Skip to main content

Advertisement

Log in

Status of fire blight resistance breeding in Malus

  • Review
  • Published:
Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Malus domestica (apple) is one of the most important fruit crops worldwide. Fire blight, caused by Erwinia amylovora, is one of the most destructive bacterial diseases that impacts apple production systems worldwide. Although it is possible to manage fire blight using antibiotics such as streptomycin, kasugamycin or oxytetracycline, the quest for sustainable and eco-friendly production makes breeding for fire blight resistance the most promising and desirable approach. Breeding for resistance is a long, resource-intensive process due to the high susceptibility of most commercial apple cultivars, and the fact that most resistance sources being characterized are from wild genetic backgrounds with unpalatable fruits, and apple’s long generation times. Nevertheless, establishment of pre-breeding materials is crucial. This review highlights the status of breeding for fire blight resistance in Malus, taking into account, 1) major and minor resistance sources and their interaction with E. amylovora, 2) progress and challenges associated with using wild species as resistance sources, 3) progress and challenges associated with using elite cultivars as resistance sources, 4) advances in biotechnology for use in enhancing the production of durable fire blight resistant cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aldwinckle H, van der Zwet T (1979) Recent progress in breeding for fireblight resistance in apples and pears in North America 1. EPPO Bull 9:27–34

    Article  Google Scholar 

  • Aldwinckle HS, Gustafson HL, Forsline PL (1999) Evaluation of the core subset of USDA apple germplasm collection for resistance to fire blight. Acta Hortic 489:269–272

    Article  Google Scholar 

  • Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF (2015) Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat Plants 1:1–4

    Article  CAS  Google Scholar 

  • Bartho JD, Demitri N, Bellini D, Flachowsky H, Peil A, Walsh MA, Benini S (2019) The structure of Erwinia amylovora AvrRpt2 provides insight into protein maturation and induced resistance to fire blight by Malus ×robusta 5. J Struct Biol 206:233–242. https://doi.org/10.1016/j.jsb.2019.03.010

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner I, Patocchi A, Franck L, Kellerhals M, Broggini G (2011) Fire blight resistance from ‘Evereste’ and Malus sieversii used in breeding for new high quality apple cultivars: strategies and results. Acta Hortic 896:391–397

    Article  Google Scholar 

  • Baumgartner IO, Patocchi A, Lussi L, Kellerhals M, Peil A (2014) Accelerated introgression of fire blight resistance from Malus xrobusta 5 and other wild germplasm into elite apples. Acta Hortic 1056:281–287

    Article  Google Scholar 

  • Broggini GA, Wöhner T, Fahrentrapp J, Kost TD, Flachowsky H, Peil A, Hanke MV, Richter K, Patocchi A, Gessler C (2014) Engineering fire blight resistance into the apple cultivar ‘Gala’ using the FB_MR5 CC-NBS-LRR resistance gene of Malus xrobusta 5. Plant Biotechnol J 12:728–733. https://doi.org/10.1111/pbi.12177

    Article  CAS  PubMed  Google Scholar 

  • Büttner R, Geibel M, Fischer C (2000) The genetic potential of scab and mildew resistance in Malus wild species. Acta Hortic 538:67–70

    Google Scholar 

  • Campa M, Piazza S, Righetti L, Oh C-S, Conterno L, Borejsza-Wysocka E, Kanchiswamy CN, Beer SV, Aldwinckle H, Malnoy M (2019) HIPM is a susceptibility gene of Malus: reduced expression reduces susceptibility to Erwinia amylovora. Mol Plant-Microbe Interact 32:167–175

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Li S, Zhang D, Han M, Jin X, Zhao C, Wang S, Xing L, Ma J, Ji J (2019) Sequencing of a wild apple (Malus baccata) genome unravels the differences between cultivated and wild apple species regarding disease resistance and cold tolerance. G3 9:2051–2060

  • Cornille A, Gladieux P, Smulders MJ, Roldán-Ruiz I, Laurens F, Le Cam B, Nersesyan A, Clavel J, Olonova M, Feugey L (2012) New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet 8:e1002703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crandall CS (1926) Apple breeding at the University of Illinois. Illinois Agric Exp Stn Bull 275:341–600

  • Denning W (1794) On the decay of apple trees. New York Society for the Promotion of Agricultural Arts and Manufacturers Transaction 2:219–222

    Google Scholar 

  • Desnoues E, Norelli JL, Aldwinckle HS, Wisniewski ME, Evans KM, Malnoy M, Khan A (2018) Identification of novel strain-specific and environment-dependent minor QTLs linked to fire bight resistance in apples. Plant Mol Biol Report 36:247–256. https://doi.org/10.1007/s11105-018-1076-0

    Article  CAS  Google Scholar 

  • Duan N, Bai Y, Sun H, Wang N, Ma Y, Li M, Wang X, Jiao C, Legall N, Mao L, Wan S, Wang K, He T, Feng S, Zhang Z, Mao Z, Shen X, Chen X, Jiang Y, Wu S, Yin C, Ge S, Yang L, Jiang S, Xu H, Liu J, Wang D, Qu C, Wang Y, Zuo W, Xiang L, Liu C, Zhang D, Gao Y, Xu Y, Xu K, Chao T, Fazio G, Shu H, Zhong G-Y, Cheng L, Fei Z, Chen X (2017) Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nat Commun 8:249. https://doi.org/10.1038/s41467-017-00336-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durel CE, Denance C, Brisset MN (2009) Two distinct major QTL for resistance to fire blight co-localize on linkage group 12 in apple genotypes ‘Evereste’ and Malus floribunda clone 821. Genome 52:139–147. https://doi.org/10.1139/g08-111

    Article  CAS  PubMed  Google Scholar 

  • Emeriewen O, Richter K, Kilian A, Zini E, Hanke MV, Malnoy M, Peil A (2014) Identification of a major quantitative trait locus for resistance to fire blight in the wild apple species Malus fusca. Mol Breed 34:407–419. https://doi.org/10.1007/s11032-014-0043-1

  • Emeriewen OF, Richter K, Hanke MV, Malnoy M, Peil A (2015) The fire blight resistance QTL of Malus fusca (Mfu10) is affected but not broken down by the highly virulent Canadian Erwinia amylovora strain E2002A. Eur J Plant Pathol 141:631–635. https://doi.org/10.1007/s10658-014-0565-8

    Article  Google Scholar 

  • Emeriewen OF, Richter K, Hanke M-V, Malnoy M, Peil A (2017a) Further insights into Malus fusca fire blight resistance. J Plant Pathol 99:45–49

  • Emeriewen OF, Peil A, Richter K, Zini E, Hanke MV, Malnoy M (2017b) Fire blight resistance of Malus ×arnoldiana is controlled by a quantitative trait locus located at the distal end of linkage group 12. Eur J Plant Pathol 148:1011–1018. https://doi.org/10.1007/s10658-017-1152-6

    Article  CAS  Google Scholar 

  • Emeriewen OF, Richter K, Piazza S, Micheletti D, Broggini GAL, Berner T, Keilwagen J, Hanke M-V, Malnoy M, Peil A (2018) Towards map-based cloning of FB_Mfu10: identification of a receptor-like kinase candidate gene underlying the Malus fusca fire blight resistance locus on linkage group 10. Mol Breed 38:106. https://doi.org/10.1007/s11032-018-0863-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emeriewen OF, Wöhner T, Flachowsky H, Peil A (2019) Malus hosts–Erwinia amylovora interactions: strain pathogenicity and resistance mechanisms. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00551

  • Evans K, Peace C (2017) Advances in marker-assisted breeding of apples. In: Evans K (ed) Achieving sustainable cultivation of apples. Burleigh Dodds series in agricultural science, vol 18. Burleigh Dodds Science Publishing Limited, pp 189–216

  • Fahrentrapp J, Broggini GAL, Kellerhals M, Peil A, Richter K, Zini E, Gessler C (2013) A candidate gene for fire blight resistance in Malus × robusta 5 is coding for a CC-NBS-LRR. Tree Genet Genomes 9:237–251. https://doi.org/10.1007/s11295-012-0550-3

    Article  Google Scholar 

  • Fiala JL (1994) Flowering crabapples: the genus Malus. Timber Press, Inc., Portland

    Google Scholar 

  • Fischer C, Fischer M (1996) Results in apple breeding at Dresden-Pillnitz - Review Gartenbauwissenschaft 61:139–146

  • Fischer M, Fischer C (1999) Evaluation of Malus species and cultivars at the fruit Genebank Dresden-Pillnitz and its use for apple resistance breeding. Genet Resour Crop Evol 46:235–241. https://doi.org/10.1023/A:1008652931035

    Article  Google Scholar 

  • Fischer C, Richter K (2004) Fire blight resistant apple cultivars produced by conventional breeding. Acta Hortic:721–724. https://doi.org/10.17660/ActaHortic.2004.663.129

  • Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus xdomestica Borkh.). Plant Breed 126:137–145. https://doi.org/10.1111/j.1439-0523.2007.01344.x

    Article  CAS  Google Scholar 

  • Flachowsky H, Hanke MV, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128:217–226

    Article  CAS  Google Scholar 

  • Flachowsky H, Szankowski I, Fischer TC, Richter K, Peil A, Hofer M, Dorschel C, Schmoock S, Gau AE, Halbwirth H, Hanke MV (2010) Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight. Planta 231:623–635. https://doi.org/10.1007/s00425-009-1074-4

    Article  CAS  PubMed  Google Scholar 

  • Flachowsky H, Halbwirth H, Treutter D, Richter K, Hanke MV, Szankowski I, Gosch C, Stich K, Fischer TC (2012) Silencing of flavanone-3-hydroxylase in apple (Malus x domestica Borkh.) leads to accumulation of flavanones, but not to reduced fire blight susceptibility. Plant Physiol Biochem 51:18–25. https://doi.org/10.1016/j.plaphy.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  • Flor HH (1971) Current status of gene-for-gene concept. Annu Rev Phytopathol 9:275–296. https://doi.org/10.1146/annurev.py.09.090171.001423

    Article  Google Scholar 

  • Gessler C, Pertot I (2012) Vf scab resistance of Malus. Trees 26:95–108

    Article  Google Scholar 

  • Gusberti M, Klemm U, Meier MS, Maurhofer M, Hunger-Glaser I (2015) Fire blight control: the struggle goes on. A comparison of different fire blight control methods in Switzerland with respect to biosafety, efficacy and durability. Int J Env Res Public Health 12:11422–11447. https://doi.org/10.3390/ijerph120911422

    Article  CAS  Google Scholar 

  • Hanke M-V, Flachowsky H, Peil A, Hättasch C (2007) No flower no fruit—genetic potentials to trigger flowering in fruit trees. In: Books GS (ed) Genes, Genomes and Genomics, vol 1. Global Science Books Ltd., Ikenobe, Japan, pp 1–20

  • Hanke M-V, Flachowsky H, Peil A, Emeriewen OF (2020) Malus × domestica apple. In: Litz R, Pliego-Alfaro F, Hormaza JI (eds) Biotechnology of fruit and nut crops. Biotechnology in agricultural series, vol 29, 2nd edn. CAB International, Wallingford, pp 440–473

    Chapter  Google Scholar 

  • Harshman JM, Evans KM, Allen H, Potts R, Flamenco J, Aldwinckle HS, Wisniewski ME, Norelli JL (2017) Fire blight resistance in wild accessions of Malus sieversii. Plant Dis 101:1738–1745

    Article  PubMed  Google Scholar 

  • Hutabarat OS, Flachowsky H, Regos I, Miosic S, Kaufmann C, Faramarzi S, Alam MZ, Gosch C, Peil A, Richter K, Hanke MV, Treutter D, Stich K, Halbwirth H (2016) Transgenic apple plants overexpressing the chalcone 3-hydroxylase gene of Cosmos sulphureus show increased levels of 3-hydroxyphloridzin and reduced susceptibility to apple scab and fire blight. Planta 243:1213–1224. https://doi.org/10.1007/s00425-016-2475-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ignatov A, Bodishevskaya A (2011) Malus. In: Wild crop relatives: genomic and breeding resources: temperate fruits. Springer

  • Johnson KB, Temple TN (2013) Evaluation of strategies for fire blight control in organic pome fruit without antibiotics. Plant Dis 97:402–409

    Article  PubMed  Google Scholar 

  • Kanchiswamy CN, Sargent DJ, Velasco R, Maffei ME, Malnoy M (2015) Looking forward to genetically edited fruit crops. Trends Biotechnol 33:62–64

    Article  CAS  Google Scholar 

  • Kanchiswamy CN, Maffei M, Malnoy M, Velasco R, Kim J-S (2016) Fine-tuning next-generation genome editing tools. Trends Biotechnol 34:562–574

    Article  CAS  PubMed  Google Scholar 

  • Keck M, Chartier R, Lecomte P, Reich H, Paulin J (1997) Erste Charakterisierung von Erwinia amylovora-Isolaten aus Österreich und Feuerbrand-Anfälligkeit einiger Apfel-Genotypen aus Mitteleuropa/first characterization of Erwinia amylovora isolates from Austria and fire blight susceptibility of some apple genotypes from Central Europe. JPDP:17–22

  • Kellerhals M, Schütz S, Patocchi A (2017) Breeding for host resistance to fire blight. J Plant Pathol 99:37–43

    Google Scholar 

  • Khan M, Chao T (2017) Wild apple species as a source of fire blight resistance for sustainable productivity of apple orchards. NYSHS Fruit Quarterly 25:13–18

  • Khan MA, Duffy B, Gessler C, Patocchi A (2006) QTL mapping of fire blight resistance in apple. Mol Breed 17:299–306. https://doi.org/10.1007/s11032-006-9000-y

    Article  Google Scholar 

  • Khan MA, Durel CE, Duffy B, Drouet D, Kellerhals M, Gessler C, Patocchi A (2007) Development of molecular markers linked to the ‘Fiesta’ linkage group 7 major QTL for fire blight resistance and their application for marker-assisted selection. Genome 50:568–577

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Zhao Y, Korban S (2012) Molecular mechanisms of pathogenesis and resistance to the bacterial pathogen Erwinia amylovora, causal agent of fire blight disease in Rosaceae. Plant Mol Biol Rep 30:247–260. https://doi.org/10.1007/s11105-011-0334-1

    Article  CAS  Google Scholar 

  • Khan MA, Zhao Y, Korban SS (2013) Identification of genetic loci associated with fire blight resistance in Malus through combined use of QTL and association mapping. Physiol Plant 148:344–353

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Desnoues E, Clark M (2018) Bacterial strain affects cultivar response to fire blight in apples. NYSHS Fruit Quarterly 26:15–20

  • Koczan JM, McGrath MJ, Zhao Y, Sundin GW (2009) Contribution of Erwinia amylovora exopolysaccharides amylovoran and Levan to biofilm formation: implications in pathogenicity. Phytopathology 99:1237–1244. https://doi.org/10.1094/PHYTO-99-11-1237

    Article  CAS  PubMed  Google Scholar 

  • Kost TD, Gessler C, Jänsch M, Flachowsky H, Patocchi A, Broggini GA (2015) Development of the first cisgenic apple with increased resistance to fire blight. PLoS One:10

  • Kostick S, Norelli J, Evans K (2019) Novel metrics to classify fire blight resistance of 94 apple cultivars. Plant Pathol 68:985–996

    Article  CAS  Google Scholar 

  • Le Lezec M, Paulin J-P, Lecomte P (1987) Shoot and blossom susceptibility to fire blight of apple cultivars. Acta Hortic 217:311–315

    Article  Google Scholar 

  • Le Roux P-M, Khan MA, Broggini GA, Duffy B, Gessler C, Patocchi A (2010) Mapping of quantitative trait loci for fire blight resistance in the apple cultivars ‘Florina’and ‘Nova Easygro’. Genome 53:710–722

    Article  PubMed  CAS  Google Scholar 

  • Malnoy M, Venisse J-S, Chevreau E (2005) Expression of a bacterial effector, harpin N, causes increased resistance to fire blight in Pyrus communis. Tree Genet Genomes 1:41–49

    Article  Google Scholar 

  • Malnoy M, Jin Q, Borejsza-Wysocka EE, He SY, Aldwinckle HS (2007) Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus x domestica. Mol Plant-Microbe Interact 20:1568–1580. https://doi.org/10.1094/MPMI-20-12-1568

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Martens S, Norelli JL, Barny MA, Sundin GW, Smits THM, Duffy B (2012) Fire blight: applied genomic insights of the pathogen and host. Annu Rev Phytopathol 50:475–494. https://doi.org/10.1146/annurev-phyto-081211-172931

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Viola R, Jung M-H, Koo O-J, Kim S, Kim J-S, Velasco R, Nagamangala Kanchiswamy C (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904

    Article  PubMed  PubMed Central  Google Scholar 

  • McManus PS (2014) Does a drop in the bucket make a splash? Assessing the impact of antibiotic use on plants. Curr Opin Microbiol 19:76–82

    Article  PubMed  Google Scholar 

  • McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Anitbiotic uns in plant agriculture. Annu Rev Phytopathol 40:443–465. https://doi.org/10.1146/annurev.phyto.40.120301.093927

    Article  CAS  PubMed  Google Scholar 

  • McNally RR, Zhao Y, Sundin GW (2015) Towards understanding fire blight: virulence mechanisms and their regulation in Erwinia amylovora. In: Murillo J, Vinatzer BA, Jackson RW, Arnold DL (eds) Bacteria-plant interactions: advanced research and future trends. Caister Academic Press, Norfolk, pp 61–82

    Chapter  Google Scholar 

  • Meng XD, Bonasera JM, Kim JF, Nissinen RM, Beer SV (2006) Apple proteins that interact with DspA/E, a pathogenicity effector of Erwinia amylovora, the fire blight pathogen. Mol Plant-Microbe Interact 19:53–61

    Article  CAS  PubMed  Google Scholar 

  • Mohan S, Fallahi E, Bijman V (2002) Evaluation of apple varieties for susceptibility to Erwinia amylovora by artificial inoculation under field conditions. Acta Hortic 590:373–375. https://doi.org/10.17660/ActaHortic.2002.590.56

    Article  Google Scholar 

  • Norelli JL, Aldwinckle HS (1986) Differential susceptibility of Malus spp. cultivars Robusta 5, Novole, and Ottawa 523 to Erwinia amylovora. Plant Dis 70:1019

    Article  Google Scholar 

  • Norelli JL, Aldwinckle HS, Beer SV (1984) Differential host x pathogen interaction among cultivars of apple and strains of Erwinia amylovora. Phytopathology 74:136–139

    Article  Google Scholar 

  • Norelli JL, Jones AL, Aldwinckle HS (2003) Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple. Plant Dis 87:756–765. https://doi.org/10.1094/PDIS.2003.87.7.756

    Article  PubMed  Google Scholar 

  • Oh C-S, Beer SV (2005) Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiol Lett 253:185–192. https://doi.org/10.1016/j.femsle.2005.09.051

    Article  CAS  PubMed  Google Scholar 

  • Osakabe Y, Liang Z, Ren C, Nishitani C, Osakabe K, Wada M, Komori S, Malnoy M, Velasco R, Poli M (2018) CRISPR–Cas9-mediated genome editing in apple and grapevine. Nat Protoc 13:2844

    Article  CAS  PubMed  Google Scholar 

  • Ozrenk K, Balta F, Guleryuz M, Kan T (2011) Fire blight (Erwinia amylovora) resistant/susceptibility of native apple germplasm from eastern Turkey. Crop Prot 30:526–530

    Article  Google Scholar 

  • Parravicini G, Gessler C, DenancÉ C, Lasserre-Zuber P, Vergne E, Brisset M-N, Patocchi A, Durel C-E, Broggini GAL (2011) Identification of serine/threonine kinase and nucleotide-binding site–leucine-rich repeat (NBS-LRR) genes in the fire blight resistance quantitative trait locus of apple cultivar ‘Evereste’. Mol Plant Pathol 12:493–505. https://doi.org/10.1111/j.1364-3703.2010.00690.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peil A, Hanke MV, Flachowsky H, Richter K, Garcia T, Trognitz B (2007a) Developing molecular markers for marker assisted selection of fire blight resistant apple seedlings. Acta Hortic 763:117–121

    Article  CAS  Google Scholar 

  • Peil A, Garcia-Libreros T, Richter K, Trognitz FC, Trognitz B, Hanke MV, Flachowsky H (2007b) Strong evidence for a fire blight resistance gene of Malus ×robusta located on linkage group 3. Plant Breed 126:470–475. https://doi.org/10.1111/j.1439-0523.2007.01408.x

    Article  CAS  Google Scholar 

  • Peil A, Hanke M-V, Flachowsky H, Richter K, Garcia-Libreros T, Celton J-M, Gardiner S, Horner M, Bus V (2008) Confirmation of the fire blight QTL of Malus ×robusta 5 on linkage group 3. Acta Hortic 793:297–303

    Article  CAS  Google Scholar 

  • Peil A, Bus VGM, Geider K, Richter K, Flachowsky H, Hanke MV (2009) Improvement of fire blight resistance in apple and pear. Int J Plant Breed 3:1–27

    Google Scholar 

  • Peil A, Flachowsky H, Hanke M-V, Richter K, Rode J (2011) Inoculation of Malus ×robusta 5 progeny with a strain breaking resistance to fire blight reveals a minor QTL on LG5. Acta Hortic 896:357–362

    Article  Google Scholar 

  • Peil A, Wöhner T, Hanke MV, Flachowsky H, Richter K, Wensing A, Emeriewen O, Malnoy M, LeRoux PM, Patocchi A, Kilian A (2014) Comparative mapping of fire blight resistance in Malus. Acta Hortic 1056:47–52

    Article  Google Scholar 

  • Peil A, Hübert C, Wensing A, Horner M, Emeriewen OF, Richter K, Wöhner T, Chagné D, Orellana-Torrejon C, Saeed M (2019) Mapping of fire blight resistance in Malus ×robusta 5 flowers following artificial inoculation. BMC Plant Biol 19:532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piqué N, Miñana-Galbis D, Merino S, Tomás JM (2015) Virulence factors of Erwinia amylovora: a review. Int J Mol Sci 16:12836–12854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pompili V, Dalla Costa L, Piazza S, Pindo M, Malnoy M (2020) Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system. Plant Biotechnol J 18:845–858

    Article  CAS  PubMed  Google Scholar 

  • Prokchorchik M, Choi S, Chung EH, Won K, Dangl JL, Sohn KH (2020) A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors. New Phytol 225:1327–1342. https://doi.org/10.1111/nph.16218

    Article  CAS  PubMed  Google Scholar 

  • Richter K, Fischer C (2002) Stability of fire blight resistance in apple. Acta Hortic 590:381–384. https://doi.org/10.17660/ActaHortic.2002.590.58

    Article  Google Scholar 

  • Robinson T, Cummins J, Hoying S, Johnson W, Aldwinckle H, Norelli J (1998) Orchard performance of fire blight-resistant Geneva apple rootstocks. Acta Hortic:287–294

  • Russo NL, Robinson TL, Fazio G, Aldwinckle HS (2008) Fire blight resistance of Budagovsky 9 apple rootstock. Plant Dis 92:385–391. https://doi.org/10.1094/PDIS-92-3-0385

    Article  PubMed  Google Scholar 

  • Schlathölter I, Jänsch M, Flachowsky H, Broggini GAL, Hanke M-V, Patocchi A (2018) Generation of advanced fire blight-resistant apple (Malus × domestica) selections of the fifth generation within 7 years of applying the early flowering approach. Planta 247:1475–1488. https://doi.org/10.1007/s00425-018-2876-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants. EMBO Rep 7:750–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schröpfer S, Böttcher C, Wöhner T, Richter K, Norelli J, Rikkerink EH, Hanke M-V, Flachowsky H (2018) A single effector protein, AvrRpt2EA, from Erwinia amylovora can cause fire blight disease symptoms and induces a salicylic acid–dependent defense response. Mol Plant-Microbe Interact 31:1179–1191

    Article  PubMed  Google Scholar 

  • SECB (2016) Statement on the experimental release of cisgenic apple trees with improved resistance towards fire blight. https://www.efbs.admin.ch/en/statements/field-trials/cisgenic-apple-application/

  • Silva KJP, Singh J, Bednarek R, Fei Z, Khan A (2019) Differential gene regulatory pathways and co-expression networks associated with fire blight infection in apple (Malus× domestica). Hortic Res 6:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh DK, Maximova SN, Jensen PJ, Lehman BL, Ngugi HK, McNellis TW (2010) FIBRILLIN4 is required for plastoglobule development and stress resistance in apple and Arabidopsis. Plant Physiol 154:1281–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Weg E, Di Guardo M, Jänsch M, Socquet-Juglard D, Costa F, Baumgartner I, Broggini GA, Kellerhals M, Troggio M, Laurens F (2018) Epistatic fire blight resistance QTL alleles in the apple cultivar ‘Enterprise’and selection X-6398 discovered and characterized through pedigree-informed analysis. Mol Breed 38:5

    Article  CAS  Google Scholar 

  • van der Zwet T, Orolaza-Halbrendt N, Zeller W (2012) Fire blight: history, biology, and management. Chapter 3. Losses due to fire blight and economic importance of the disease. APS Press/American Phytopathological Society, St. Paul

    Google Scholar 

  • Vogt I, Wöhner T, Richter K, Flachowsky H, Sundin GW, Wensing A, Savory EA, Geider K, Day B, Hanke MV, Peil A (2013) Gene-for-gene relationship in the host-pathogen system Malus xrobusta 5-Erwinia amylovora. New Phytol 197:1262–1275. https://doi.org/10.1111/nph.12094

    Article  CAS  PubMed  Google Scholar 

  • Volz R, Rikkerink E, Austin P, Lawrence T, Bus V (2009) “ fast-breeding” in apple: a strategy to accelerate introgression of new traits into elite germplasm. Acta Hortic 814:163–168

    Article  Google Scholar 

  • Winslow CE, Broadhurst J, Buchanan RE, Krumwiede C, Rogers LA, Smith GH (1920) The families and genera of the bacteria: final report of the committee of the society of American bacteriologists on characterization and classification of bacterial types. J Bacteriol 5:191–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wöhner TW, Flachowsky H, Richter K, Garcia-Libreros T, Trognitz F, Hanke MV, Peil A (2014) QTL mapping of fire blight resistance in Malus xrobusta 5 after inoculation with different strains of Erwinia amylovora. Mol Breed 34:217–230. https://doi.org/10.1007/s11032-014-0031-5

    Article  Google Scholar 

  • Wöhner T, Szentgyorgyi E, Peil A, Richter K, Hanke MV, Flachowsky H (2016) Homologs of the FB_MR5 fire blight resistance gene of Malus xrobusta 5 are present in other Malus wild species accessions. Tree Genet Genomes 12:2. https://doi.org/10.1007/s11295-015-0962-y

    Article  Google Scholar 

  • Wöhner T, Richter K, Sundin GW, Zhao Y, Stockwell VO, Sellmann J, Flachowsky H, Hanke MV, Peil A (2018) Inoculation of Malus genotypes with a set of Erwinia amylovora strains indicates a gene-for-gene relationship between the effector gene Eop1 and both Malus floribunda 821 and Malus ‘Evereste’. Plant Pathol 67:938–947

    Article  CAS  Google Scholar 

  • Würdig J, Flachowsky H, Saß A, Peil A, Hanke MV (2015) Improving resistance of different apple cultivars using the Rvi6 scab resistance gene in a cisgenic approach based on the Flp/FRT recombinase system. Mol Breed 35:95. https://doi.org/10.1007/s11032-015-0291-8

    Article  CAS  Google Scholar 

  • Zhao Y (2014) Genomics of Erwinia amylovora and related Erwinia species associated with pome fruit trees. In: Gross DC, Lichens-Park A, Kole C (eds) Genomics of plant-associated bacteria. Springer-Verlag, Berlin Heidelberg, pp 1–36

    Google Scholar 

  • Zhao Y, Sheng-Yang HE, Sundin GW (2006) The Erwinia amylovora avrRpt2EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in Pseudomonas syringae. Mol Plant-Microbe Interact 19:644–654

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Sundin GW, Wang D (2009) Construction and analysis of pathogenicity island deletion mutants of Erwinia amylovora. Can J Microbiol 55:457–464. https://doi.org/10.1139/w08-147

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Peil.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peil, A., Emeriewen, O.F., Khan, A. et al. Status of fire blight resistance breeding in Malus. J Plant Pathol 103 (Suppl 1), 3–12 (2021). https://doi.org/10.1007/s42161-020-00581-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42161-020-00581-8

Keywords

Navigation