Skip to main content

Advertisement

Log in

Biomaterials obtained by photopolymerization: from UV to two photon

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Photopolymerizable materials are commonly used in the industry for a long time, being extended their use in adhesives, coatings, paint and printing ink industries, composite materials, or even in the food industry. Their use in biomedical industry was until recently quite limited to acrylic derivatives used for dental restauration. However, the increase of the biocompatible monomers and initiators added to the widespread use of the 3D printing or the evolution of the two-photon photopolymerization has renew the interest on this methodology for the fabrication of biomaterials. In this review, the main photopolymerization processes from the conventional methods to more demanding methods such as two-photon polymerization are summarized, and the main applications of biomaterials obtained from photopolymerization have been reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Yu, J. Schimelman, P. Wang, K.L. Miller, X. Ma, S. You, J. Guan, B. Sun, W. Zhu, S. Chen, Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications. Chem. Rev. (2020). https://doi.org/10.1021/acs.chemrev.9b00810

  2. K.S. Anseth, J.A. Burdick, New directions in photopolymerizable biomaterials. MRS Bull., 130–136 (2002). https://doi.org/10.1557/mrs2002.49

  3. G. Odian, Principles of photopolymerization, 4th edn. (John Wiley & Sons, Inc., New York, 2004) ISBN 3175723993

    Book  Google Scholar 

  4. Y. Yagci, S. Jockusch, N.J. Turro, Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules 43, 6245–6260 (2010). https://doi.org/10.1021/ma1007545

    Article  CAS  Google Scholar 

  5. R.J. Young, P.A. Lovell, Introduction to polymers, 3rd edn. (Taylor & Francis Group, New York, 2011) ISBN 9781439889664

    Book  Google Scholar 

  6. J.L. Ifkovits, J.A. Burdick, Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng. 13, 2369–2385 (2007). https://doi.org/10.1089/ten.2007.0093

    Article  CAS  Google Scholar 

  7. O.M. Kolawole, W.M. Lau, V.V. Khutoryanskiy, Methacrylated chitosan as a polymer with enhanced mucoadhesive properties for transmucosal drug delivery. Int. J. Pharm. 550, 123–129 (2018). https://doi.org/10.1016/j.ijpharm.2018.08.034

    Article  CAS  Google Scholar 

  8. L.E. Agibayeva, D.B. Kaldybekov, N.N. Porfiryeva, V.R. Garipova, R.A. Mangazbayeva, R.I. Moustafine, I.I. Semina, G.A. Mun, S.E. Kudaibergenov, V.V. Khutoryanskiy, Gellan gum and its methacrylated derivatives as in situ gelling mucoadhesive formulations of pilocarpine: in vitro and in vivo studies. Int. J. Pharm. 577, 119093 (2020). https://doi.org/10.1016/j.ijpharm.2020.119093

    Article  CAS  Google Scholar 

  9. M. Kaur, A.K. Srivastava, Photopolymerization: a review. J. Macromol. Sci. Polym. Rev. 42, 481–512 (2002). https://doi.org/10.1081/MC-120015988

    Article  CAS  Google Scholar 

  10. A. Endruweit, M.S. Johnson, A.C. Long, Curing of composite components by ultraviolet radiation: a review. Polym. Compos. 27, 119–128 (2006). https://doi.org/10.1002/pc.20166

    Article  CAS  Google Scholar 

  11. C. Mendes-Felipe, J. Oliveira, I. Etxebarria, J.L. Vilas-Vilela, S. Lanceros-Mendez, State-of-the-art and future challenges of UV curable polymer-based smart materials for printing technologies. Adv. Mater. Technol. 4, 1–16 (2019). https://doi.org/10.1002/admt.201800618

    Article  CAS  Google Scholar 

  12. R. Schwalm, UV coatings. Basics, recent developments and new applications; First Edit (Elsevier, Amsterdam, 2006) ISBN 9780444529794

    Google Scholar 

  13. Q. Ye, Y. Wang, K. Williams, P. Spencer, Characterization of photopolymerization of dentin adhesives as a function of light source and irradiance. J. Biomed. Mater. Res. B Appl. Biomater. 80, 440–446 (2007). https://doi.org/10.1002/jbm.b.30615

    Article  CAS  Google Scholar 

  14. J.P. Fouassier, X. Allonas, D. Burget, Photopolymerization reactions under visible lights: principle, mechanisms and examples of applications. Prog. Org. Coat. 47, 16–36 (2003). https://doi.org/10.1016/S0300-9440(03)00011-0

    Article  CAS  Google Scholar 

  15. C. Mendes-Felipe, J. Oliveira, P. Costa, L. Ruiz-Rubio, A. Iregui, A. González, J.L. Vilas, S. Lanceros-Mendez, Stimuli responsive UV cured polyurethane acrylated/carbon nanotube composites for piezoresistive sensing. Eur. Polym. J. 120, 109226 (2019). https://doi.org/10.1016/j.eurpolymj.2019.109226

    Article  CAS  Google Scholar 

  16. S. Papilloud, D. Baudraz, Analysis of food packaging UV inks for chemicals with potential to migrate into food simulants. Food Addit. Contam. 19, 168–175 (2002). https://doi.org/10.1080/0265203011008480

    Article  CAS  Google Scholar 

  17. R. Tang, A. Muhammad, J. Yang, J. Nie, Preparation of antifog and antibacterial coatings by photopolymerization. Polym. Adv. Technol. 25, 651–656 (2014). https://doi.org/10.1002/pat.3267

    Article  CAS  Google Scholar 

  18. L. Fertier, H. Koleilat, M. Stemmelen, O. Giani, C. Joly-Duhamel, V. Lapinte, J.J. Robin, The use of renewable feedstock in UV-curable materials-a new age for polymers and green chemistry. Prog. Polym. Sci. 38, 932–962 (2013). https://doi.org/10.1016/j.progpolymsci.2012.12.002

    Article  CAS  Google Scholar 

  19. C. Noè, S. Malburet, A. Bouvet-Marchand, A. Graillot, C. Loubat, M. Sangermano, Cationic photopolymerization of bio-renewable epoxidized monomers. Prog. Org. Coat. 133, 131–138 (2019). https://doi.org/10.1016/j.porgcoat.2019.03.054

    Article  CAS  Google Scholar 

  20. B. Baroli, Photopolymerization of biomaterials: issues and potentialities in drug delivery, tissue engineering, and cell encapsulation applications. J. Chem. Technol. Biotechnol. 81, 491–499 (2006). https://doi.org/10.1002/jctb.1468

    Article  CAS  Google Scholar 

  21. D.C. Aduba, E.D. Margaretta, A.E.C. Marnot, K.V. Heifferon, W.R. Surbey, N.A. Chartrain, A.R. Whittington, T.E. Long, C.B. Williams, Vat photopolymerization 3D printing of acid-cleavable PEG-methacrylate networks for biomaterial applications. Mater. Today Commun. 19, 204–211 (2019). https://doi.org/10.1016/j.mtcomm.2019.01.003

    Article  CAS  Google Scholar 

  22. S.M. Peltola, F.P.W. Melchels, D.W. Grijpma, M. Kellomäki, A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 40, 268–280 (2008). https://doi.org/10.1080/07853890701881788

    Article  CAS  Google Scholar 

  23. A. Tiwari, A. Polykarpov, Photocured materials, 1st edn. (Royal Society of Chemistry, Cambridge, 2014) ISBN 9781782620013

    Book  Google Scholar 

  24. J. Xu, Y. Jiang, T. Zhang, Y. Dai, D. Yang, F. Qiu, Z. Yu, P. Yang, Synthesis of UV-curing waterborne polyurethane-acrylate coating and its photopolymerization kinetics using FT-IR and photo-DSC methods. Prog. Org. Coat. 122, 10–18 (2018). https://doi.org/10.1016/j.porgcoat.2018.05.008

    Article  CAS  Google Scholar 

  25. C. Check, R. Chartoff, S. Chang, Inkjet printing of 3D nano-composites formed by photopolymerization of an acrylate monomer. React. Funct. Polym. 97, 116–122 (2015). https://doi.org/10.1016/j.reactfunctpolym.2015.09.009

    Article  CAS  Google Scholar 

  26. H. Itoh, A. Kameyama, T. Nishikubo, Synthesis of new hybrid monomers and oligomers containing cationic and radical polymerizable vinyl groups and their photoinitiated polymerization. J. Polym. Sci. A Polym. Chem. 34, 217–225 (1996). https://doi.org/10.1002/(SICI)1099-0518(19960130)34:2<217::AID-POLA8>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  27. J. Ortyl, R. Popielarz, New photoinitiators for cationic polymerization. Polimery/Polymers 57, 510–517 (2012). https://doi.org/10.14314/polimery.2012.510

    Article  CAS  Google Scholar 

  28. W. Schnabel, Polymers and light. Fundamentals and technical applicaions, vol 168, 1st edn. (Alemania, Berlin, 2004) ISBN 978-3-540-40471-2

    Google Scholar 

  29. S. Shi, C. Croutxé-Barghorn, X. Allonas, Photoinitiating systems for cationic photopolymerization: ongoing push toward long wavelengths and low light intensities. Prog. Polym. Sci. 65, 1–41 (2017). https://doi.org/10.1016/j.progpolymsci.2016.09.007

    Article  CAS  Google Scholar 

  30. Fouassier, J. P.; Lalevée, J. Photoinitiators for polymer synthesis: scope, reactivity and efficiency; 2012; ISBN 9783527332106

  31. S. Wu, J. Serbin, M. Gu, Two-photon polymerisation for three-dimensional micro-fabrication. J. Photochem. Photobiol. A Chem. 181, 1–11 (2006). https://doi.org/10.1016/j.jphotochem.2006.03.004

    Article  CAS  Google Scholar 

  32. W. Hermiyanty, D.S. Ayu Bertin, NMR 3D analysis photopolymerization (Springer, Germany, 2004) ISBN 9788578110796

    Google Scholar 

  33. A. Gandini, H. Cheradame, Photoresponsive polymers I (Springer, Berlin (Alemania), 2008) ISBN 9783540694489

    Google Scholar 

  34. A. Doraiswamy, C. Jin, R.J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D.B. Chrisey, A. Ovsianikov, B. Chichkov, Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices. Acta Biomater. 2, 267–275 (2006). https://doi.org/10.1016/j.actbio.2006.01.004

    Article  CAS  Google Scholar 

  35. Fisher, J. P.; Dean, D.; Engel, P. S.; Mikos, A. G. Photoinitiated polymerization of biomaterials. 2001

    Book  Google Scholar 

  36. T. Billiet, M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, P. Dubruel, A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33, 6020–6041 (2012). https://doi.org/10.1016/j.biomaterials.2012.04.050

    Article  CAS  Google Scholar 

  37. B. Dhandayuthapani, Y. Yoshida, T. Maekawa, D.S. Kumar, Polymeric scaffolds in tissue engineering application: a review. Int. J. Polym. Sci. 2011, 1–19 (2011). https://doi.org/10.1155/2011/290602

    Article  Google Scholar 

  38. G. Choi, H.J. Cha, Recent advances in the development of nature-derived photocrosslinkable biomaterials for 3D printing in tissue engineering. Biomater. Res. 23, 1–7 (2019). https://doi.org/10.1186/s40824-019-0168-8

    Article  CAS  Google Scholar 

  39. B.J. Green, K.S. Worthington, J.R. Thompson, S.J. Bunn, M. Rethwisch, E.E. Kaalberg, C. Jiao, L.A. Wiley, R.F. Mullins, E.M. Stone, E.H. Sohn, B.A. Tucker, C.A. Guymon, Effect of molecular weight and functionality on acrylated poly(caprolactone) for stereolithography and biomedical applications. Biomacromolecules 19, 3682–3692 (2018). https://doi.org/10.1021/acs.biomac.8b00784

    Article  CAS  Google Scholar 

  40. Y.L. Cheng, F. Chen, Preparation and characterization of photocured poly (ε-caprolactone) diacrylate/poly (ethylene glycol) diacrylate/chitosan for photopolymerization-type 3D printing tissue engineering scaffold application. Mater. Sci. Eng. C 81, 66–73 (2017). https://doi.org/10.1016/j.msec.2017.07.025

    Article  CAS  Google Scholar 

  41. F. Claeyssens, E.A. Hasan, A. Gaidukeviciute, D.S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B.N. Chichkov, M. Farsari, Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir 25, 3219–3223 (2009). https://doi.org/10.1021/la803803m

    Article  CAS  Google Scholar 

  42. T. Weiß, R. Schade, T. Laube, A. Berg, G. Hildebrand, R. Wyrwa, M. Schnabelrauch, K. Liefeith, Two-photon polymerization of biocompatible photopolymers for microstructured 3D biointerfaces. Adv. Eng. Mater. 13, 264–273 (2011). https://doi.org/10.1002/adem.201080090

    Article  CAS  Google Scholar 

  43. S. Rothemund, T.B. Aigner, A. Iturmendi, M. Rigau, B. Husár, F. Hildner, E. Oberbauer, M. Prambauer, G. Olawale, R. Forstner, R. Liska, K.R. Schröder, O. Brüggemann, I. Teasdale, Degradable glycine-based photo-polymerizable polyphosphazenes for use as scaffolds for tissue regeneration. Macromol. Biosci. 15, 351–363 (2015). https://doi.org/10.1002/mabi.201400390

    Article  CAS  Google Scholar 

  44. J. Skrobot, L. Zair, M. Ostrowski, M. El Fray, New injectable elastomeric biomaterials for hernia repair and their biocompatibility. Biomaterials 75, 182–192 (2016). https://doi.org/10.1016/j.biomaterials.2015.10.037

    Article  CAS  Google Scholar 

  45. R.P. Rimington, A.J. Capel, D.J. Player, R.J. Bibb, S.D.R. Christie, M.P. Lewis, Feasibility and biocompatibility of 3D-printed photopolymerized and laser sintered polymers for neuronal, myogenic, and hepatic cell types. Macromol. Biosci. 18, 1–12 (2018). https://doi.org/10.1002/mabi.201800113

    Article  CAS  Google Scholar 

  46. D. Singh, A.J. Harding, E. Albadawi, F.M. Boissonade, J.W. Haycock, F. Claeyssens, Additive manufactured biodegradable poly(glycerol sebacate methacrylate) nerve guidance conduits. Acta Biomater. 78, 48–63 (2018). https://doi.org/10.1016/j.actbio.2018.07.055

    Article  CAS  Google Scholar 

  47. Y.C. Yeh, C.B. Highley, L. Ouyang, J.A. Burdick, 3D printing of photocurable poly(glycerol sebacate) elastomers. Biofabrication 8 (2016). https://doi.org/10.1088/1758-5090/8/4/045004

  48. P. Ravi, J. Wright, P.S. Shiakolas, T.R. Welch, Three-dimensional printing of poly(glycerol sebacate fumarate) gadodiamide-poly(ethylene glycol) diacrylate structures and characterization of mechanical properties for soft tissue applications. J Biomed Mater Res B Appl Biomater 107, 664–671 (2019). https://doi.org/10.1002/jbm.b.34159

    Article  CAS  Google Scholar 

  49. S.J. Lee, H.W. Kang, J.K. Park, J.W. Rhie, S.K. Hahn, D.W. Cho, Application of microstereolithography in the development of three-dimensional cartilage regeneration scaffolds. Biomed. Microdevices 10, 233–241 (2008). https://doi.org/10.1007/s10544-007-9129-4

    Article  CAS  Google Scholar 

  50. C.J. Pateman, A.J. Harding, A. Glen, C.S. Taylor, C.R. Christmas, P.P. Robinson, S. Rimmer, F.M. Boissonade, F. Claeyssens, J.W. Haycock, Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair. Biomaterials 49, 77–89 (2015). https://doi.org/10.1016/j.biomaterials.2015.01.055

    Article  CAS  Google Scholar 

  51. A. Koroleva, A.A. Gill, I. Ortega, J.W. Haycock, S. Schlie, S.D. Gittard, B.N. Chichkov, F. Claeyssens, Two-photon polymerization-generated and micromolding-replicated 3D scaffolds for peripheral neural tissue engineering applications. Biofabrication 4, 025005 (2012). https://doi.org/10.1088/1758-5082/4/2/025005

    Article  CAS  Google Scholar 

  52. O. Jeon, Y.B. Lee, H. Jeong, S.J. Lee, D. Wells, E. Alsberg, Individual cell-only bioink and photocurable supporting medium for 3D printing and generation of engineered tissues with complex geometries. Mater. Horizons 6, 1625–1631 (2019). https://doi.org/10.1039/c9mh00375d

    Article  CAS  Google Scholar 

  53. M. Mizutani, T. Matsuda, Liquid photocurable biodegradable copolymers: in vivo degradation of photocured poly(ε-caprolactone-co-trimethylene carbonate). J. Biomed. Mater. Res. 61, 53–60 (2002). https://doi.org/10.1002/jbm.10166

    Article  CAS  Google Scholar 

  54. Y.P. Lee, H.Y. Liu, P.C. Lin, Y.H. Lee, L.R. Yu, C.C. Hsieh, P.J. Shih, W.P. Shih, I.J. Wang, J.Y. Yen, C.A. Dai, Facile fabrication of superporous and biocompatible hydrogel scaffolds for artificial corneal periphery. Colloids Surf. B: Biointerfaces 175, 26–35 (2019). https://doi.org/10.1016/j.colsurfb.2018.11.013

    Article  CAS  Google Scholar 

  55. Y.J. He, D.A. Young, M. Mededovic, K. Li, C. Li, K. Tichauer, D. Venerus, G. Papavasiliou, Protease-sensitive hydrogel biomaterials with tunable modulus and adhesion ligand gradients for 3D vascular sprouting. Biomacromolecules 19, 4168–4181 (2018). https://doi.org/10.1021/acs.biomac.8b00519

    Article  CAS  Google Scholar 

  56. G. Gao, A.F. Schilling, T. Yonezawa, J. Wang, G. Dai, X. Cui, Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol. J. 9, 1304–1311 (2014). https://doi.org/10.1002/biot.201400305

    Article  CAS  Google Scholar 

  57. A. Abbadessa, M.M. Blokzijl, V.H.M. Mouser, P. Marica, J. Malda, W.E. Hennink, T. Vermonden, A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications. Carbohydr. Polym. 149, 163–174 (2016). https://doi.org/10.1016/j.carbpol.2016.04.080

    Article  CAS  Google Scholar 

  58. R. Censi, W. Schuurman, J. Malda, G. Di Dato, P.E. Burgisser, W.J.A. Dhert, C.F. Van Nostrum, P. Di Martino, T. Vermonden, W.E. Hennink, A printable photopolymerizable thermosensitive p(HPMAm-lactate)-PEG hydrogel for tissue engineering. Adv. Funct. Mater. 21, 1833–1842 (2011). https://doi.org/10.1002/adfm.201002428

    Article  CAS  Google Scholar 

  59. J. Torgersen, A.O.V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, J. Stampfl, Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms. J. Biomed. Opt. 17, 15–18 (2012). https://doi.org/10.1117/1.JBO.17.10

    Article  Google Scholar 

  60. M.S. Bae, J.Y. Ohe, J.B. Lee, D.N. Heo, W. Byun, H. Bae, Y.D. Kwon, I.K. Kwon, Photo-cured hyaluronic acid-based hydrogels containing growth and differentiation factor 5 (GDF-5) for bone tissue regeneration. Bone 59, 189–198 (2014). https://doi.org/10.1016/j.bone.2013.11.019

    Article  CAS  Google Scholar 

  61. L. Ouyang, C.B. Highley, C.B. Rodell, W. Sun, J.A. Burdick, 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking. ACS Biomater. Sci. Eng. 2, 1743–1751 (2016). https://doi.org/10.1021/acsbiomaterials.6b00158

    Article  CAS  Google Scholar 

  62. O. Kufelt, A. El-Tamer, C. Sehring, S. Schlie-Wolter, B.N. Chichkov, Hyaluronic acid based materials for scaffolding via two-photon polymerization. Biomacromolecules 15, 650–659 (2014). https://doi.org/10.1021/bm401712q

    Article  CAS  Google Scholar 

  63. Y. Zhou, K. Liang, S. Zhao, C. Zhang, J. Li, H. Yang, X. Liu, X. Yin, D. Chen, W. Xu, P. Xiao, Photopolymerized maleilated chitosan/methacrylated silk fibroin micro/nanocomposite hydrogels as potential scaffolds for cartilage tissue engineering. Int. J. Biol. Macromol. 108, 383–390 (2018). https://doi.org/10.1016/j.ijbiomac.2017.12.032

    Article  CAS  Google Scholar 

  64. P.M. Chichiricco, R. Riva, J.M. Thomassin, J. Lesoeur, X. Struillou, C. Le Visage, C. Jérôme, P. Weiss, In situ photochemical crosslinking of hydrogel membrane for guided tissue regeneration. Dent. Mater. 34, 1769–1782 (2018). https://doi.org/10.1016/j.dental.2018.09.017

    Article  CAS  Google Scholar 

  65. O. Kufelt, A. El-Tamer, C. Sehring, M. Meißner, S. Schlie-Wolter, B.N. Chichkov, Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization. Acta Biomater. 18, 186–195 (2015). https://doi.org/10.1016/j.actbio.2015.02.025

    Article  CAS  Google Scholar 

  66. L. Li, C. Lu, L. Wang, M. Chen, J. White, X. Hao, K.M. McLean, H. Chen, T.C. Hughes, Gelatin-based photocurable hydrogels for corneal wound repair. ACS Appl. Mater. Interfaces 10, 13283–13292 (2018). https://doi.org/10.1021/acsami.7b17054

    Article  CAS  Google Scholar 

  67. P. Occhetta, R. Visone, L. Russo, L. Cipolla, M. Moretti, M. Rasponi, VA-086 methacrylate gelatine photopolymerizable hydrogels: a parametric study for highly biocompatible 3D cell embedding. J. Biomed. Mater. Res. A 103, 2109–2117 (2015). https://doi.org/10.1002/jbm.a.35346

    Article  CAS  Google Scholar 

  68. H. Lin, A.M. Beck, K. Shimomura, J. Sohn, M.R. Fritch, Y. Deng, E.J. Kilroy, Y. Tang, P.G. Alexander, R.S. Tuan, Optimization of photocrosslinked gelatin/hyaluronic acid hybrid scaffold for the repair of cartilage defect. J. Tissue Eng. Regen. Med. 13, 1418–1429 (2019). https://doi.org/10.1002/term.2883

    Article  CAS  Google Scholar 

  69. A. Ovsianikov, A. Deiwick, S. Van Vlierberghe, P. Dubruel, L. Möller, G. Drager, B. Chichkov, Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules 12, 851–858 (2011). https://doi.org/10.1021/bm1015305

    Article  CAS  Google Scholar 

  70. T.K. Dash, V.B. Konkimalla, Poly-ε-caprolactone based formulations for drug delivery and tissue engineering: a review. J. Control. Release 158, 15–33 (2012). https://doi.org/10.1016/j.jconrel.2011.09.064

    Article  CAS  Google Scholar 

  71. M. Abedalwafa, F. Wang, L. Wang, C. Li, Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev. Adv. Mater. Sci. 34, 123–140 (2013)

    CAS  Google Scholar 

  72. S.H. Ahn, J. Lee, S.A. Park, W.D. Kim, Three-dimensional bio-printing equipment technologies for tissue engineering and regenerative medicine. Tissue Eng. Regen. Med. 13, 663–676 (2016). https://doi.org/10.1007/s13770-016-0148-1

    Article  CAS  Google Scholar 

  73. J.W. Lee, K.S. Kang, S.H. Lee, J.Y. Kim, B.K. Lee, D.W. Cho, Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials 32, 744–752 (2011). https://doi.org/10.1016/j.biomaterials.2010.09.035

    Article  CAS  Google Scholar 

  74. W. Meng, L. Gao, J.K. Venkatesan, G. Wang, H. Madry, M. Cucchiarini, Translational applications of photopolymerizable hydrogels for cartilage repair. J. Exp. Orthop. 6, 6 (2019). https://doi.org/10.1186/s40634-019-0215-3

    Article  Google Scholar 

  75. K.Y. Lee, D.J. Mooney, Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1879 (2001). https://doi.org/10.1021/cr000108x

    Article  CAS  Google Scholar 

  76. E. Bakaic, N.M.B. Smeets, T. Hoare, Injectable hydrogels based on poly(ethylene glycol) and derivatives as functional biomaterials. RSC Adv. 5, 35469–35486 (2015). https://doi.org/10.1039/c4ra13581d

    Article  CAS  Google Scholar 

  77. C.C. Lin, K.S. Anseth, PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm. Res. 26, 631–643 (2009). https://doi.org/10.1007/s11095-008-9801-2

    Article  CAS  Google Scholar 

  78. K.T. Nguyen, J.L. West, Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23, 4307–4314 (2002). https://doi.org/10.1016/S0142-9612(02)00175-8

    Article  CAS  Google Scholar 

  79. W. Shi, R. He, Y. Liu, 3D printing scaffolds with hydrogel materials for biomedical applications. Eur. J. Biomed. Res. 1, 3 (2015). https://doi.org/10.18088/ejbmr.1.3.2015.pp3-8

    Article  Google Scholar 

  80. J.-F. Xing, M.-L. Zheng, X.-M. Duan, Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem. Soc. Rev. 44, 5031–5039 (2015). https://doi.org/10.1039/C5CS00278H

    Article  CAS  Google Scholar 

  81. A.I. Ciuciu, P.J. Cywiński, Two-photon polymerization of hydrogels-versatile solutions to fabricate well-defined 3D structures. RSC Adv. 4, 45504–45516 (2014). https://doi.org/10.1039/c4ra06892k

    Article  CAS  Google Scholar 

  82. J. Elisseeff, K. Anseth, D. Sims, W. McIntosh, M. Randolph, M. Yaremchuk, R. Langer, Transdermal photopolymerization of poly (ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast. Reconstr. Surg. 104, 1014–1022 (1999)

    Article  CAS  Google Scholar 

  83. A.S. Sawhney, C.P. Pathak, J.A. Hubbell, Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly (α-hydroxy acid) diacrylate macromers. Macromolecules 26, 581–587 (1993). https://doi.org/10.1021/ma00056a005

    Article  CAS  Google Scholar 

  84. S.J. Bryant, C.R. Nuttelman, K.S. Anseth, Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J. Biomater. Sci. Polym. Ed. 11, 439–457 (2000). https://doi.org/10.1163/156856200743805

    Article  CAS  Google Scholar 

  85. L. Pescosolido, S. Miatto, C. Di Meo, C. Cencetti, T. Coviello, F. Alhaique, P. Matricardi, Injectable and in situ gelling hydrogels for modified protein release. Eur. Biophys. J. 39, 903–909 (2010). https://doi.org/10.1007/s00249-009-0440-2

    Article  CAS  Google Scholar 

  86. T. Vermonden, R. Censi, W.E. Hennink, Hydrogels for protein delivery. Chem. Rev. 112, 2853–2888 (2012). https://doi.org/10.1021/cr200157d

    Article  CAS  Google Scholar 

  87. B.D. Fairbanks, M.P. Schwartz, C.N. Bowman, K.S. Anseth, Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials 30, 6702–6707 (2009). https://doi.org/10.1016/j.biomaterials.2009.08.055

    Article  CAS  Google Scholar 

  88. J.L. West, J.A. Hubbell, Photopolymerized hydrogel materials for drug delivery applications. React. Polym. 25, 139–147 (1995). https://doi.org/10.1016/0923-1137(94)00096-N

    Article  CAS  Google Scholar 

  89. K. Modaresifar, A. Hadjizadeh, H. Niknejad, Design and fabrication of GelMA/chitosan nanoparticles composite hydrogel for angiogenic growth factor delivery. Artif. Cells, Nanomed. Biotechnol. 46, 1799–1808 (2018). https://doi.org/10.1080/21691401.2017.1392970

    Article  CAS  Google Scholar 

  90. L. Zhang, L. Wang, B. Guo, P.X. Ma, Cytocompatible injectable carboxymethyl chitosan/N-isopropylacrylamide hydrogels for localized drug delivery. Carbohydr. Polym. 103, 110–118 (2014). https://doi.org/10.1016/j.carbpol.2013.12.017

    Article  CAS  Google Scholar 

  91. C. Pascual-Garrido, E.A. Aisenbrey, F. Rodriguez-Fontan, K.A. Payne, S.J. Bryant, L.R. Goodrich, Photopolymerizable injectable cartilage mimetic hydrogel for the treatment of focal chondral lesions: a proof of concept study in a rabbit animal model. Am. J. Sports Med. 47, 212–221 (2019). https://doi.org/10.1177/0363546518808012

    Article  Google Scholar 

  92. E. Mathew, G. Pitzanti, E. Larrañeta, D.A. Lamprou, Three-dimensional printing of pharmaceuticals and drug delivery devices. Pharmaceutics 12, 1–9 (2020). https://doi.org/10.3390/pharmaceutics12030266

    Article  CAS  Google Scholar 

  93. B. Dhariwala, E. Hunt, T. Boland, D. Ph, Rapid prototyping of tissue-engineering constructs. Using Rapid Prototyp. Constr. 10, 1316–1322 (2004)

    CAS  Google Scholar 

  94. N. Allahham, F. Fina, C. Marcuta, L. Kraschew, W. Mohr, S. Gaisford, A.W. Basit, A. Goyanes, Selective laser sintering 3D printing of orally disintegrating printlets containing ondansetron. Pharmaceutics 12 (2020). https://doi.org/10.3390/pharmaceutics12020110

  95. A.V. Healy, E. Fuenmayor, P. Doran, L.M. Geever, C.L. Higginbotham, J.G. Lyons, Additive manufacturing of personalized pharmaceutical dosage forms via stereolithography. Pharmaceutics 11, 13–15 (2019). https://doi.org/10.3390/pharmaceutics11120645

    Article  CAS  Google Scholar 

  96. A. Ovsianikov, B. Chichkov, P. Mente, N.A. Monteiro-Riviere, A. Doraiswamy, R.J. Narayan, Two photon polymerization of polymer-ceramic hybrid materials for transdermal drug delivery. Int. J. Appl. Ceram. Technol. 4, 22–29 (2007). https://doi.org/10.1111/j.1744-7402.2007.02115.x

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by Eusko Jaurlaritza (kk2019/00101 and kk2019/00039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leire Ruiz-Rubio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felipe-Mendes, C., Ruiz-Rubio, L. & Vilas-Vilela, J.L. Biomaterials obtained by photopolymerization: from UV to two photon. emergent mater. 3, 453–468 (2020). https://doi.org/10.1007/s42247-020-00114-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-020-00114-0

Keywords

Navigation