Skip to main content
Log in

Optimal Variable Stiffness Control and Its Applications in Bionic Robotic Joints: A Review

  • Review Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Variable Stiffness Actuation (VSA) is an efficient, safe, and robust actuation technology for bionic robotic joints that have emerged in recent decades. By introducing a variable stiffness elastomer in the actuation system, the mechanical-electric energy conversion between the motor and the load could be adjusted on-demand, thereby improving the performance of the actuator, such as the peak power reduction, energy saving, bionic actuation, etc. At present, the VSA technology has achieved fruitful research results in designing the actuator mechanism and the stiffness adjustment servo, which has been widely applied in articulated robots, exoskeletons, prostheses, etc. However, how to optimally control the stiffness of VSAs in different application scenarios for better actuator performance is still challenging, where there is still a lack of unified cognition and viewpoints. Therefore, from the perspective of optimal VSA performance, this paper first introduces some typical structural design and servo control techniques of common VSAs and then explains the methods and applications of the Optimal Variable Stiffness Control (OVSC) approaches by theoretically introducing different types of OVSC mathematical models and summarizing OVSC methods with varying optimization goals and application scenarios or cases. In addition, the current research challenges of OVSC methods and possible innovative insights are also presented and discussed in-depth to facilitate the future development of VSA control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Awad, M. I., Hussain, I., Gan, D., Az-Zu’bi, A., Stefanini, C., Khalaf, K., Zweiri, Y., Taha, T., Dias, J., & Seneviratne, L. (2019). Passive discrete variable stiffness joint (pDVSJ-II): modeling, design, characterization, and testing toward passive haptic interface. Journal of Mechanisms and Robotics, 11(1), 011005.

    Article  Google Scholar 

  2. Xu, Y. P., Guo, K., Sun, J., & Li, J. F. (2021). Design, modeling and control of a reconfigurable variable stiffness actuator. Mechanical Systems and Signal Processing, 160, 107883.

    Article  Google Scholar 

  3. Chu, Z. L., Luo, J. W., & Fu, Y. L. (2016). Variable stiffness control and implementation of hydraulic SEA based on virtual spring leg. In 2016 IEEE International Conference on Mechatronics and Automation, Heilongjiang, China, pp. 677–682.

  4. Beyl, P., Van, D. M., Van, H. R., Vanderborght, B., & Lefeber, D. (2014). Pleated pneumatic artificial muscle-based actuator system as a torque source for compliant lower limb exoskeletons. IEEE/ASME Transactions on Mechatronics, 19(3), 1046–1056.

    Article  Google Scholar 

  5. Tsagarakis, N. G., Sardellitti, I., & Caldwell, G. (2011). A new variable stiffness actuator (CompAct-VSA): design and modelling. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 378–383). California.

    Chapter  Google Scholar 

  6. Sun, J. T., Zhang, Y. B., Zhang, C., Guo, Z., & Xiao, X. H. (2017). Mechanical design of a compact serial variable stiffness actuator SVSA based on lever mechanism. In 2017 IEEE International Conference on Robotics and Automation (ICRA), Marina Bay Sands, Singapore, pp. 33–38.

  7. Jafari, A., Tsagarakis, N. G., Vanderborght, B., & Caldwell, D. G. (2010). A novel actuator with adjustable stiffness (AwAS). In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, China, pp. 4201–4206.

  8. Jafari, A., Tsagarakis, N. G., Sardellitti, I., & Caldwell, D. G. (2014). A new actuator with adjustable stiffness based on a variable ratio lever mechanism. IEEE/ASME Transactions on Mechatronics, 19(1), 55–63.

    Article  Google Scholar 

  9. Groothuis, S. S., Rusticelli, G., Zucchelli, A., Stramigioli, S., & Carloni, R. (2012). A novel rotational variable stiffness actuator. In 2012 IEEE International Conference on Robotics and Automation, St Paul, MN, USA, pp. 3355–3360.

  10. Nakanishi, J., Rawlik, K., & Vijayakumar, S. (2011). Stiffness and temporal optimization in periodic movements: An optimal control approach. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 718–724). California.

    Google Scholar 

  11. Beckerle, P., Wojtusch, J., Schuy, J., Strah, B., Rinderknecht, S., & Stryk, O. V. (2013). Power-optimized stiffness and nonlinear position control of an actuator with variable torsion stiffness. In 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Wollongong, Australia, pp. 387–392.

  12. Özparpucu, M. C., & Albu-Schäffer, A. (2014). Optimal control strategies for maximizing the performance of variable stiffness joints with nonlinear springs. 53rd IEEE Conference on Decision and Control (pp. 1409–1416). Los Angeles.

    Chapter  Google Scholar 

  13. Velasco, A., Garabini, M., Catalano, M. G., & Bicchi, A. (2015). Soft actuation in cyclic motions: stiffness profile optimization for energy efficiency. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots, Seoul, Korea, pp. 107–113.

  14. Jimenez-Fabian, R., Weckx, M., Rodriguez-Cianca, D., Lefeber, D., & Vanderborght, B. (2018). Online reconfiguration of a variable-stiffness actuator. IEEE/ASME Transactions on Mechatronics, 23(4), 1866–1876.

    Article  Google Scholar 

  15. Felt, W., Selinger, J. C., Donelan, J. M., & Remy, C. D. (2015). “Body-In-The-Loop”: Optimizing device parameters using measures of instantaneous energetic cost. PLoS ONE, 10(8), e0135342.

    Article  Google Scholar 

  16. Li, S. Q., Li, J., Tian, G. H., & Shang, H. C. (2019). Stiffness adjustment for a single-link robot arm driven by series elastic actuator in muscle training. IEEE Access, 7, 65029–65039.

    Article  Google Scholar 

  17. Yang, C. G., Zeng, C., Cong, Y., Wang, N., & Wang, M. (2019). A learning framework of adaptive manipulative skills from human to robot. IEEE Transactions on Industrial Informatics, 15(2), 1153–1161.

    Article  Google Scholar 

  18. Sun, Y. X., Tang, Y. T., Zheng, J., Dong, D. B., Chen, X. H., & Bai, L. (2022). From sensing to control of lower limb exoskeleton: a systematic review. Annual Reviews in Control, 53, 83–96.

    Article  MathSciNet  Google Scholar 

  19. Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D. G., Carloni, R., Catalano, M., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., … Wolf, S. (2013). Variable impedance actuators: a review. Robotics and Autonomous Systems, 61(12), 1601–1614.

    Article  Google Scholar 

  20. Hadi, A., Yousefi-Koma, A., Elahinia, M., Moghaddam, M. M., & Ghazavi, A. (2011). A shape memory alloy spring-based actuator with stiffness and position controllability. Proceedings of the Institution of Mechanical Engineers, Part I, 225(7), 902–917.

    Google Scholar 

  21. Guo, Z., Pan, Y., Wee, L. B., & Yu, H. (2015). Design and control of a novel compliant differential shape memory alloy actuator. Sensors and Actuators A, 225, 71–80.

    Article  Google Scholar 

  22. Xiong, J., Sun, Y. X., Zheng, J., Dong, D. B., & Bai, L. (2021). Design and experiment of a SMA-based continuous-stiffness-adjustment torsional elastic component for variable stiffness actuators. Smart Materials and Structures, 30(10), 105021.

    Article  Google Scholar 

  23. Shintake, J., Schubert, B., Rosset, S., Shea, H., & Floreano, D. (2015). Variable stiffness actuator for soft robotics using dielectric elastomer and low-melting-point alloy. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1097–1102). Hamburg.

    Chapter  Google Scholar 

  24. Imamura, H., Kadooka, K., & Taya, M. (2017). A variable stiffness dielectric elastomer actuator based on electrostatic chucking. Soft Matter, 13(18), 3440–3448.

    Article  Google Scholar 

  25. Doppmann, C., Ugurlu, B., Hamaya, M., Teramae, T., Noda, T., & Morimoto, J. (2015). Towards balance recovery control for lower body exoskeleton robots with variable stiffness actuators: spring-loaded flywheel model. In 2015 IEEE International Conference on Robotics and Automation (ICRA), Washington, USA, pp. 5551–5556.

  26. Abeach, L. A., Nefti-Meziani, S., Theodoridis, T., & Davis, S. (2018). A variable stiffness soft gripper using granular jamming and biologically inspired pneumatic muscles. Journal of Bionic Engineering, 15(2), 236–246.

    Article  Google Scholar 

  27. Sun, Y. X., Tang, P., Dong, D. B., Zheng, J., Chen, X. H., & Bai, L. (2021). Modeling and experimental evaluation of a pneumatic variable stiffness actuator. IEEE/ASME Transactions on Mechatronics. https://doi.org/10.1109/TMECH.2021.3116871

    Article  Google Scholar 

  28. Wei, Y., Chen, Y. H., Ren, T., Chen, Q., Yan, C. X., Yang, Y., & Li, Y. T. (2016). A novel variable stiffness robotic gripper based on integrated soft actuating and particle jamming. Soft Robotics, 3(3), 134–143.

    Article  Google Scholar 

  29. Moore, R., & Schimmels, J. M. (2021). Design of a quadratic, antagonistic, cable-driven, variable stiffness actuator. Journal of Mechanisms and Robotics, 13(3), 031001.

    Article  Google Scholar 

  30. Mengacci, R., Garabini, M., Grioli, G., Catalano, M. G., & Bicchi, A. (2021). Overcoming the torque/stiffness range tradeoff in antagonistic variable stiffness actuators. IEEE/ASME Transactions on Mechatronics, 26(6), 3186–3197.

    Article  Google Scholar 

  31. Vo, C. P., Phan, V. D., Nguyen, T. H., & Ahn, K. K. (2020). A compact adjustable stiffness rotary actuator based on linear springs: WORKING principle, design, and experimental verification. Actuators, 9(4), 141.

    Article  Google Scholar 

  32. Govindan, N., Ramesh, S., & Thondiyath, A. (2020). Design of a variable stiffness joint module to quickly change the stiffness and to reduce the power consumption. IEEE Access, 8, 138318–138330.

    Article  Google Scholar 

  33. Mao, Y., Wang, J. X., Jia, P. F., Li, S., Qiu, Z., Zhang, L., & Han, Z. (2007). A reinforcement learning based dynamic walking control. Proceedings 2007 IEEE International Conference on Robotics and Automation (pp. 3609–3614). Italy.

    Chapter  Google Scholar 

  34. Braun, D. J., Howard, M., & Vijayakumar, S. (2012). Exploiting variable stiffness in explosive movement tasks. Robotics: Science and Systems VII, 7, 25–32.

  35. Ham, V. R., Vanderborght, B., Damme, V. M., Verrelst, B., & Lefeber, D. (2007). MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot. Robotics and Autonomous Systems, 55(10), 761–768.

    Article  Google Scholar 

  36. Wolf, S., & Hirzinger, G. (2008). A new variable stiffness design: matching requirements of the next robot generation. In 2008 IEEE International Conference on Robotics and Automation, Pasadena, California, pp. 1741–1746.

  37. Wolf, S., Eiberger, O., & Hirzinger, G. (2011). The DLR FSJ: energy based design of a variable stiffness joint. In 2011 IEEE international conference on robotics and automation, Shanghai, China, pp. 5082–5089.

  38. Zhang, X., Capehart, T., & Moore, C. A. (2018). Design and analysis of a novel variable stiffness joint for robot. MATEC Web of Conferences, 249, 03005.

    Article  Google Scholar 

  39. Yang, S. K., Chen, P., Wang, D. Q., Yu, Y., & Liu, Y. W. (2022). Design and analysis of a 2-DOF actuator with variable stiffness based on leaf springs. Journal of Bionic Engineering, 19, 1392–1404.

    Article  Google Scholar 

  40. Yang, Z. M., Li, X. P., Xu, J. X., Chen, R. Z., & Yang, H. X. (2022). A new low-energy nonlinear variable stiffness actuator for the knee joint. Mechanics Based Design of Structures and Machines. https://doi.org/10.1080/15397734.2022.2033626

    Article  Google Scholar 

  41. Jafari, A., Tsagarakis, N. G., Vanderborght, B., & Caldwell, D. G. (2010). A novel actuator with adjustable stiffness (AwAS). In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipe, China, pp. 4201–4206.

  42. Jafari, A., Tsagarakis, N. G., & Caldwell, D. G. (2011). AwAS-II: a new actuator with adjustable stiffness based on the novel principle of adaptable pivot point and variable lever ratio. In 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, pp. 4638–4643.

  43. Tsagarakis, N. G., Sardellitti, I., & Caldwell, D. G. (2021). A new variable stiffness actuator (CompAct-VSA): design and modelling. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA, pp. 378–383.

  44. Xu, Y. P., Guo, K., Sun, J., & Li, J. F. (2021). Design and analysis of a linear digital variable stiffness actuator. IEEE Access, 9, 13992–14004.

    Article  Google Scholar 

  45. Christie, M., Sun, S. S., Deng, L., Du, H., Zhang, S. W., & Li, W. H. (2022). Real-time adaptive leg-stiffness for roll compensation via magnetorheological control in a legged robot. Smart Materials and Structures, 31(4), 045003.

    Article  Google Scholar 

  46. Zhang, D., Yuan, H., & Cao, Z. C. (2020). Environmental adaptive control of a snake-like robot with variable stiffness actuators. IEEE/CAA Journal of Automatica Sinica, 7(3), 745–751.

    Article  MathSciNet  Google Scholar 

  47. Piskarev, Y., Shintake, J., Ramachandran, V., Baugh, N., Dickey, M. D., & Floreano, D. (2020). Lighter and stronger: Cofabricated electrodes and variable stiffness elements in dielectric actuators. Advanced Intelligent Systems, 2(10), 2000069.

    Article  Google Scholar 

  48. Sun, T., Chen, Y. L., Han, T. Y., Jiao, C. L., Lian, B., & Song, Y. M. (2020). A soft gripper with variable stiffness inspired by pangolin scales, toothed pneumatic actuator and autonomous controller. Robotics and Computer-Integrated Manufacturing, 61, 101848.

    Article  Google Scholar 

  49. Chen, Y. L., Zhang, J. H., & Gong, Y. J. (2020). Novel design and modeling of a soft pneumatic actuator based on antagonism mechanism. Actuators, 9(4), 107.

    Article  Google Scholar 

  50. Henke, M., & Gerlach, G. (2016). A multi-layered variable stiffness device based on smart form closure actuators. Journal of Intelligent Material Systems and Structures, 27(3), 375–383.

    Article  Google Scholar 

  51. Rizzello, G., Ferrante, F., Naso, D., & Seelecke, S. (2017). Robust interaction control of a dielectric elastomer actuator with variable stiffness. IEEE/ASME Transactions on Mechatronics, 22(4), 1705–1716.

    Article  Google Scholar 

  52. Kanik, M., Orguc, S., Varnavides, G., Kim, J., Benavides, T., Gonzalez, D., Akintilo, T., Tasan, C. C., Chandrakasan, A. P., & Fink, Y. (2019). Strain-programmable fiber-based artificial muscle. Science, 365(6449), 145–150.

    Article  Google Scholar 

  53. Eiberger, O., Haddadin, S., Weis, M., Albu-Schäffer, A., & Hirzinger, G. (2010). On joint design with intrinsic variable compliance: derivation of the DLR QA-joint. In 2010 IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA, pp. 1687–1694.

  54. Seto, K., Kiguchi, K., & Arata, J. (2019). Compact and lightweight variable stiffness mechanism using elastic band for medical robots. In 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Sanya, China, pp. 1557–1561.

  55. Shin, W., Park, G., Lee, J., Chang, H., & Kim, J. (2021). Power transmission design of fast and energy-efficient stiffness modulation for human power assistance. In 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, pp. 10877–10883.

  56. Piga, D. (2020). Finite-horizon integration for continuous-time identification: Bias analysis and application to variable stiffness actuators. International Journal of Control, 93(10), 2378–2391.

    Article  MathSciNet  MATH  Google Scholar 

  57. Hao, Y. F., Wang, T. M., Xie, Z. X., Sun, W. G., Liu, Z. M., Fang, X., Yang, M. X., & Wen, L. (2018). A eutectic-alloy-infused soft actuator with sensing, tunable degrees of freedom, and stiffness properties. Journal of Micromechanics and Microengineering, 28(2), 024004.

    Article  Google Scholar 

  58. Shin, T., & Kogiso, K. (2022). Sensorless angle and stiffness control of antagonistic PAM actuator using reference set. Advanced Robotics, 36(9), 423–437.

    Article  Google Scholar 

  59. Fagiolini, A., Trumić, M., & Jovanović, K. (2020). An input observer-based stiffness estimation approach for flexible robot joints. IEEE Robotics and Automation Letters, 5(2), 1843–1850.

    Article  Google Scholar 

  60. Sardellitti, I., Medrano-Cerda, G. A., Tsagarakis, N., Jafari, A., & Caldwell, D. G. (2013). Gain scheduling control for a class of variable stiffness actuators based on lever mechanisms. IEEE Transactions on Robotics, 29(3), 791–798.

    Article  Google Scholar 

  61. Lu, H. Q., Zhang, X., & Huang, X. L. (2017). Robust adaptive control of antagonistic tendon-driven joint in the presence of parameter uncertainties and external disturbances. Journal of Dynamic Systems, Measurement, and Control, 139(10), 101003.

    Article  Google Scholar 

  62. Guo, J. S., Guo, J. M., & Xiao, Z. J. (2020). Robust tracking control for two classes of variable stiffness actuators based on linear extended state observer with estimation error compensation. International Journal of Advanced Robotic Systems. https://doi.org/10.1177/1729881420911774

    Article  Google Scholar 

  63. Sarani, B., & Ahmadi, H. (2022). Mechanical design and control of a novel variable impedance actuator (VIA) for knee joint of a rehabilitation exoskeleton. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(3), 1–13.

    Article  Google Scholar 

  64. Guo, Z., Pan, Y., Sun, T., Zhang, Y., & Xiao, X. (2017). Adaptive neural network control of serial variable stiffness actuators. Complexity, 5361246.

  65. Deng, K., Li, F., & Yang, C. (2019). A new data-driven model-free adaptive control for discrete-time nonlinear systems. IEEE Access, 7, 126224–126233.

    Article  Google Scholar 

  66. Jafari, A., Tsagarakis, N. G., & Caldwell, D. G. (2011). A novel intrinsically energy efficient actuator with adjustable stiffness (AwAS). IEEE/ASME Transactions on Mechatronics, 18(1), 355–365.

    Article  Google Scholar 

  67. Schiavi, R., Grioli, G., Sen, S., & Bicchi, A. (2008). VSA-II: A novel prototype of variable stiffness actuator for safe and performing robots interacting with humans. In 2008 IEEE International Conference on Robotics and Automation, Pasadena, California, pp. 2171–2176.

  68. Zhang, L. B., Li, Z. J., & Yang, C. G. (2016). Adaptive neural network based variable stiffness control of uncertain robotic systems using disturbance observer. IEEE Transactions on Industrial Electronics, 64(3), 2236–2245.

    Article  Google Scholar 

  69. Okubo, T., & Ohmori, H. (2013). Energy saving by extremum-seeking control using an actuator with adjustable stiffness (AwAS). In SICE Annual Conference, Fukui, Japan, pp.1836–1841.

  70. Hou, L., & Chen, Y. S. (2019). Nonlinear resonance and its calculations and applications. Journal of Mechanical Engineering, 55(13), 1–12.

    Article  Google Scholar 

  71. Nasiri, R., Khoramshahi, M., Shushtari, M., & Ahmadabadi, M. N. (2017). Adaptation in variable parallel compliance: Towards energy efficiency in cyclic tasks. IEEE/ASME Transactions on Mechatronics, 22(2), 1059–1070.

    Article  Google Scholar 

  72. Ji, C., Kong, M. X., & Li, R. F. (2019). Time-energy optimal trajectory planning for variable stiffness actuated robot. IEEE Access, 7, 14366–14377.

    Article  Google Scholar 

  73. D’angelo, G., & Palmieri, F. (2021). GGA: A modified genetic algorithm with gradient-based local search for solving constrained optimization problems. Information Sciences, 547, 136–162.

    Article  MathSciNet  MATH  Google Scholar 

  74. Braun, D., Howard, M., & Vijayakumar, S. (2012). Optimal variable stiffness control: Formulation and application to explosive movement tasks. Autonomous Robots, 33(3), 237–253.

    Article  Google Scholar 

  75. Zhakatayev, A., Rubagotti, M., & Varol, H. A. (2015). Integrated optimal design and control of variable stiffness actuated robots. In 2015 European Control Conference (ECC), Linz, Austria, pp. 1100–1105.

  76. Tonietti, G., Schiavi, R., & Bicchi, A. (2005). Design and control of a variable stiffness actuator for safe and fast physical human/robot Interaction. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 526–531.

  77. Hunt, K. J., Sbarbaro, D., Żbikowski, R., & Gawthrop, P. J. (1992). Neural networks for control systems—a survey. Automatica, 28, 1083–1112.

    Article  MathSciNet  MATH  Google Scholar 

  78. Lewis, F., Jagannathan, S., & Yesildirek, A. (1999). Neural network control of robot manipulators and nonlinear systems (p. 468). Taylor & Francis.

    Google Scholar 

  79. Pan, Y. P., & Yu, H. Y. (2017). Biomimetic hybrid feedback feedforward neural-network learning control. IEEE Transactions on Neural Networks and Learning Systems, 28(6), 1481–1487.

    Article  Google Scholar 

  80. Wu, Y., Yao, D. J., Guo, Z., & Xiao, X. H. (2018). Adaptive stiffness control of passivity-based biped robot on compliant ground using double deep Q network. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(6), 2177–2189.

    Google Scholar 

  81. Zhang, L. B., Li, Z. J., & Yang, C. G. (2017). Adaptive neural network based variable stiffness control of uncertain robotic systems using disturbance observer. IEEE Transactions on Industrial Electronics, 64(3), 2236–2245.

    Article  Google Scholar 

  82. Ménard, T., Grioli, G., & Bicchi, A. (2013). A real time robust observer for an agonist-antagonist variable stiffness actuator. 2013 IEEE International Conference on Robotics and Automation (pp. 3988–3993). Karlsruhe.

    Chapter  Google Scholar 

  83. Ménard, T., Grioli, G., & Bicchi, A. (2014). A stiffness estimator for agonistic–antagonistic variable-stiffness-actuator devices. IEEE Transactions on Robotics, 30(5), 1269–1278.

    Article  Google Scholar 

  84. Flacco, F., & Luca, A. D. (2014). A pure signal-based stiffness estimation for VSA devices. 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2418–2423). China.

    Chapter  Google Scholar 

  85. Wolf, S., Grioli, G., Eiberger, O., Friedl, W., Grebenstein, M., Höppner, H., Burdet, E., Caldwell, D. G., Carloni, R., Catalano, M. G., Lefeber, D., Stramigioli, S., Tsagarakis, N., Damme, M. V., Ham, R. V., Vanderborght, B., Visser, L. C., Bicchi, A., & Albu-Schäffer, A. (2016). Variable stiffness actuators: Review on design and components. IEEE/ASME Transactions on Mechatronics, 21, 2418–2430.

    Article  Google Scholar 

  86. Huang, Y., & Wang, Q. N. (2016). Torque-stiffness-controlled dynamic walking: Analysis of the behaviors of bipeds with both adaptable joint torque and joint stiffness. IEEE Robotics & Automation Magazine, 23(1), 71–82.

    Article  Google Scholar 

  87. Zhang, Q., Xiao, X. H., & Guo, Z. (2016). Power efficiency-based stiffness optimization of a compliant actuator for underactuated bipedal robot. Intelligent Robotics and Applications, 9834, 186–197.

    Article  Google Scholar 

  88. Roozing, W., Li, Z., Medrano-Cerda, G. A., Caldwell, D. G., & Tsagarakis, N. G. (2016). Development and control of a compliant asymmetric antagonistic actuator for energy efficient mobility. IEEE/ASME Transactions on Mechatronics, 21(2), 1080–1091.

    Article  Google Scholar 

  89. Vu, H. Q., Hauser, H., Leach, D., & Pfeifer, R. (2013). A variable stiffness mechanism for improving energy efficiency of a planar single-legged hopping robot. In 2013 16th International Conference on Advanced Robotics (ICAR), Montevideo, Uruguay, pp. 1–7.

  90. Vu, H. Q., & Marcantini, L. G. (2013). Knee stiffness adjustment for energy efficient locomotion of a legged robot on surfaces with different stiffness. In 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, pp. 1825–1831.

  91. Tonazzini, A., Mintchev, S., Schubert, B., Mazzolai, B., Shintake, J., & Floreano, D. (2016). Variable stiffness fiber with self-healing capability. Advanced Materials, 28(46), 10142–10148.

    Article  Google Scholar 

  92. Brochu, P., & Pei, Q. (2010). Advances in dielectric elastomers for actuators and artificial muscles. Macromolecular Rapid Communications, 31(1), 10–36.

    Article  Google Scholar 

  93. Rashad, R., Bicego, D., Zult, J., Sanchez-Escalonilla, S., Jiao, R., Franchi, A., & Stramigioli, S. (2022). Energy aware impedance control of a flying end-effector in the port-hamiltonian framework. IEEE Transactions on Robotics. https://doi.org/10.1109/TRO.2022.3183532

    Article  Google Scholar 

  94. Chen, D., Wu, Z. X., Dong, H. J., Tan, M., & Yu, J. Z. (2020). Exploration of swimming performance for a biomimetic multi-joint robotic fish with a compliant passive joint. Bioinspiration & Biomimetics, 16(2), 026007.

    Article  Google Scholar 

  95. Chen, B. X., & Jiang, H. Z. (2021). Body stiffness variation of a tensegrity robotic fish using antagonistic stiffness in a kinematically singular configuration. IEEE Transactions on Robotics, 37(5), 1712–1727.

    Article  MathSciNet  Google Scholar 

  96. Roozing, W., & Carloni, R. (2014). Bipedal walking gait with variable stiffness knees. In 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Sao Paulo, Brazil, pp. 924–930.

  97. Glanzer, E. M., & Adamczyk, P. G. (2018). Design and validation of a semi-active variable stiffness foot prosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26, 2351–2359.

    Article  Google Scholar 

  98. Vu, H., Pfeifer, R., Iida, F., & Yu, X. (2016). Improving energy efficiency of hopping locomotion by using a variable stiffness actuator. IEEE/ASME Transactions on Mechatronics, 21, 472–486.

    Google Scholar 

  99. Hocaoglu, E., & Patoglu, V. (2012). Tele-impedance control of a variable stiffness prosthetic hand. In 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guangzhou, China, pp. 1576–1582.

  100. Luo, J. W., Wang, S. G., Zhao, Y., & Fu, Y. L. (2018). Variable stiffness control of series elastic actuated biped locomotion. Intelligent Service Robotics, 11(3), 225–235.

    Article  Google Scholar 

  101. Liu, Y., Guo, S. X., Zhang, S. Y., & Boulardot, L. (2017). A novel sEMG control-based variable stiffness exoskeleton. In 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, pp. 1444–1449.

  102. Ugurlu, B., Doppmann, C., Hamaya, M., Forni, P., Teramae, T., Noda, T., & Morimoto, J. (2016). Variable ankle stiffness improves balance control: Experiments on a bipedal exoskeleton. IEEE/ASME Transactions on Mechatronics, 21, 79–87.

    Google Scholar 

  103. Ugurlu, B., Forni, P., Doppmann, C., Sariyildiz, E., & Morimoto, J. (2019). Stable control of force, position, and stiffness for robot joints powered via pneumatic muscles. IEEE Transactions on Industrial Informatics, 15(12), 6270–6279.

    Article  Google Scholar 

  104. Everarts, C., Dehez, B., & Ronsse, R. (2012). Variable stiffness actuator applied to an active ankle prosthesis: Principle, energy-efficiency, and control. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 323–328). Vilamoura-Algarve.

    Chapter  Google Scholar 

  105. Yang, H. P., Jang, C. S., & Kooij, H. V. D. (2019). Increasing variable stiffness actuator-response using an electromagnetic spring. In 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM), Osaka, Japan, pp. 7–11.

  106. Moltedo, M., Cavallo, G., Baček, T., Lataire, J., Vanderborght, B., Lefeber, D., & Rodriguez-Guerrero, C. (2019). Variable stiffness ankle actuator for use in robotic-assisted walking: Control strategy and experimental characterization. Mechanism and Machine Theory, 134, 604–624.

    Article  Google Scholar 

  107. Wang, W., & Ahn, S. H. (2017). Shape memory alloy-based soft gripper with variable stiffness for compliant and effective grasping. Soft Robot, 4(4), 379–389.

    Article  Google Scholar 

  108. Nalini, D., Ruth, D. J. S., & Dhanalakshmi, K. (2016). Design of a variable stiffness actuator using shape memory alloy wire. 2016 IEEE 7th Power India International Conference (PIICON) (pp. 1–5). Bikaner.

    Google Scholar 

  109. Liao, T. C., Tse, Z. T. H., & Ren, H. L. (2019). Variable stiffness actuators embedded with soft-bodied polycaprolactone and shape memory alloy wires. 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 108–113). China.

    Chapter  Google Scholar 

  110. Li, W. B., Zhang, W. M., Zou, H. X., Peng, Z. K., & Meng, G. (2019). Bioinspired variable stiffness dielectric elastomer actuators with large and tunable load capacity. Soft Robot, 6(5), 631–643.

    Article  Google Scholar 

  111. Al-Rubaiai, M., Pinto, T., Qian, C., & Tan, X. (2019). Soft actuators with stiffness and shape modulation using 3D-printed conductive polylactic acid material. Soft Robot, 6(3), 318–332.

    Article  Google Scholar 

  112. Al-Abeach, L. A. T., Nefti-Meziani, S., & Davis, S. (2017). Design of a variable stiffness soft dexterous gripper. Soft Robot, 4(3), 274–284.

    Article  Google Scholar 

  113. Bolivar, E., Allen, D., Ellson, G., Cossio, J., Voit, W., & Gregg, R. (2016). Towards a series elastic actuator with electrically modulated stiffness for powered ankle-foot orthoses. 2016 IEEE International Conference on Automation Science and Engineering (CASE) (pp. 1086–1093). Fort Worth Texas.

    Chapter  Google Scholar 

  114. Yang, Y., Chen, Y. H., Li, Y. T., Chen, M. Z. Q., & Wei, Y. (2017). Bioinspired robotic fingers based on pneumatic actuator and 3D printing of smart material. Soft Robot, 4(2), 147–162.

    Article  Google Scholar 

  115. Lukic, B., Jovanovi, K., & Kvasccev, G. S. (2016). Feedforward neural network for controlling qbmove maker pro variable stiffness actuator. In 2016 13th Symposium on Neural Networks and Applications (NEUREL), belgrade, serbia, pp. 1–4.

  116. Garate, V. R., Pozzi, M., Prattichizzo, D., Tsagarakis, N., & Ajoudani, A. (2018). Grasp stiffness control in robotic hands through coordinated optimization of pose and joint stiffness. IEEE Robotics and Automation Letters, 3(4), 3952–3959.

    Article  Google Scholar 

  117. Peternel, L., Petrič, T., & Babič, J. (2017). Robotic assembly solution by human-in-the-loop teaching method based on real-time stiffness modulation. Autonomous Robots, 42(1), 1–17.

    Article  Google Scholar 

  118. Peña, G. G., Consoni, L. J., Santos, D. W. M., & Siqueira, A. G. (2019). Feasibility of an optimal EMG-driven adaptive impedance control applied to an active knee orthosis. Robotics and Autonomous Systems, 112, 98–108.

    Article  Google Scholar 

  119. Huang, B., Li, Z., Wu, X., Ajoudani, A., Bicchi, A., & Liu, J. (2019). Coordination control of a dual-arm exoskeleton robot using human impedance transfer skills. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49, 954–963.

    Article  Google Scholar 

  120. Meattini, R., Benatti, S., Scarcia, U., Gregorio, D. D., Benini, L., & Melchiorri, C. (2018). An sEMG-Based human–robot interface for robotic hands using machine learning and synergies. IEEE Transactions on Components, Packaging and Manufacturing Technology, 8(7), 1149–1158.

    Article  Google Scholar 

  121. Yang, C. G., Zeng, C., Fang, C., He, W., & Li, Z. J. (2018). A DMPs-based framework for robot learning and generalization of humanlike variable impedance skills. IEEE/ASME Transactions on Mechatronics, 23(3), 1193–1203.

    Article  Google Scholar 

  122. Kiguchi, K., & Hayashi, Y. (2012). An EMG-based control for an upper-limb power-assist exoskeleton robot. IEEE Transactions on Cybernetics, 42(4), 1064–1071.

    Article  Google Scholar 

  123. Shepherd, M. K., & Rouse, E. J. (2017). The VSPA foot: A quasi-passive ankle-foot prosthesis with continuously variable stiffness. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(12), 2375–2386.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China [Grant No. 2020YFB1313000], National Natural Science Foundation of China [Grant No. 62003060, 62101086, 51975070], China Postdoctoral Science Foundation [2021M693769], Natural Science Foundation of Chongqing, China [Grant No. cstc2021jcyj-bsh0180], and Scientific and Technological Research Program of Chongqing Municipal Education Commission [Grant No. KJQN202100648].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanxi Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Tang, Y., Zheng, J. et al. Optimal Variable Stiffness Control and Its Applications in Bionic Robotic Joints: A Review. J Bionic Eng 20, 417–435 (2023). https://doi.org/10.1007/s42235-022-00278-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00278-x

Keywords

Navigation