Skip to main content
Log in

Properties and structure of a new non-reactive mold flux for high-Al steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

During the conventional continuous casting process of high-aluminum steels (w([Al]) > 0.5 wt.%), some components of slag, such as SiO2, B2O3, and TiO2, could be reduced by aluminum in molten steel. Therefore, the CaO–BaO–Al2O3–CaF2–Li2O non-reactive mold fluxes were designed using the simplex grid method and molecular dynamics to mitigate the slag–metal interface reaction and stabilize the performance of mold fluxes. The results show that the components of non-reactive quinary system are 20–40 wt.% CaO, 14–34 wt.% BaO, 14–34 wt.% Al2O3, 4–12 wt.% F, and 4–8 wt.% Li2O. Molecular dynamics simulation results show that [AlO4] tetrahedron acts as network formers and melt network structure is mainly chain and lamellar in the low-viscosity area. The cross sections of w(F) = 8 wt.%, w(Li2O) = 8 wt.% and w(F) = 12 wt.%, w(Li2O) = 8 wt.% are important reference sections for the design of mold flux, with the compositions of 22–40 wt.% CaO, 14–34 wt.% BaO, 20–34 wt.% Al2O3 and 23–40 wt.% CaO, 14–34 wt.% BaO, 20–28 wt.% Al2O3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Frommeyer, U. Brüx, Steel Res. Int. 77 (2006) 627–633.

    Article  Google Scholar 

  2. W.S. Wang, H.Y. Zhu, M.M. Song, J.L. Li, Y. Han, Z.L. Xue, Iron and Steel 55 (2020) No. 10, 29–36.

    Google Scholar 

  3. L.H. Wang, J.X. Li, L. Sun, H.L. An, C. Ma, Y.K. Dong, China Metallurgy 30 (2020) No. 3, 64–68.

    Google Scholar 

  4. C.Q. Liu, Q.C. Peng, Z.L. Xue, T. Wu, Mater. Rep. 33 (2019) 2572–2581.

    Google Scholar 

  5. S.P. He, Z.R. Li, Z. Chen, T. Wu, Q. Wang, Steel Res. Int. 90 (2019) 1800424.

    Article  Google Scholar 

  6. S.P. He, Q. Wang, J.H. Zeng, M. Zhang, B. Xie, J. Iron Steel Res. 21 (2009) No. 12, 59–62.

    Google Scholar 

  7. Q. Wang, J.H. Chi, M.J. Yao, Sichuan Metallurgy 13 (1991) No. 3, 40–46.

    Google Scholar 

  8. T. Omoto, T. Suzuki, H. Ogata, Shinagawa Technol Rep. 50 (2007) 57–62.

    Google Scholar 

  9. J.B. Jeffrey, A.M. Maureen, T.N. Thinium, J.P Thomas, J.S. Ernesto, R.S. Scott, D. Pether, P. Casey, in: AISTech 2005 Proc., AIST-Association for Iron and Steel Technology, North Carolina, Panelists, USA, 2005, pp. 99–106.

  10. K.H. Moon, M.S. Park, S. Yoo, J.K. Park, J.W. Cho, G. Shin, in: The 8th Pacific Rim International Congress on Advanced Materials and Processing, The Minerals, Metals & Materials Society, Hawaii, USA, 2013, pp. 735–745.

  11. J.L. Li, Q.F. Shu, K.C. Chou, Can. Metall. Quart. 54 (2015) 85–91.

    Article  Google Scholar 

  12. Z.T. Zhang, G.H. Wen, P. Tang, S. Sridhar, ISIJ Int. 48 (2008) 739–746.

    Article  Google Scholar 

  13. B.X. Lu, K. Chen, W.L. Wang, B.B. Jiang, Metall. Mater. Trans. B 45 (2014) 1496–1509.

    Article  Google Scholar 

  14. Q. Wang, M. Sun, S.T. Qiu, Z.L. Tian, G.L. Zhu, L.M. Wang, P. Zhao, Metall. Mater. Trans. B 45 (2014) 540–546.

    Article  Google Scholar 

  15. K. Blazek, H. Yin, G. Skoczylas, M. McClymonds, M. Frazee, AIST Trans. 8 (2011) 232–240.

    Google Scholar 

  16. S.P. He, Y. Chen, W.J. Pan, Q.Q. Wang, X.B. Zhang, Q. Wang, J. Iron Steel Res. 32 (2020) 771–779.

    Google Scholar 

  17. T. Wu, Study on microstructure and macroproperty of mould fluxes with low-reactivity, Chongqing University, Chongqing, China, 2017.

    Google Scholar 

  18. G.Z. Fan, S.P. He, T. Wu, Q. Wang, Metall. Mater. Trans. B 46 (2015) 2005–2013.

    Article  Google Scholar 

  19. T. Wu, Q. Wang, T.H. Yao, S.P. He, J. Non-Cryst. Solids 435 (2016) 17–26.

    Google Scholar 

  20. S.P. He, S. Wang, B.R. Jia, M. Li, Q.Q. Wang, Q. Wang, Metall. Mater. Trans. B 50 (2019) 1503–1513.

    Article  Google Scholar 

  21. B.R. Jia, M. Li, X.B. Yan, Q.Q. Wang, S.P. He, J. Non-Cryst. Solids 526 (2019) 119695.

    Google Scholar 

  22. B. Xie, Y.N. Gan, J.F. Wu, J. Iron Steel Res. 2 (1990) No. 1, 5–12.

    Google Scholar 

  23. D.M. Li, Application technology of mould slag for continuous casting, Metallurgical Industry Press, Beijing, China, 2008.

    Google Scholar 

  24. D. Xie, Study on new producing zones of non-fluorine and low-fluorine continuous casting mould fluxes, Chongqing University, Chongqing, China, 2006.

    Google Scholar 

  25. L.L. Zhu, Q. Wang, Q.Q. Wang, S.D. Zhang, S.P. He, Ironmak. Steelmak. 46 (2019) 865–871.

    Article  Google Scholar 

  26. Y.R. Mei, Foundry Technology (1992) No. 6, 19–20.

    Google Scholar 

  27. Z.R. Li, Research on reactivity control and basic structure properties of mold flux for high-Mn high-Al steel, Chongqing University, Chongqing, China, 2019.

    Google Scholar 

  28. T. Wu, Q. Wang, S.P. He, J.F. Xu, X. Long, Y.J. Lu, Steel Res. Int. 83 (2012) 1194–1202.

    Article  Google Scholar 

  29. J.H. Chi, B. Xie, Y.N. Gan, J. Chongqing Univ. 13 (1990) No. 2, 80–86.

    Google Scholar 

  30. Q.C. Wei, Y.Q. Ding, K.D. Peng, J. Chongqing Univ. 18 (1995) No. 4, 110–114.

    Google Scholar 

  31. B. Lu, W. Wang, Metall. Mater. Trans. B 46 (2015) 852–862.

    Article  Google Scholar 

  32. W. Yan, W.Q. Chen, L. Carsten, H.G. Zhen, Special Steel 34 (2013) No. 1, 45–48.

    Google Scholar 

  33. C.X. Ji, Y. Cui, Z. Zeng, Z.H. Tian, C.L. Zhao, G.S. Zhu, J. Iron Steel Res. Int. 22 (2015) 54–57.

    Google Scholar 

  34. J.M. Li, M.F. Jiang, L.F. Sun, China Metallurgy 27 (2017) No. 12, 28–31.

    Google Scholar 

  35. J. Yang, Y. Kim, I. Sohn, J. Mater. Res. Technol. 10 (2021) 268–281.

    Article  Google Scholar 

  36. L. Deng, J. Du, J. Am. Ceram. Soc. 102 (2019) 2482–2505.

    Article  Google Scholar 

  37. L. Cormier, D.R. Neuville, G. Calas, J. Non-Cryst. Solids 274 (2000) 110–114.

    Google Scholar 

  38. A.C. Hannon, J.M. Parker, J. Non-Cryst. Solids 274 (2000) 102–109.

    Google Scholar 

Download references

Acknowledgements

The authors would like to deeply appreciate the fund support from the National Natural Science Foundation of China (Project Nos. U20A20270 and U1660204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng-ping He or Qian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., He, Sp., Li, Zr. et al. Properties and structure of a new non-reactive mold flux for high-Al steel. J. Iron Steel Res. Int. 29, 61–70 (2022). https://doi.org/10.1007/s42243-021-00708-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00708-w

Keywords

Navigation