scholar 

  173. Lee I-G, Ihm S-K (2009) Catalytic gasification of glucose over Ni/activated charcoal in supercritical water. Ind Eng Chem Res 48:1435–1442

    Article  CAS  Google Scholar 

  174. Hossain MZ, Chowdhury MBI, Alsharari Q, Jhawar AK, Charpentier PA (2017) Effect of mesoporosity of bimetallic Ni-Ru-Al2O3 catalysts for hydrogen production during supercritical water gasification of glucose. Fuel Process Technol 159:55–66

    Article  CAS  Google Scholar 

  175. Mohamed RM, Aazam ES (2012) H2 production with low CO selectivity from photocatalytic reforming of glucose on Ni/TiO2-SiO2. Chin J Catal 33:247–253

    Article  CAS  Google Scholar 

  176. Van Nguyen TH, Wu C-H, Lin S-Y, Lin C-Y (2019) CoOx nanoparticles modified CuBi2O4 submicron-sized square columns as a sensitive and selective sensing material for amperometric detection of glucose. J.Taiwan Inst Chem Eng 95:241–251

    Article  CAS  Google Scholar 

  177. Niu M, Hou Y, Wu W, Ren S, Yang R (2018) Successive C1–C2 bond cleavage: the mechanism of vanadium (v)-catalyzed aerobic oxidation of d-glucose to formic acid in aqueous solution. Phys Chem 20:17942–17951

    CAS  Google Scholar 

  178. Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418:964–967

    Article  CAS  Google Scholar 

  179. Lin C-Y, Lin S-Y, Tsai M-C, Wu C-H (2020) Facile room-temperature growth of nanostructured CuBi2O4 for selective electrochemical reforming and photoelectrochemical hydrogen evolution reactions. Sustain Energ Fuels 4:625–632

    Article  CAS  Google Scholar 

  180. Xu X, Matsumura Y, Stenberg J, Antal MJ (1996) Carbon-catalyzed gasification of organic feedstocks in supercritical water. Ind Eng Chem Res 35:2522–2530

    Article  CAS  Google Scholar 

  181. Bühler W, Dinjus E, Ederer HJ, Kruse A, Mas C (2002) Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near-and supercritical water. J Supercrit Fluids 22:37–53

    Article  Google Scholar 

  182. Pairojpiriyakul T, Kiatkittipong W, Assabumrungrat S, Croiset E (2014) Hydrogen production from supercritical water reforming of glycerol in an empty Inconel 625 reactor. Int J Hydrogen Energ 39:159–170

    Article  CAS  Google Scholar 

  183. May A, Salvadó J, Torras C, Montané D (2010) Catalytic gasification of glycerol in supercritical water. Chem Eng J 160:751–759

    Article  CAS  Google Scholar 

  184. Guo S, Guo L, Cao C, Yin J, Lu Y, Zhang X (2012) Hydrogen production from glycerol by supercritical water gasification in a continuous flow tubular reactor. Int J Hydrog Energ 37:5559–5568

    Article  CAS  Google Scholar 

  185. Ortiz FJG, Campanario FJ, Aguilera PG, Ollero P (2015) Hydrogen production from supercritical water reforming of glycerol over Ni/Al2O3-SiO2 catalyst. Energy 84:634–642

    Article  Google Scholar 

  186. Byrd AJ, Pant KK, Gupta RB (2008) Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst. Fuel 87:2956–2960

    Article  CAS  Google Scholar 

  187. Pairojpiriyakul T, Croiset E, Kiatkittipong W, Kiatkittipong K, Arpornwichanop A, Assabumrungrat S (2013) Hydrogen production from catalytic supercritical water reforming of glycerol with cobalt-based catalysts. Int J Hydrog Energ 38:4368–4379

    Article  CAS  Google Scholar 

  188. Ortiz FJG, Campanario FJ, Aguilera PG, Ollero P (2016) Supercritical water reforming of glycerol: performance of Ru and Ni catalysts on Al2O3 support. Energy 96:561–568

    Article  Google Scholar 

  189. Ortiz FJG, Campanario FJ, Ollero P (2016) Turnover rates for the supercritical water reforming of glycerol on supported Ni and Ru catalysts. Fuel 180:417–423

    Article  Google Scholar 

  190. Lu L, Zhao ZL, Ying X, Tian HY, Song ST (2015) Preparation and characterization of Zn2+ doped nano SiC coating. Chem. Eng. Trans. 46:55–60

    Google Scholar 

  191. Azadi P, Afif E, Foroughi H, Dai T, Azadi F, Farnood R (2013) Catalytic reforming of activated sludge model compounds in supercritical water using nickel and ruthenium catalysts. Appl. Catal. B 134:265–273

    Article  Google Scholar 

  192. Dietrich PJ, Lobo-Lapidus RJ, Wu T, Sumer A, Akatay MC, Fingland BR, Guo N, Dumesic JA, Marshall CL, Stach E (2012) Aqueous phase glycerol reforming by PtMo bimetallic nano-particle catalyst: product selectivity and structural characterization. Top. Catal. 55:53–69

    Article  CAS  Google Scholar 

  193. Dietrich PJ, Wu T, Sumer A, Dumesic JA, Jellinek J, Delgass WN, Ribeiro FH, Miller JT (2013) Aqueous phase glycerol reforming with Pt and PtMo bimetallic nanoparticle catalysts: the role of the Mo promoter. Top. Catal. 56:1814–1828

    Article  CAS  Google Scholar 

  194. Liu B, Zhou M, Chan MKY, Greeley JP (2015) Understanding polyol decomposition on bimetallic Pt-Mo catalysts-A DFT study of glycerol. ACS Catal. 5:4942–4950

    Article  CAS  Google Scholar 

  195. Dietrich PJ, Sollberger FG, Akatay MC, Stach EA, Delgass WN, Miller JT, Ribeiro FH (2014) Structural and catalytic differences in the effect of Co and Mo as promoters for Pt-based aqueous phase reforming catalysts. Appl. Catal. B 156:236–248

    Article  Google Scholar 

  196. Dietrich PJ, Akatay MC, Sollberger FG, Stach EA, Miller JT, Delgass WN, Ribeiro FH (2014) Effect of co loading on the activity and selectivity of ptCo aqueous phase reforming catalysts. ACS Catal. 4:480–491

    Article  CAS  Google Scholar 

  197. Bastan F, Kazemeini M (2020) Renewable hydrogen production by aqueous-phase reforming of glycerol using Ni/Al2O3-MgO nano-catalyst: effect of the Ni loading. Biomass Convers Biorefin 1-10

  198. Bastan F, Kazemeini M, Larimi A, Maleki H (2018) Production of renewable hydrogen through aqueous-phase reforming of glycerol over Ni/Al2O3MgO nano-catalyst. Int. J. Hydrog. Energy 43:614–621

    Article  CAS  Google Scholar 

  199. Bastan F, Kazemeini M, Larimi AS (2017) Aqueous-phase reforming of glycerol for production of alkanes over Ni/CexZr1-xO2 nano-catalyst: effects of the support’s composition. Renew. Energy 108:417–424

    Article  CAS  Google Scholar 

  200. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2005) A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Appl. Catal. B 56:171–186

    Article  CAS  Google Scholar 

  201. Calles JA, Carrero A, Vizcaíno AJ, García-Moreno L (2014) Hydrogen production by glycerol steam reforming over SBA-15-supported nickel catalysts: effect of alkaline earth promoters on activity and stability. Catal. Today 227:198–206

    Article  CAS  Google Scholar 

  202. Xu C, Paone E, Rodríguez-Padrón D, Luque R, Mauriello F (2020) Reductive catalytic routes towards sustainable production of hydrogen, fuels and chemicals from biomass derived polyols. Renew. Sust. Energ. Rev. 127:109852

    Article  CAS  Google Scholar 

  203. Manfro RL, Souza MMVM (2014) Production of renewable hydrogen by glycerol steam reforming using Ni–Cu–Mg–Al mixed oxides obtained from hydrotalcite-like compounds. Catal. lett. 144:867–877

    Article  CAS  Google Scholar 

  204. Dahdah E, Estephane J, Gennequin C, Aboukaïs A, Aouad S, Abi-Aad E (2020) Effect of La promotion on Ni/Mg-Al hydrotalcite derived catalysts for glycerol steam reforming. J. Environ. Chem. Eng. 8:104228

    Article  CAS  Google Scholar 

  205. Morales-Marín A, Ayastuy JL, Iriarte-Velasco U, Gutiérrez-Ortiz MA (2019) Nickel aluminate spinel-derived catalysts for the aqueous phase reforming of glycerol: effect of reduction temperature. Appl. Catal. B 244:931–945

    Article  Google Scholar 

  206. Soares AVH, Atia H, Armbruster U, Passos FB, Martin A (2017) Platinum, palladium and nickel supported on Fe3O4 as catalysts for glycerol aqueous-phase hydrogenolysis and reforming. Appl. Catal. A 548:179–190

    Article  Google Scholar 

  207. Charisiou ND, Polychronopoulou K, Asif A, Goula MA (2018) The potential of glycerol and phenol towards H2 production using steam reforming reaction: a review. Surf. Coat. Technol. 352:92–111

    Article  CAS  Google Scholar 

  208. Charisiou ND, Papageridis KN, Tzounis L, Sebastian V, Hinder SJ, Baker MA, AlKetbi M, Polychronopoulou K, Goula MA (2019) Ni supported on CaO-MgO-Al2O3 as a highly selective and stable catalyst for H2 production via the glycerol steam reforming reaction. Int. J. Hydrog Energy 44:256–273

    Article  CAS  Google Scholar 

  209. Seadira TWP, Sadanandam G, Ntho T, Masuku CM, Scurrell MS (2018) Preparation and characterization of metals supported on nanostructured TiO2 hollow spheres for production of hydrogen via photocatalytic reforming of glycerol. Appl. Catal. B 222:133–145

    Article  CAS  Google Scholar 

  210. Silva CG, Sampaio MJ, Marques RRN, Ferreira LA, Tavares PB, Silva AMT, Faria JL (2015) Photocatalytic production of hydrogen from methanol and saccharides using carbon nanotube-TiO2 catalysts. Appl. Catal. B 178:82–90

    Article  CAS  Google Scholar 

  211. Naffati N, Sampaio MJ, Da Silva ES, Nsib MF, Arfaoui Y, Houas A, Faria JL, Silva CG (2020) Carbon-nanotube/TiO2 materials synthesized by a one-pot oxidation/hydrothermal route for the photocatalytic production of hydrogen from biomass derivatives. Mater. Sci. Semicond. Process 115:105098

    Article  CAS  Google Scholar 

  212. Jiang X, Fu X, Zhang L, Meng S, Chen S (2015) Photocatalytic reforming of glycerol for H2 evolution on Pt/TiO2: fundamental understanding the effect of co-catalyst Pt and the Pt deposition route. J. Mater. Chem. 3:2271–2282

    Article  CAS  Google Scholar 

  213. Rodriguez JA, Liu P, Hrbek J, Evans J, Pérez M (2007) Water gas shift reaction on Cu and Au nanoparticles supported on CeO2(111) and ZnO(000 ̄1): intrinsic activity and importance of support interactions. Angew. Chem. Int. Ed. 46:1329–1332

    Article  CAS  Google Scholar 

  214. Tabakova T, Idakiev V, Andreeva D, Mitov I (2000) Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3-ZnO, Au/Fe2O3-ZrO2 catalysts for the WGS reaction. Appl. Catal. A 202:91–97

    Article  CAS  Google Scholar 

  215. Rodriguez JA, Evans J, Graciani J, Park J-B, Liu P, Hrbek J, Sanz JF (2009) High water-gas shift activity in TiO2(110) supported Cu and Au nanoparticles: role of the oxide and metal particle size. J. Phys. Chem. 113:7364–7370

    CAS  Google Scholar 

  216. Vaidya PD, Lopez-Sanchez JA (2017) Review of hydrogen production by catalytic aqueous-phase reforming. ChemistrySelect 2:6563–6576

    Article  CAS  Google Scholar 

  217. Panagiotopoulou P, Kondarides DI (2004) Effect of morphological characteristics of TiO2-supported noble metal catalysts on their activity for the water–gas shift reaction. J. Catal. 225:327–336

    Article  CAS  Google Scholar 

  218. Panagiotopoulou P, Kondarides DI (2006) Effect of the nature of the support on the catalytic performance of noble metal catalysts for the water–gas shift reaction. Catal. Today 112:49–52

    Article  CAS  Google Scholar 

  219. Shabaker JW, Huber GW, Davda RR, Cortright RD, Dumesic JA (2003) Aqueous-phase reforming of ethylene glycol over supported platinum catalysts. Catal. Lett. 88:1–8

    Article  CAS  Google Scholar 

  220. Huber GW, Shabaker JW, Evans ST, Dumesic JA (2006) Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts. Appl. Catal. B 62:226–235

    Article  CAS  Google Scholar 

  221. Irmak S, Meryemoglu B, Ozsel BK, Hasanoglu A, Erbatur O (2015) Improving activity of Pt supported metal catalysts by changing reduction method of Pt precursor for hydrogen production from biomass. Int. J. Hydrog. Energy 40:14826–14832

    Article  CAS  Google Scholar 

  222. Liu J, Sun B, Hu J, Pei Y, Li H, Qiao M (2010) Aqueous-phase reforming of ethylene glycol to hydrogen on Pd/Fe3O4 catalyst prepared by co-precipitation: metal–support interaction and excellent intrinsic activity. J. Catal. 274:287–295

    Article  CAS  Google Scholar 

  223. King DL, Zhang L, Xia G, Karim AM, Heldebrant DJ, Wang X, Peterson T, Wang Y (2010) Aqueous phase reforming of glycerol for hydrogen production over Pt–Re supported on carbon. Appl. Catal. B 99:206–213

    Article  CAS  Google Scholar 

  224. Jeon S, Roh H-S, Moon DJ, Bae JW (2016) Aqueous phase reforming and hydrodeoxygenation of ethylene glycol on Pt/SiO2-Al2O3: effects of surface acidity on product distribution. RSC Adv. 6:68433–68444

    Article  CAS  Google Scholar 

  225. Kim H-D, Park HJ, Kim T-W, Jeong K-E, Chae H-J, Jeong S-Y, Lee C-H, Kim C-U (2012) Hydrogen production through the aqueous phase reforming of ethylene glycol over supported Pt-based bimetallic catalysts. Int. J. Hydrog. Energy 37:8310–8317

    Article  CAS  Google Scholar 

  226. Larimi A, Khorasheh F (2018) Renewable hydrogen production by ethylene glycol steam reforming over Al2O3 supported Ni-Pt bimetallic nano-catalysts. Renew. Energy 128:188–199

    Article  CAS  Google Scholar 

  227. Erdogan AA, Yilmazoglu MZ (2021) Plasma gasification of the medical waste. Int. J. Hydrogen Energy 46:29108–29125

    Article  CAS  Google Scholar 

  228. Gao W, Farahani MR, Rezaei M, Hosamani SM, Jamil MK, Imran M, Baig AQ (2017) Experimental study of steam-gasification of municipal solid wastes (MSW) using Ni-Cu/γ-Al2O3 nano catalysts. Energy Sources A: Recovery Util. Environ. Eff. 39:693–697

    CAS  Google Scholar 

  229. Irfan M, Li A, Zhang L, Wang M, Chen C, Khushk S (2019) Production of hydrogen enriched syngas from municipal solid waste gasification with waste marble powder as a catalyst. Int. J. Hydrog. Energy 44:8051–8061

    Article  CAS  Google Scholar 

  230. Bala R, Gautam V, Mondal MK (2019) Improved biogas yield from organic fraction of municipal solid waste as preliminary step for fuel cell technology and hydrogen generation. Int. J. Hydrogen Energy 44:164–173

    Article  CAS  Google Scholar 

  231. Lombardi L, Carnevale E, Corti A (2015) A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Manag. 37:26–44

    Article  Google Scholar 

  232. Chen H, Liu Y, Ni B-J, Wang Q, Wang D, Zhang C, Li X, Zeng G (2016) Full-scale evaluation of aerobic/extended-idle regime inducing biological phosphorus removal and its integration with intermittent sand filter to treat domestic sewage discharged from highway rest area. Biochem. Eng. J. 113:114–122

    Article  CAS  Google Scholar 

  233. Zhao J, Yang Q, Li X, Wang D, An H, Xie T, Xu Q, Deng Y, Zeng G (2015) Effect of initial pH on short chain fatty acid production during the anaerobic fermentation of membrane bioreactor sludge enhanced by alkyl polyglcoside. Int. Biodeterior. Biodegradation 104:283–289

    Article  CAS  Google Scholar 

  234. Zhao J, Wang D, Li X, Yang Q, Chen H, Zhong Y, Zeng G (2015) Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge. Water Res. 78:111–120

    Article  CAS  Google Scholar 

  235. Zhao Y, Chen Y (2011) Nano-TiO2 enhanced photofermentative hydrogen produced from the dark fermentation liquid of waste activated sludge. Environ. Sci. Technol. 45:8589–8595

    Article  CAS  Google Scholar 

  236. Wang D, Zhang D, Xu Q, Liu Y, Wang Q, Ni B-J, Yang Q, Li X, Yang F (2019) Calcium peroxide promotes hydrogen production from dark fermentation of waste activated sludge. Chem. Eng. J. 355:22–32

    Article  CAS  Google Scholar 

  237. Yang J, Liu X, Wang D, Xu Q, Yang Q, Zeng G, Li X, Liu Y, Gong J, Ye J (2019) Mechanisms of peroxymonosulfate pretreatment enhancing production of short-chain fatty acids from waste activated sludge. Water Res. 148:239–249

    Article  Google Scholar 

  238. Soltan M, Elsamadony M, Mostafa A, Awad H, Tawfik A (2019) Nutrients balance for hydrogen potential upgrading from fruit and vegetable peels via fermentation process. J. Environ. Manage. 242:384–393

    Article  CAS  Google Scholar 

  239. Elreedy A, Fujii M, Koyama M, Nakasaki K, Tawfik A (2019) Enhanced fermentative hydrogen production from industrial wastewater using mixed culture bacteria incorporated with iron, nickel, and zinc-based nanoparticles. Water Res. 151:349–361

    Article  CAS  Google Scholar 

  240. Boshagh F, Rostami K, Moazami N (2019) Biohydrogen production by immobilized Enterobacter aerogenes on functionalized multi-walled carbon nanotube. Int. J. Hydrogen Energy 44:14395–14405

    Article  CAS  Google Scholar 

  241. Amen TWM, Eljamal O, Khalil AME, Matsunaga N (2017) Biochemical methane potential enhancement of domestic sludge digestion by adding pristine iron nanoparticles and iron nanoparticles coated zeolite compositions. J. Environ. Chem. Eng. 5:5002–5013

    Article  CAS  Google Scholar 

  242. Elreedy A, Ibrahim E, Hassan N, El-Dissouky A, Fujii M, Yoshimura C, Tawfik A (2017) Nickel-graphene nanocomposite as a novel supplement for enhancement of biohydrogen production from industrial wastewater containing mono-ethylene glycol. Energy Convers. Manag. 140:133–144

    Article  CAS  Google Scholar 

  243. Mostafa A, El-Dissouky A, Fawzy A, Farghaly A, Peu P, Dabert P, Le Roux S, Tawfik A (2016) Magnetite/graphene oxide nano-composite for enhancement of hydrogen production from gelatinaceous wastewater. Bioresour. Technol. 216:520–528

    Article  CAS  Google Scholar 

  244. Mostafa A, Tolba A, Alalm MG, Fujii M, Afify H, Elsamadony M (2020) Application of magnetic multi-wall carbon nanotube composite into fermentative treatment process of ultrasonicated waste activated sludge. Bioresour. Technol. 306:123186

    Article  CAS  Google Scholar 

  245. Lee Y-L, Kim H-Y, Kim K-J, Hong G-R, Shim J-O, Ju Y-W, Roh H-S (2022) Nanofiber structured oxygen defective CoFe2O4-x catalyst for the water-gas shift reaction in waste-to-hydrogen processes. Int J Hydrog Energy

  246. Zhang J, Fan C, Zang L (2017) Improvement of hydrogen production from glucose by ferrous iron and biochar. Bioresour Technol 245:98–105

    Article  CAS  Google Scholar 

  247. Nath D, Manhar AK, Gupta K, Saikia D, Das SK, Mandal M (2015) Phytosynthesized iron nanoparticles: effects on fermentative hydrogen production by Enterobacter cloacae DH-89. Bull Mater Sci 38:1533–1538

    Article  CAS  Google Scholar 

  248. Taherdanak M, Zilouei H, Karimi K (2015) Investigating the effects of iron and nickel nanoparticles on dark hydrogen fermentation from starch using central composite design. Int J Hydrogen Energ 40:12956–12963

    Article  CAS  Google Scholar 

  249. Taherdanak M, Zilouei H, Karimi K (2016) The effects of Fe0 and Ni0 nanoparticles versus Fe2+ and Ni2+ ions on dark hydrogen fermentation. Int J Hydrogen Energ 41:167–173

    Article  CAS  Google Scholar 

  250. Zhao M, Liu Z, Xu J, Liu H, Dai X, Gu S, Ruan W (2020) Dosing effect of nano zero valent iron (NZVI) on the dark hydrogen fermentation performance via lake algae and food waste co-digestion. Energ Rep 6:3192–3199

    Article  Google Scholar 

  251. Ryu HW, Kim DH, Jae J, Lam SS, Park ED, Park Y-K (2020) Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons. Bioresour Technol 310

  252. Wang C, Lei H, Qian M, Huo E, Zhao Y, Zhang Q, Mateo W, Lin X, Kong X, Zou R (2020) Application of highly stable biochar catalysts for efficient pyrolysis of plastics: a readily accessible potential solution to a global waste crisis. Sustain Energy Fuels 4:4614–4624

    Article  CAS  Google Scholar 

  253. Lee HW, Park Y-K (2018) Catalytic pyrolysis of polyethylene and polypropylene over desilicated beta and Al-MSU-F. Catalysts 8:501

    Article  Google Scholar 

  254. Wang C, Lei H, Kong X, Zou R, Qian M, Zhao Y, Mateo W (2021) Catalytic upcycling of waste plastics over nanocellulose derived biochar catalyst for the coupling harvest of hydrogen and liquid fuels. Sci Total Environ 779

  255. Wang C, Han H, Wu Y, Astruc D (2022) Nanocatalyzed upcycling of the plastic wastes for a circular economy. Coord Chem Rev 458

  256. Li W, Wei M, Liu Y, Ye Y, Li S, Yuan W, Wang M, Wang D (2019) Catalysts evaluation for production of hydrogen gas and carbon nanotubes from the pyrolysis-catalysis of waste tyres. Int J Hydrog Energ 44:19563–19572

    Article  CAS  Google Scholar 

  257. Yao D, Yang H, Chen H, Williams PT (2018) Co-precipitation, impregnation and so-gel preparation of Ni catalysts for pyrolysis-catalytic steam reforming of waste plastics. Appl Catal B 239:565–577

    Article  CAS  Google Scholar 

  258. Liao M, Chen Y, Cheng Z, Wang C, Luo X, Bu E, Jiang Z, Liang B, Shu R, Song Q (2019) Hydrogen production from partial oxidation of propane: effect of SiC addition on Ni/Al2O3 catalyst. Appl Energ 252

  259. Shen Y, Zhao P, Shao Q, Takahashi F, Yoshikawa K (2015) In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier. Appl Energ 160:808–819

    Article  CAS  Google Scholar 

  260. Wu C, Nahil MA, Miskolczi N, Huang J, Williams PT (2014) Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes. Environ Sci Technol 48:819–826

    Article  CAS  Google Scholar 

  261. Barbarias I, Artetxe M, Lopez G, Arregi A, Bilbao J, Olazar M (2018) Influence of the conditions for reforming HDPE pyrolysis volatiles on the catalyst deactivation by coke. Fuel Process Technol 171:100–109

    Article  CAS  Google Scholar 

  262. De S, Zhang J, Luque R, Yan N (2016) Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energ Environ Sci 9:3314–3347

    Article  CAS  Google Scholar 

  263. Christensen KO, Chen D, Lødeng R, Holmen A (2006) Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming. Appl Catal A: Gen 314:9–22

    Article  CAS  Google Scholar 

  264. Farooq A, Song H, Park Y-K, Rhee GH (2021) Effects of different Al2O3 support on HDPE gasification for enhanced hydrogen generation using Ni-based catalysts. Int J Hydrog Energ 46:18085–18092

    Article  CAS  Google Scholar 

  265. Yang R-X, Chuang K-H, Wey M-Y (2015) Effects of nickel species on Ni/Al2O3 catalysts in carbon nanotube and hydrogen production by waste plastic gasification: bench-and pilot-scale tests. Energ Fuels 29:8178–8187

    Article  CAS  Google Scholar 

  266. Yang R-X, Chuang K-H, Wey M-Y (2016) Carbon nanotube and hydrogen production from waste plastic gasification over Ni/Al–SBA-15 catalysts: effect of aluminum content. RSC Adv 6:40731–40740

    Article  CAS  Google Scholar 

  267. Nahil MA, Wu C, Williams PT (2015) Influence of metal addition to Ni-based catalysts for the co-production of carbon nanotubes and hydrogen from the thermal processing of waste polypropylene. Fuel Proc Technol 130:46–53

    Article  CAS  Google Scholar 

  268. Acomb JC, Wu C, Williams PT (2016) The use of different metal catalysts for the simultaneous production of carbon nanotubes and hydrogen from pyrolysis of plastic feedstocks. Appl Catal B 180:497–510

    Article  CAS  Google Scholar 

  269. Shen Y, Gong W, Zheng B, Gao L (2016) Ni–Al bimetallic catalysts for preparation of multiwalled carbon nanotubes from polypropylene: influence of the ratio of Ni/Al. Appl Catal B 181:769–778

    Article  CAS  Google Scholar 

  270. Serrano DP, Aguado J, Escola JM, Rodriguez JM, San Miguel G (2005) An investigation into the catalytic cracking of LDPE using Py–GC/MS. J. Anal. Appl. Pyrolysis 74:370–378

    Article  CAS  Google Scholar 

  271. Liu W-W, Hu C-W, Yang Y, Tong D-M, Zhu L-F, Zhang R-N, Zhao B-H (2013) Study on the effect of metal types in (Me)-Al-MCM-41 on the mesoporous structure and catalytic behavior during the vapor-catalyzed co-pyrolysis of pubescens and LDPE. Appl Catal B 129:202–213

    Article  CAS  Google Scholar 

  272. Yao D, Wang C-H (2020) Pyrolysis and in-line catalytic decomposition of polypropylene to carbon nanomaterials and hydrogen over Fe-and Ni-based catalysts. Appl Energ 265

  273. Yao D, Wu C, Yang H, Zhang Y, Nahil MA, Chen Y, Williams PT, Chen H (2017) Co-production of hydrogen and carbon nanotubes from catalytic pyrolysis of waste plastics on Ni-Fe bimetallic catalyst. Energ Convers Manag 148:692–700

    Article  CAS  Google Scholar 

  274. Yao D, Zhang Y, Williams PT, Yang H, Chen H (2018) Co-production of hydrogen and carbon nanotubes from real-world waste plastics: influence of catalyst composition and operational parameters. Appl Catal B 221:584–597

    Article  CAS  Google Scholar 

  275. Liu X, Zhang Y, Nahil MA, Williams PT, Wu C (2017) Development of Ni-and Fe-based catalysts with different metal particle sizes for the production of carbon nanotubes and hydrogen from thermo-chemical conversion of waste plastics. J Anal Appl Pyrol 125:32–39

    Article  CAS  Google Scholar 

  276. Yao D, Yang H, Chen H, Williams PT (2018) Investigation of nickel-impregnated zeolite catalysts for hydrogen/syngas production from the catalytic reforming of waste polyethylene. Appl Catal B 227:477–487

    Article  CAS  Google Scholar 

  277. Yao D, Yang H, Hu Q, Chen Y, Chen H, Williams PT (2021) Carbon nanotubes from post-consumer waste plastics: investigations into catalyst metal and support material characteristics. Appl Catal B 280

  278. Yao D, Li H, Dai Y, Wang C-H (2021) Impact of temperature on the activity of Fe-Ni catalysts for pyrolysis and decomposition processing of plastic waste. Chem Eng J 408

  279. Yang Q, Liu G, Liu Y (2018) Perovskite-type oxides as the catalyst precursors for preparing supported metallic nanocatalysts: a review. Ind Eng Chem Res 57:1–17

    Article  CAS  Google Scholar 

  280. Khan WU, Fakeeha AH, Al-Fatesh AS, Ibrahim AA, Abasaeed AE (2016) La2O3 supported bimetallic catalysts for the production of hydrogen and carbon nanomaterials from methane. Int J Hydrogen Energ 41:976–983

    Article  Google Scholar 

  281. Zhang J, Wang H, Dalai AK (2007) Development of stable bimetallic catalysts for carbon dioxide reforming of methane. J Catal 249:300–310

    Article  CAS  Google Scholar 

  282. Jia J, Veksha A, Lim T-T, Lisak G (2022) Temperature-dependent synthesis of multi-walled carbon nanotubes and hydrogen from plastic waste over A-site-deficient perovskite La0. 8Ni1-xCoxO3-δ. Chemosphere 291:132831

  283. Nabgan W, Nabgan B, Abdullah TAT, Ngadi N, Jalil AA, Hassan NS, Izan SM, Luing WS, Abdullah SN, Majeed FSA (2020) Conversion of polyethylene terephthalate plastic waste and phenol steam reforming to hydrogen and valuable liquid fuel: synthesis effect of Ni-Co/ZrO2 nanostructured catalysts. Int J Hydrog Energ 45:6302–6317

    Article  CAS  Google Scholar 

  284. Nabgan W, Nabgan B, Abdullah TAT, Jalil AA, Ul-Hamid A, Ikram M, Nordin AH, Coelho A (2021) Production of hydrogen and valuable fuels from polyethylene terephthalate waste dissolved in phenol reforming and cracking reactions via Ni-Co/CeO2 nano-catalyst. J Anal Appl Pyrol 154

  285. Nabgan W, Nabgan B, Abdullah TAT, Alqaraghuli H, Ngadi N, Jalil AA, Othman BM, Ibrahim AM, Siang TJ (2020) Ni–Pt/Al nano-sized catalyst supported on TNPs for hydrogen and valuable fuel production from the steam reforming of plastic waste dissolved in phenol. Int J Hydrog Energ 45:22817–22832

    Article  CAS  Google Scholar 

  286. Nabgan W, Nabgan B, Abdullah TAT, Ikram M, Jadhav AH, Ali MW, Jalil AA (2021) Hydrogen and value-added liquid fuel generation from pyrolysis-catalytic steam reforming conditions of microplastics waste dissolved in phenol over bifunctional Ni-Pt supported on Ti-Al nanocatalysts. Catal Today

  287. Haggar AM, Awadallah AE, Aboul-Enein AA, Sayed GH (2022) Non-oxidative conversion of real low density polyethylene waste into hydrogen and carbon nanomaterials over MgO supported bimetallic Co-Mo catalysts with different total Co-Mo contents. Chem Eng Sci 247

  288. Guijun MA, Hongjian YAN, Xu Z, Baojun MA, Jiang H, Fuyu WEN, Can LI (2008) Photocatalytic splitting of H2S to produce hydrogen by gas-solid phase reaction. Chin J Catal 29:313–315

    Article  Google Scholar 

  289. Shamim RO, Dincer I, Naterer G (2014) Thermodynamic analysis of solar-based photocatalytic hydrogen sulphide dissociation for hydrogen production. Int J Hydrog Energ 39:15342–15351

    Article  CAS  Google Scholar 

  290. Ma G, Yan H, Shi J, Zong X, Lei Z, Li C (2008) Direct splitting of H2S into H2 and S on CdS-based photocatalyst under visible light irradiation. J Catal 260:134–140

    Article  CAS  Google Scholar 

  291. Kale BB, Baeg J-O, Yoo JS, Lee SM, Lee CW, Moon S-J, Chang H (2005) Synthesis of a novel photocatalyst, ZnBiVO4, for the photodecomposition of H2S. Can J Chem 83:527–532

    Article  CAS  Google Scholar 

  292. Gurunathan K, Baeg J-O, Lee SM, Subramanian E, Moon S-J, Kong K-J (2008) Visible light assisted highly efficient hydrogen production from H2S decomposition by CuGaO2 and CuGa1− xInxO2 delafossite oxides bearing nanostructured co-catalysts. Catal Commun 9:395–402

    Article  CAS  Google Scholar 

  293. Qureshi NM, Shinde MD, Baeg JO, Kale BB (2017) Engendering 0-D to 1-D PbCrO 4 nanostructures and their visible light enabled photocatalytic H2S splitting. New J Chem 41:4000–4005

    Article  CAS  Google Scholar 

  294. Subramanian E, Baeg J-O, Lee SM, Moon S-J, Kong K-j (2008) Dissociation of H2S under visible light irradiation (λ≥ 420 nm) with FeGaO3 photocatalysts for the production of hydrogen. Int J Hydrogen Energ 33:6586–6594

    Article  CAS  Google Scholar 

  295. Gurunathan K, Baeg J-O, Lee SM, Subramanian E, Moon S-J, Kong K-j (2008) Visible light active pristine and Fe3+ doped CuGa2O4 spinel photocatalysts for solar hydrogen production. Int J Hydrogen Energ 33:2646–2652

    Article  CAS  Google Scholar 

  296. Chaudhari NS, Warule SS, Dhanmane SA, Kulkarni MV, Valant M, Kale BB (2013) Nanostructured N-doped TiO2 marigold flowers for an efficient solar hydrogen production from H2S. Nanoscale 5:9383–9390

    Article  CAS  Google Scholar 

  297. Bhirud AP, Sathaye SD, Waichal RP, Ambekar JD, Park C-J, Kale BB (2015) In-situ preparation of N-TiO2/graphene nanocomposite and its enhanced photocatalytic hydrogen production by H2S splitting under solar light. Nanoscale 7:5023–5034

    Article  CAS  Google Scholar 

  298. Kanade KG, Baeg J-O, Kale BB, Lee SM, Moon S-J, Kong K-j (2007) Rose-red color oxynitride Nb2Zr6O17-xNx: a visible light photocatalyst to hydrogen production. Int J Hydrogen Energ 32:4678–4684

    Article  CAS  Google Scholar 

  299. Jang JS, Li W, Oh SH, Lee JS (2006) Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light. Chem. Phys. Lett. 425:278–282

    Article  CAS  Google Scholar 

  300. Jang JS, Kim HG, Borse PH, Lee JS (2007) Simultaneous hydrogen production and decomposition of H2S dissolved in alkaline water over CdS-TiO2 composite photocatalysts under visible light irradiation. Int J Hydrog Energ 32:4786–4791

    Article  CAS  Google Scholar 

  301. Patil SS, Patil DR, Apte SK, Kulkarni MV, Ambekar JD, Park C-J, Gosavi SW, Kolekar SS, Kale BB (2016) Confinement of Ag3PO4 nanoparticles supported by surface plasmon resonance of Ag in glass: efficient nanoscale photocatalyst for solar H2 production from waste H2S. Appl Catal B 190:75–84

    Article  CAS  Google Scholar 

  302. Kale BB, Baeg J-O, Apte SK, Sonawane RS, Naik SD, Patil KR (2007) Confinement of nano CdS in designated glass: a novel functionality of quantum dot-glass nanosystems in solar hydrogen production. J Mater Chem 17:4297–4303

    Article  CAS  Google Scholar 

  303. Kale BB, Baeg JO, Lee SM, Chang H, Moon SJ, Lee CW (2006) CdIn2S4 nanotubes and “Marigold” nanostructures: a visible-light photocatalyst. Adv Funct Mater 16:1349–1354

    Article  CAS  Google Scholar 

  304. Bhirud A, Chaudhari N, Nikam L, Sonawane R, Patil K, Baeg J-O, Kale B (2011) Surfactant tunable hierarchical nanostructures of CdIn2S4 and their photohydrogen production under solar light. Int J Hydrogen Energ 36:11628–11639

    Article  CAS  Google Scholar 

  305. Chaudhari NS, Bhirud AP, Sonawane RS, Nikam LK, Warule SS, Rane VH, Kale BB (2011) Ecofriendly hydrogen production from abundant hydrogen sulfide using solar light-driven hierarchical nanostructured ZnIn2S4 photocatalyst. Green Chem 13:2500–2506

    Article  CAS  Google Scholar 

  306. Kale BB, Baeg J-O, Kong K-j, Moon S-J, Nikam LK, Patil KR (2011) Self assembled CdLa2S4 hexagon flowers, nanoprisms and nanowires: novel photocatalysts for solar hydrogen production. J Mater Chem 21:2624–2631

    Article  CAS  Google Scholar 

  307. Kawade UV, Panmand RP, Sethi YA, Kulkarni MV, Apte SK, Naik SD, Kale BB (2014) Environmentally benign enhanced hydrogen production via lethal H2S under natural sunlight using hierarchical nanostructured bismuth sulfide. RSC Adv 4:49295–49302

    Article  CAS  Google Scholar 

  308. Dan M, Zhang Q, Yu S, Prakash A, Lin Y, Zhou Y (2017) Noble-metal-free MnS/In2S3 composite as highly efficient visible light driven photocatalyst for H2 production from H2S. Appl Catal B 217:530–539

    Article  CAS  Google Scholar 

  309. Preethi V, Kanmani S (2014) Photocatalytic hydrogen production using Fe2O3-based core shell nano particles with ZnS and CdS. Int J Hydrog Energ 39:1613–1622

    Article  CAS  Google Scholar 

  310. Apte SK, Garaje SN, Naik SD, Waichal RP, Baeg J-O, Kale BB (2014) Quantum confinement controlled solar hydrogen production from hydrogen sulfide using a highly stable CdS 0.5 Se 0.5/CdSe quantum dot–glass nanosystem. Nanoscale 6:908–915

    Article  CAS  Google Scholar 

  311. Apte SK, Garaje SN, Valant M, Kale BB (2012) Eco-friendly solar light driven hydrogen production from copious waste H 2 S and organic dye degradation by stable and efficient orthorhombic CdS quantum dots–GeO 2 glass photocatalyst. Green Chem 14:1455–1462

    Article  CAS  Google Scholar 

  312. Shen S, Zhao L, Guo L (2008) Cetyltrimethylammoniumbromide (CTAB)-assisted hydrothermal synthesis of ZnIn2S4 as an efficient visible-light-driven photocatalyst for hydrogen production. Int J Hydrog Energ 33:4501–4510

    Article  CAS  Google Scholar 

  313. Chaudhari NS, Warule SS, Kale BB (2014) Architecture of rose and hollow marigold-like ZnIn 2 S 4 flowers: structural, optical and photocatalytic study. Rsc Adv 4:12182–12187

    Article  CAS  Google Scholar 

Download references

Funding

This study received financial supports from Zhejiang Normal University (Grant No. YS304221928), Natural Science Foundation of Zhejiang Province (Nos. LD21E080001), and Zhejiang Provincial Ten Thousand Talent Program (ZJWR0302055).

Author information

Authors and Affiliations

Authors

Contributions

All authors had equal contributions to the paper. H.K.M and Y.O additionally contribute by conceptualization and reviewing the final manuscript.

Corresponding authors

Correspondence to Hassan Karimi-Maleh or Yasin Orooji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi-Maleh, H., Orooji, Y., Karimi, F. et al. Integrated approaches for waste to biohydrogen using nanobiomediated towards low carbon bioeconomy. Adv Compos Hybrid Mater 6, 29 (2023). https://doi.org/10.1007/s42114-022-00597-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-022-00597-x

Keywords

Navigation