Skip to main content
Log in

MOF-derived Ni-Co bimetal/porous carbon composites as electromagnetic wave absorber

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In this paper, Ni-Co/PC composite is prepared by introducing metal Co element with Ni-MOF/PC as precursor. Then a series of Ni-Co bimetal/PC composites are prepared by polyaniline coating, oxidation reaction, and vulcanization reaction. It is found that vulcanization reaction was the best path for the electromagnetic wave absorption performance of the product. The minimum reflection loss (RLmin) of NiCo2S4/PC composite reaches − 67.81 dB at the sample thickness of 2.6 mm, and the maximum effective absorption bandwidth (EAB) reaches 6.16 GHz when the sample thickness is 2.1 mm. NiCo2S4/PC composite is an ideal electromagnetic wave absorber due to its excellent electrical conductivity, rich surface, and high attenuation capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gao ZG, Zhang LM, Wu HJ et al (2022) Texture regulation of metal-organic frameworks, microwave absorption mechanism-oriented structural optimization and design perspectives[J]. Adv Sci. https://doi.org/10.1002/advs.202204151

  2. Zhang YL, Ruan KP, Shi XT et al (2021) Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances[J]. Carbon 175:271–280

    Article  CAS  Google Scholar 

  3. Song Y, Liu X, Gao Z et al (2022) Core-shell Ag@C spheres derived from Ag-MOFs with tunable ligand exchanging phase inversion for electromagnetic wave absorption[J]. J Colloid Interface Sci 620:263–272

    Article  CAS  Google Scholar 

  4. Lv HL, Yang ZH, Wang PL et al (2018) A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device[J]. Adv Mater 30(15):1706343

    Article  Google Scholar 

  5. Zhao ZH, Zhang LM, Wu HJ (2022) Hydro/organo/ionogels: “controllable” electromagnetic wave absorbers[J]. Adv Mater 34(43)

  6. Cao MS, Yang J, Song WL et al (2012) Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption[J]. ACS Appl Mater Interfaces 4:6949–6956

    Article  CAS  Google Scholar 

  7. Liang HS, Zhang LM, Wu HJ (2022) Exploration of twin-modified grain boundary engineering in metallic copper predominated electromagnetic wave absorber[J]. Small 18(38):2203620

    Article  CAS  Google Scholar 

  8. Huang L, Chen CG, Li ZJ et al (2020) Challenges and future perspectives on microwave absorption based on two-dimensional materials and structures[J]. Nanotechnology 31:162001

    CAS  Google Scholar 

  9. Yang W, Li R, Jiang B et al (2020) Production of hierarchical porous carbon nanosheets from cheap petroleum asphalt toward lightweight and high-performance electromagnetic wave absorbents[J]. Carbon 166:218–226

    Article  CAS  Google Scholar 

  10. Meng F, Zhao R, Zhan Y et al (2011) Preparation and microwave absorption properties of Fe-phthalocya-nine oligomer/Fe3O4 hybrid microspheres[J]. Appl Surf Sci 257(11):5000–5005

    Article  CAS  Google Scholar 

  11. Zhao TB, Jia ZR, Wu G et al (2022) Multiphase molybdenum carbide doped carbon hollow sphere engineering: the superiority of unique double-shell structure in microwave absorption[J]. Small. https://doi.org/10.1002/smll.202206323

  12. Lv HL, Yang ZH, Xu HB et al (2020) An electrical switch-driven flexible electromagnetic absorber[J]. Adv Func Mater 30:1907251

    Article  CAS  Google Scholar 

  13. Xiao JX, Qi XS, Gong X et al (2022) Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance[J]. Nano Res 15:7778–7787

    Article  CAS  Google Scholar 

  14. Lan D, Qin M, Liu JL et al (2020) Novel binary cobalt nickel oxide hollowed-out spheres for electromagnetic absorption applications[J]. Chem Eng J 382:122797

    Article  CAS  Google Scholar 

  15. Li C, Qi XS, Gong X et al (2022) Magnetic-dielectric synergy and interfacial engineering to design yolk-shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption[J]. Nano Res 15:6761–6771

    Article  CAS  Google Scholar 

  16. Tang L, Zhang JL, Tang YS et al (2021) Polymer matrix wave-transparent composites: a review[J]. J Mater Sci Technol 75:225–251

    Article  CAS  Google Scholar 

  17. Xiao JX, Qi XS, Gong X et al (2023) Tunable and improved microwave absorption of flower-like core@shell MFe2O4@MoS2 (M=Mn, Ni and Zn) nanocomposites by defect and interface engineering[J]. J Mater Sci Technol 139:137–146

    Article  Google Scholar 

  18. Jiang Z, Si H, Li Y et al (2022) Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption[J]. Nano Res 15:8546–8554

    Article  CAS  Google Scholar 

  19. Lin X, Cheng S, Wu F et al (2022) Connecting of conjugate microporous polymer nanoparticles by polypyrrole via sulfonic acid doping to form conductive nanocomposites for excellent microwaves absorption[J]. Compos Sci Technol 221:109350

    Article  CAS  Google Scholar 

  20. Qiao J, Zhang X, Liu C et al (2021) Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption[J]. Nano-Micro Letters 13(1):75

    Article  Google Scholar 

  21. Shi Y, Li D, Si H et al (2022) TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum[J]. J Mater Sci Technol 130:249–255

    Article  Google Scholar 

  22. Wu QL, Jin HH, Chen W et al (2018) Graphitized nitrogen-doped porous carbon composites derived from ZIF-8 as efficient microwave absorption materials[J]. Materials Research Express 5(6):065602

    Article  Google Scholar 

  23. Shi J, Zhang Q, Wu L et al (2022) Molecular engineering guided dielectric resonance tuning in derived carbon materials [J]. J Mater Chem C 10:12257–12265

    Article  CAS  Google Scholar 

  24. Wang Y, Gao X, Fu YQ et al (2019) Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding[J]. Compos B Eng 169:221–228

    Article  CAS  Google Scholar 

  25. Ouyang J, He ZL, Zhang Y et al (2019) Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability[J]. ACS Appl Mater Interfaces 11(42):39304–39314

    Article  CAS  Google Scholar 

  26. Wu L, Zhang K, Shi J et al (2022) Metal/nitrogen co-doped hollow carbon nanorods derived from self-assembly organic nanostructure for wide bandwidth electromagnetic wave absorption[J]. Compos B Eng 228:109424

    Article  CAS  Google Scholar 

  27. Meng XG, Qiao J, Yang YF et al (2022) Three-dimensional porous manganese oxide/nickel/carbon microspheres as high-performance electromagnetic wave absorbers with superb photothermal property[J]. J Colloid Interface Sci 629:884–894

    Article  Google Scholar 

  28. Sun M, Xu C, Li J, Xie A et al (2020) Protonic doping brings tuneable dielectric and electromagnetic attenuated properties for polypyrrole nanofibers[J]. Chem Eng J 381:122615

  29. Wen Y, Peng S, Wang Z et al (2017) Facile synthesis of ultrathin NiCo2S4 nanoplates inspired by blooming buds for high-performance supercapacitors[J]. J Mater Chem A 5(15):7144–7152

    Article  CAS  Google Scholar 

  30. Wu F, Sun M, Chen C et al (2019) Controllable coating of polypyrrole on silicon carbide nanowires as a core-shell nanostructure: a facile method to enhance attenuation characteristics against electromagnetic radiation[J]. ACS Sustain Chem Eng 7:2100–2106

    Article  CAS  Google Scholar 

  31. Shi XT, Zhang RH, Ruan KP et al (2021) Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers[J]. J Mater Sci Technol 82:239–249

    Article  CAS  Google Scholar 

  32. Wu F, Zeng Q, Xia Y et al (2018) The effects of annealing temperature on the permittivity and electromagnetic attenuation performance of reduced graphene oxide[J]. Appl Phys Lett 112:192902

    Article  Google Scholar 

  33. Peng T, Yi H, Sun P et al (2016) In situ growth of binder-free CNT@Ni-Co-S nanosheets core/shell hybrids on Ni mesh for high energy density asymmetric supercapacitors[J]. J Mater Chem A 4(22):8888–8897

    Article  CAS  Google Scholar 

  34. Zhao TK, Hu JT, Zhao X et al (2019) Synthesis and electromagnetic wave absorption properties of 3D spherical NiCo2S4 composites[J]. J Alloy Compd 795:327–335

    Article  CAS  Google Scholar 

  35. Hu JT, Zhao TK, Peng XR et al (2018) Growth of coiled amorphous carbon nanotube array forest and its electromagnetic wave absorbing properties[J]. Compos B Eng 134:91–97

    Article  CAS  Google Scholar 

  36. Wang J, Jin D, Zhou R et al (2016) One-step synthesis of NiCo2S4, ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage[J]. J Power Sources 306:100–106

    Article  CAS  Google Scholar 

  37. Xie A, Wu F, Jiang W et al (2017) Chiral induced synthesis of helical polypyrrole (PPy) nano-structures: a lightweight and high-performance material against electromagnetic pollution[J]. J Mater Chem C 5:2175–2181

    Article  CAS  Google Scholar 

  38. Zhao B, Li Y, Zeng QW et al (2020) Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties[J]. Small 16:2003502

    Article  CAS  Google Scholar 

  39. Tian HY, Qiao J, Yang YF et al (2022) ZIF-67-derived Co/C embedded boron carbonitride nanotubes for efficient electromagnetic wave absorption[J]. Chem Eng J 450:138011

    Article  CAS  Google Scholar 

  40. Xie A, Wu F, Sun M et al (2015) Self-assembled ultralight three-dimensional polypyrrole aerogel for effective electromagnetic absorption[J]. Appl Phys Lett 106:222902

    Article  Google Scholar 

  41. Xiong J, Xiang Z, Zhao J et al (2019) Layered NiCo alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance[J]. Carbon 154:391–401

    Article  CAS  Google Scholar 

  42. Zhu B, Cui Y, Lv DF et al (2020) Synthesis of Setaria viridis-like TiN fibers for efficient broadband electromagnetic wave absorption in the whole X and Ku bands[J]. Appl Surf Sci 533:147439

    Article  CAS  Google Scholar 

  43. Dai X, Du Y, Yang J et al (2019) Recoverable and self-healing electromagnetic wave absorbing nanocomposites[J]. Compos Sci Technol 174:27–32

    Article  CAS  Google Scholar 

  44. Ma Z, Xiang X, Shao L et al (2022) Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing [J]. Angew Chem Int Ed 61:e202200705

    CAS  Google Scholar 

  45. Liu J, Jia Z, Dong Y et al (2022) Structural engineering and compositional manipulation for high-efficiency electromagnetic microwave absorption [J]. Materials Today Physics 27:100801

    Article  CAS  Google Scholar 

  46. Zhang Y, Ruan K, Gu J (2021) Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities [J]. Small 17:2101951

    Article  CAS  Google Scholar 

  47. Ban QF, Li Y, Li LW et al (2022) Amorphous carbon engineering of hierarchical carbonaceous nanocomposites toward boosted dielectric polarization for electromagnetic wave absorption [J]. Carbon 201:1011–1024

    Article  Google Scholar 

  48. Han Y, He M, Hu J et al (2022) Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band [J]. Nano Research. https://doi.org/10.1007/s12274-022-5111-y

  49. Mondal S, Nayak L, Rahaman M et al (2017) An effective strategy to enhance mechanical, electrical, and electromagnetic shielding effectiveness of chlorinated polyethylene-carbon nanofiber nanocomposites[J]. Compos B Eng 109(15):155–169

    Article  CAS  Google Scholar 

  50. Wu ZC, Pei K, Xing LS et al (2019) Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite[J]. Adv Func Mater 29(28):1901448

    Article  Google Scholar 

  51. Liu JC, Yang ZH, Yang LJ et al (2021) Rational design of yolk-shell NiCo2O4@void@NiCo2S4 nanospheres for effective enhancement in microwave absorption[J]. J Alloys Compd 853:157403

    Article  CAS  Google Scholar 

  52. Hu QM, Yang RL, Mo ZC et al (2019) Nitrogen-doped and Fe-filled CNTs/NiCo2O4 porous sponge with tunable microwave absorption performance[J]. Carbon 153:737–744

    Article  CAS  Google Scholar 

  53. Wei SA, Wang XX, Zhang BQ et al (2017) Preparation of hierarchical core-shell C@NiCo2O4@Fe3O4 composites for enhanced microwave absorption performance[J]. Chem Eng J 314:477–487

    Article  CAS  Google Scholar 

  54. Gu J, Ruan K (2021) Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics [J]. Nano-Micro Letters 13:110

    Article  CAS  Google Scholar 

  55. Zhou R, Wang YS, Liu ZY et al (2022) Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption[J]. Nano-Micro Letters 14:122

    Article  CAS  Google Scholar 

  56. Zhang R, Shi X, Tang L et al (2020) Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and boron nitride fillers[J]. Chin J Polym Sci 38(7):730–739

    Article  CAS  Google Scholar 

  57. Wang L, Yu XF, Li X et al (2020) MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption[J]. Chem Eng J 383:123099

    Article  CAS  Google Scholar 

  58. Zhang S, Li J, Jin X et al (2022) Current advances of transition metal dichalcogenides in electromagnetic wave absorption: a brief review [J]. Int J Miner Metall Mater. https://doi.org/10.1007/s12613-022-2546-9

  59. Feng X, Yin P, Zhang L et al (2022) Innovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic-wave absorption [J]. Int J Miner Metall Mater. https://doi.org/10.1007/s12613-022-2488-2

  60. Rao YC, Qi XS, Peng Q et al (2022) Mixed-dimensional conductive network heterostructures: an effective interfacial strategy to aggrandize dielectric loss for designing microwave absorbers[J]. J Alloy Compd 910:164974

    Article  CAS  Google Scholar 

  61. Lv HL, Li Y, Jia ZR et al (2020) Exceptionally porous three-dimensional architectural nanostructure derived from CNTs/graphene aerogel towards the ultra-wideband EM absorption [J]. Compos B Eng 196(C):108122

  62. Ren L, Wang Y, Zhang X et al (2022) Efficient microwave absorption achieved through in situ construction of core-shell CoFe2O4@mesoporous carbon hollow spheres [J]. Int J Miner Metall Mater. https://doi.org/10.1007/s12613-022-2509-1

  63. Jia Z, Liu X, Zhou X et al (2022) A seed germination-inspired interface polarization augmentation strategy toward superior electromagnetic absorption performance[J]. Composites Communications 34:101269

    Article  Google Scholar 

  64. Li C, Li Z, Qi X et al (2022) A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber[J]. J Colloid Interface Sci 605:13–22

    Article  CAS  Google Scholar 

  65. Ren X, Song Y, Gao Z et al (2023) Rational manipulation of composition and construction toward Zn/Co bimetal hybrids for electromagnetic wave absorption[J]. J Mater Sci Technol 134:254–261

    Article  Google Scholar 

  66. Li C, Qi X, Gong X et al (2022) Magnetic-dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption[J]. Nano Res 15:6761–6771

    Article  CAS  Google Scholar 

  67. Zhang F, Jia Z, Zhou J et al (2022) Metal-organic framework-derived carbon nanotubes for broadband electromagnetic wave absorption[J]. Chem Eng J 450:138205

    Article  CAS  Google Scholar 

  68. Zhang J, Qi X, Gong X et al (2022) Microstructure optimization of core@shell structured MSe2/FeSe2@MoSe2 (M = Co, Ni) flower-like multicomponent nanocomposites towards high-efficiency microwave absorption[J]. J Mater Sci Technol 128:59–70

    Article  Google Scholar 

  69. Zhao Z, Liu W, Jiang Y et al (2022) Solidification of heavy metals in lead smelting slag and development of cementitious materials[J]. J Clean Prod 359:132134

    Article  CAS  Google Scholar 

  70. Liu Y, Jia Z, Zhou J et al (2022) Multi-hierarchy heterostructure assembling on MnO2 nanowires for optimized electromagnetic response[J]. Materials Today Physics 28:10085

    Article  Google Scholar 

  71. Darboe AK, Qi XS, Gong X et al (2022) Constructing MoSe2/MoS2 and MoS2/MoSe(2)inner and outer-interchangeable flower-like heterojunctions: a combined strategy of interface polarization and morphology configuration to optimize microwave absorption performance[J]. J Colloid Interface Sci 624:204–218

    Article  Google Scholar 

  72. Wu XY, Tu TX, Dai Y et al (2022) Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism[J]. Nano-Micro Letters 13:148

    Article  Google Scholar 

  73. Liang CB, Liu YX, Ruan YF et al (2022) Multifunctional sponges with flexible motion sensing and outstanding thermal insulation for superior electromagnetic interference shielding[J]. Composites Part A-Applied Science and Manufacturing 139:106143

    Article  Google Scholar 

  74. Ren X, Gao Z, Wu G (2022) Tunable nano-effect of Cu clusters derived from MOF-on-MOF hybrids for electromagnetic wave absorption [J]. Composites Communications 35:101292

    Article  Google Scholar 

  75. Zhao J, Wei Y, Zhang Y et al (2022) 3D flower-like hollow CuS@PANI microspheres with superb X-band electromagnetic wave absorption [J]. J Mater Sci Technol 126:141–151

    Article  Google Scholar 

Download references

Funding

We acknowledge the support of the Natural Science Foundation of Shandong Province (No. ZR2019YQ24), Taishan Scholars and Young Experts Program of Shandong Province (No. tsqn202103057), the Qingchuang Talents Induction Program of Shandong Higher Education Institution (Research and Innovation Team of Structural–Functional Polymer Composites), and Special Financial of Shandong Province (Structural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Talent Teams (No. 37000022P990304116449)).

Author information

Authors and Affiliations

Authors

Contributions

Zirui Jia and Xiaoyi Zhang: related literature, designed experiment, and writing—original draft preparation. Zheng Gu: experiment process. Guanglei Wu: some great enlightenment and helpful advices during the writing process.

Corresponding authors

Correspondence to Zirui Jia or Guanglei Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Z., Zhang, X., Gu, Z. et al. MOF-derived Ni-Co bimetal/porous carbon composites as electromagnetic wave absorber. Adv Compos Hybrid Mater 6, 28 (2023). https://doi.org/10.1007/s42114-022-00615-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-022-00615-y

Keywords

Navigation