Skip to main content
Log in

Quantum Chemical Investigation, Drug-Likeness and Molecular Docking Studies on Galangin as Alpha-Synuclein Regulator for the Treatment of Parkinson’s Disease

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Globally the leading source of disability is neurological disorder. The chronic, complex and rapidly progressive neurological disorder in the world is Parkinson's disease (PD). PD is an age based neurodegenerative disorder. According to previous report the number of people with Parkinson’s disease has doubled from 1995 to 2015, to above 6 million. The protein α-synuclein has been strongly associated with the pathogenesis of Parkinson’s disease. α-synuclein plays a neuropathological role in the dysfunction of dopamine neurons in Parkinson’s disease. Here, we designed a structure-based drug galangin as an effective α-synuclein regulator, naturally occurring flavonoid, plants and traditional Chinese medicines. The present study was aimed to analyze the quantum chemical with the basis set of B3YLP/6–311 +  + G (d,p) and molecular docking studies to find the binding efficiency of target protein and ligand molecule and determine the physiochemical and ADMET properties of galangin. Density function theory revealed the structural geometry, vibrational spectrum and the stability and reactivity of the lead molecule galangin. Molecular Docking score reveals that galangin showed a good binding efficiency of -9.4 kcal/mol at the active site of α-synuclein and RC plot analysis showed that the interacted protein and ligand had a stable-linkage, which suggests galangin a potential candidate for further development of drug in-vitro and in-vivo against Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cookson MR (2009) α-Synuclein and neuronal cell death. Mol Neurodegener 4(1):1–14. https://doi.org/10.1186/1750-1326-4-9

    Article  CAS  Google Scholar 

  2. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909. https://doi.org/10.1016/S0896-6273(03)00568-3

    Article  CAS  PubMed  Google Scholar 

  3. Delamarre A, Meissner WG (2017) Epidemiology, environmental risk factors and genetics of Parkinson’s disease. La Presse Médicale 46(2):175–181. https://doi.org/10.1016/j.lpm.2017.01.001

    Article  PubMed  Google Scholar 

  4. Dutheil F, Beaune P, Tzourio C, Loriot MA, Elbaz A (2010) Interaction between ABCB1 and professional exposure to organochlorine insecticides in Parkinson disease. Arch Neurol 67(6):739–745. https://doi.org/10.1001/archneurol.2010.101

    Article  PubMed  Google Scholar 

  5. Hu CY, Fang Y, Li FL, Dong B, Hua XG, Jiang W, Zhang XJ (2019) Association between ambient air pollution and Parkinson’s disease: systematic review and meta-analysis. Environ Res 168:448–459. https://doi.org/10.1016/j.envres.2018.10.008

    Article  CAS  PubMed  Google Scholar 

  6. Costa J, Lunet N, Santos C, Santos J, Vaz-Carneiro A (2010) Caffeine exposure and the risk of Parkinson’s disease: a systematic review and meta-analysis of observational studiess. J Alzheimers Dis 20(s1):S221–S238. https://doi.org/10.3233/JAD-2010−091525

    Article  CAS  PubMed  Google Scholar 

  7. Tan LC, Koh WP, Yuan JM, Wang R, Au WL, Tan JH, Yu MC (2008) Differential effects of black versus green tea on risk of Parkinson’s disease in the Singapore Chinese Health Study. Am J Epidemiol 167(5):553–560. https://doi.org/10.1093/aje/kwm338

    Article  PubMed  Google Scholar 

  8. Ritz B, Ascherio A, Checkoway H, Marder KS, Nelson LM, Rocca WA, Gorell J (2007) Pooled analysis of tobacco use and risk of Parkinson disease. Arch Neurol 64(7):990–997. https://doi.org/10.1001/archneur.64.7.990

    Article  PubMed  Google Scholar 

  9. Wolozin B, Wang SW, Li NC, Lee A, Lee TA, Kazis LE (2007) Simvastatin is associated with a reduced incidence of dementia and Parkinson’s disease. BMC Med 5(1):1–11. https://doi.org/10.1186/1741-7015-5-20

    Article  CAS  Google Scholar 

  10. Yan J, Qiao L, Tian J, Liu A, Wu J, Huang J, Lai X (2019) Effect of statins on Parkinson’s disease: a systematic review and meta-analysis. Medicine 98:12

    Google Scholar 

  11. Pasternak B, Svanström H, Nielsen NM, Fugger L, Melbye M, Hviid A (2012) Use of calcium channel blockers and Parkinson’s disease. Am J Epidemiol 175(7):627–635. https://doi.org/10.1093/aje/kwr362

    Article  PubMed  Google Scholar 

  12. Goedert M, Jakes R, Spillantini MG (2017) The synucleinopathies: twenty years on. J Parkinsons Dis 7(s1):S51–S69. https://doi.org/10.3233/JPD-179005

    Article  PubMed  PubMed Central  Google Scholar 

  13. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Nussbaum RL (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047. https://doi.org/10.1126/science.276.5321.2045

    Article  CAS  PubMed  Google Scholar 

  14. Golbe LI, Di Iorio G, Bonavita V, Miller DC, Duvoisin RC (1990) A large kindred with autosomal dominant Parkinson’s disease. Ann Neurol 27(3):276–282. https://doi.org/10.1002/ana.410270309

    Article  CAS  PubMed  Google Scholar 

  15. Polymeropoulos MH, Higgins JJ, Golbe LI, Johnson WG, Ide SE, Di Iorio G, Duvoisin RC (1996) Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science 274(5290):1197–1199. https://doi.org/10.1126/science.274.5290.1197

    Article  CAS  PubMed  Google Scholar 

  16. Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M (1997) α-Synuclein in Lewy bodies. Nature 388(6645):839–840. https://doi.org/10.1038/42166

    Article  CAS  PubMed  Google Scholar 

  17. Morgan J (2015) A seat at the table for people with Parkinson’s disease. Lancet Neurol 14(11):1077–1078. https://doi.org/10.1016/S1474-4422(15)00246-X

    Article  PubMed  Google Scholar 

  18. Viswanathan TM, Chitradevi K, Zochedh A, Vijayabhaskar R, Sukumaran S, Kunjiappan S, Kathiresan T (2022) Guanidine–curcumin complex-loaded amine-functionalised hollow mesoporous silica nanoparticles for breast cancer therapy. Cancers 14(14):3490. https://doi.org/10.3390/cancers14143490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Naylor J, Minard A, Gaunt HJ, Amer MS, Wilson LA, Migliore M, Bon RS (2016) Natural and synthetic flavonoid modulation of TRPC5 channels. Br J Pharmacol 173(3):562–574. https://doi.org/10.1111/bph.13387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haid S, Novodomská A, Gentzsch J, Grethe C, Geuenich S, Bankwitz D, Pietschmann T (2012) A plant-derived flavonoid inhibits entry of all HCV genotypes into human hepatocytes. Gastroenterology 143(1):213–222. https://doi.org/10.1053/j.gastro.2012.03.036

    Article  CAS  PubMed  Google Scholar 

  21. Chen GL, Fan MX, Wu JL, Li N, Guo MQ (2019) Antioxidant and anti-inflammatory properties of flavonoids from lotus plumule. Food Chem 277:706–712. https://doi.org/10.1016/j.foodchem.2018.11.040

    Article  CAS  PubMed  Google Scholar 

  22. Pharmacopoeia, C. (2010). Commission. Pharmacopoeia of the People’s Republic of China.

  23. Zhang W, Lan Y, Huang Q, Hua Z (2013) Galangin induces B16F10 melanoma cell apoptosis via mitochondrial pathway and sustained activation of p38 MAPK. Cytotechnology 65(3):447–455. https://doi.org/10.1007/s10616−012-9499-1

    Article  CAS  PubMed  Google Scholar 

  24. Zha WJ, Qian Y, Shen Y, Du Q, Chen FF, Wu ZZ, Huang M (2013) Galangin abrogates ovalbumin-induced airway inflammation via negative regulation of NF-B. Evid-Based Complement Alternat Med. https://doi.org/10.1155/2013/767689

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang H, Chen AY, Rojanasakul Y, Ye X, Rankin GO, Chen YC (2015) Dietary compounds galangin and myricetin suppress ovarian cancer cell angiogenesis. J Funct Foods 15:464–475. https://doi.org/10.1016/j.jff.2015.03.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ciolino HP, Yeh GC (1999) The flavonoid galangin is an inhibitor of CYP1A1 activity and an agonist/antagonist of the aryl hydrocarbon receptor. Br J Cancer 79(9):1340–1346. https://doi.org/10.1038/sj.bjc.6690216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Janeoo S, Saroa A, Kumar R, Kaur H (2022) Computational investigation of bioactive 2, 3-diaryl quinolines using DFT method: FT-IR, NMR spectra, NBO, NLO, HOMO-LUMO transitions, and quantum–chemical properties. J Mol Struct 1253:132285. https://doi.org/10.1016/j.molstruc.2021.132285

    Article  CAS  Google Scholar 

  28. Thangarasu S, Chitradevi A, Siva V, Shameem A, Murugan A, Viswanathan TM, Bahadur SA (2022) Structural, spectroscopic, cytotoxicity and molecular docking studies of charge transfer salt: 4-aminiumantipyrine salicylate. Polycyclic Aromat Compd. https://doi.org/10.1080/10406638.2022.2064883

    Article  Google Scholar 

  29. Prathap KC, Lokanath NK (2018) Three novel coumarin-benzenesulfonylhydrazide hybrids: synthesis, characterization, crystal structure, Hirshfeld surface, DFT and NBO studies. J Mol Struct 1171:564–577. https://doi.org/10.1016/j.molstruc.2018.06.022

    Article  CAS  Google Scholar 

  30. Naray-Szabo G, Peterson MR (1981) d-orbital participation in bonding in thiophene: comparison of CNDO/2 and ab initio results. J Mol Struct (Thoechem) 85(3–4):249–255. https://doi.org/10.1016/0166-1280(81)85023-3

    Article  Google Scholar 

  31. Murugan M, Rajamohan R, Anitha A, Fatiha M (2022) Non-covalent bonding interaction between primaquine as guest and 2-(hydroxypropyl)-β-cyclodextrin as host. Polycyclic Aromat Compd 42(4):1861–1878. https://doi.org/10.1080/10406638.2020.1813181

    Article  CAS  Google Scholar 

  32. Praveena A, Prabu S, Madi F, Rajamohan R (2021) Theoretical investigation of inclusion complexes of 3-hydroxyflavone and quercetin as guests with native and modified β-cyclodextrins as hosts. Polycycl Aromat Compd. https://doi.org/10.1080/10406638.2021.2009526

    Article  Google Scholar 

  33. Chiş V (2004) Molecular and vibrational structure of 2, 4-dinitrophenol: FT-IR, FT-Raman and quantum chemical calculations. Chem Phys 300(1–3):1–11. https://doi.org/10.1016/j.chemphys.2004.01.003

    Article  CAS  Google Scholar 

  34. Asensio A, Kobko N, Dannenberg JJ (2003) Cooperative hydrogen-bonding in adenine—thymine and guanine—cytosine base pairs. Density functional theory and Møller—Plesset molecular orbital study. J Phys Chem 107(33):6441–6443. https://doi.org/10.1021/jp0344646

    Article  CAS  Google Scholar 

  35. Frisch, M. J. E. A., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., & Fox, A. D. (2009). Gaussian 09, revision D. 01.

  36. Glendening, E. D., Badenhoop, J. K., Reed, A. E., Carpenter, J. E., Bohmann, J. A., Morales, C. M., Weinhold, F. (2004). NBO 6.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2013.

  37. Etter MC, Urbańczyk-Lipkowska Z, Baer S, Barbara PF (1986) The crystal structures and hydrogen-bond properties of three 3-hydroxy-flavone derivatives. J Mol Struct 144(1–2):155–167. https://doi.org/10.1016/0022-2860(86)80175-2

    Article  CAS  Google Scholar 

  38. Novena LM, Athimoolam S, Anitha R, Bahadur SA (2022) Synthesis, crystal structure, hirshfeld surface analysis, spectral and quantum chemical studies of pharmaceutical cocrystals of a bronchodilator drug (Theophylline). J Mol Struct 1249:131585. https://doi.org/10.1016/j.molstruc.2021.131585

    Article  CAS  Google Scholar 

  39. Elanthiraiyan M, Jayasudha B, Arivazhagan M (2015) Molecular structure, vibrational spectroscopy, NBO and HOMO, LUMO studies of o-methoxybenzonitrile. Spectrochim Acta Part A Mol Biomol Spectrosc 134:543–552. https://doi.org/10.1016/j.saa.2014.04.103

    Article  CAS  Google Scholar 

  40. Siva V, Devi AC, Thangarasu S, Viswanathan TM, Athimoolam S, Bahadur SA (2022) Design, structural, DFT, molecular docking studies and biological evaluation of 4-aminiumantipyrine dihydrogenphosphate monohydrate. J Mol Struct 1250:131866. https://doi.org/10.1016/j.molstruc.2021.131866

    Article  CAS  Google Scholar 

  41. Silverstein RM, Bassler GC (1962) Spectrometric identification of organic compounds. J Chem Educ 39(11):546. https://doi.org/10.1021/ed039p546

    Article  CAS  Google Scholar 

  42. Balachandran V, Nataraj A, Karthick T (2013) Molecular structure, spectroscopic (FT-IR, FT-Raman) studies and first-order molecular hyperpolarizabilities, HOMO–LUMO, NBO analysis of 2-hydroxy-p-toluic acid. Spectrochim Acta Part A Mol Biomol Spectrosc 104:114–129. https://doi.org/10.1016/j.saa.2012.11.052

    Article  CAS  Google Scholar 

  43. Premkumar S, Jawahar A, Mathavan T, Dhas MK, Sathe VG, Benial AMF (2014) DFT calculation and vibrational spectroscopic studies of 2-(tert-butoxycarbonyl (Boc)-amino)-5-bromopyridine. Spectrochim Acta Part A Mol Biomol Spectrosc 129:74–83. https://doi.org/10.1016/j.saa.2014.02.147

    Article  CAS  Google Scholar 

  44. Tsimogiannis D, Samiotaki M, Panayotou G, Oreopoulou V (2007) Characterization of flavonoid subgroups and hydroxy substitution by HPLC-MS/MS. Molecules 12(3):593–606. https://doi.org/10.3390/12030593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dávila YA, Sancho MI, Almandoz MC, Gasull E (2018) Spectroscopic and electronic analysis of chelation reactions of galangin and related flavonoids with nickel (II). J Chem Eng Data 63(5):1488–1497. https://doi.org/10.1021/acs.jced.7b01058

    Article  CAS  Google Scholar 

  46. Siva V, Murugan A, Shameem AS, Priya MU, Thangarasu S, Athimoolam S, Bahadur SA (2022) Design and supramolecular architecture of stepped molecular aggregation in monochloroacetate salt of 2-aminopyridine: Its bacterial and cancer inhibitory properties. J Mol Struct 1250:131888. https://doi.org/10.1016/j.molstruc.2021.131888

    Article  CAS  Google Scholar 

  47. Thamarai A, Vadamalar R, Raja M, Muthu S, Narayana B, Ramesh P, Aayisha S (2020) Molecular structure conformational analyses, solvent-electronic studies through theoretical studies and biological profiling of (2E)-1-(3-bromo-2-thienyl)-3-(4–Chlorophenyl)-prop-2-en-1-one. J Mol Struct 1202:127349. https://doi.org/10.1016/j.molstruc.2019.127349

    Article  CAS  Google Scholar 

  48. Sıdır İ, Sıdır YG, Kumalar M, Taşal E (2010) Ab initio Hartree-Fock and density functional theory investigations on the conformational stability, molecular structure and vibrational spectra of 7-acetoxy-6-(2, 3-dibromopropyl)-4, 8-dimethylcoumarin molecule. J Mol Struct 964(1–3):134–151. https://doi.org/10.1016/j.molstruc.2009.11.023

    Article  CAS  Google Scholar 

  49. Zochedh AA, Bahadur SA, Kathiresan T (2021) Quantum chemical and molecular docking studies of naringin: a potent anti-cancer drug. J Cardiovasc Dis Res 12:1140–1148

    Google Scholar 

  50. Jeyaseelan SC, Premkumar R, Kaviyarasu K, Benial AMF (2019) Spectroscopic, quantum chemical, molecular docking and in vitro anticancer activity studies on 5-Methoxyindole-3–Carboxaldehyde. J Mol Struct 1197:134–146. https://doi.org/10.1016/j.molstruc.2019.07.042

    Article  CAS  Google Scholar 

  51. Devi AC, Siva V, Thangarasu S, Athimoolam S, Bahadur SA (2021) Supramolecular architecture, thermal, quantum chemical analysis and in vitro biological properties on sulfate salt of 4-aminoantipyrine. J Mol Struct 1245:131033. https://doi.org/10.1016/j.molstruc.2021.131033

    Article  CAS  Google Scholar 

  52. Scrocco E, Tomasi J (1978) Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials. Advances in quantum chemistry, vol 11. Academic Press, New York, pp 115–193

    Google Scholar 

  53. Munoz-Caro C, Nino A, Senent ML, Leal JM, Ibeas S (2000) Modeling of protonation processes in acetohydroxamic acid. J Org Chem 65(2):405–410. https://doi.org/10.1021/jo991251x

    Article  CAS  PubMed  Google Scholar 

  54. Deb BM (1981) Force concept in chemistry. Van Nostrand Reinhold

    Google Scholar 

  55. Politzer P, Laurence PR, Jayasuriya K (1985) Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Environ Health Perspect 61:191–202. https://doi.org/10.1289/ehp.8561191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Politzer, P., & Murray, J. S. (1991). Theoretical biochemistry and molecular biophysics: a comprehensive survey, vol. 2. Protein. In Electrostatic Potential Analysis of Dibenzo-p-dioxins and Structurally Similar Systems in Relation to their Biological Activities. Adenine Press Schenectady, NY.

  57. Thangarasu S, Siva V, Asath Bahadur S, Athimoolam S (2021) Structural, vibrational, quantum chemical calculations, thermal and antimicrobial studies on nitrate salt of 3-nitroaniline. Opt Quant Electron 53(10):1–16. https://doi.org/10.1007/s11082−021−03146-w

    Article  Google Scholar 

  58. Politzer P, Truhlar DG (eds) (2013) Chemical applications of atomic and molecular electrostatic potentials: reactivity, structure, scattering, and energetics of organic, inorganic, and biological systems. Springer Science & Business Media, Berlin

    Google Scholar 

  59. Sheela NR, Muthu S, Sampathkrishnan S (2014) Molecular orbital studies (hardness, chemical potential and electrophilicity), vibrational investigation and theoretical NBO analysis of 4–4′-(1H–1, 2, 4-triazol-1-yl methylene) dibenzonitrile based on abinitio and DFT methods. Spectrochim Acta Part A Mol Biomol Spectrosc 120:237–251. https://doi.org/10.1016/j.saa.2013.10.007

    Article  CAS  Google Scholar 

  60. AlRabiah H, Muthu S, Al-Omary F, Al-Tamimi AM, Raja M, Muhamed RR, El-Emam AAR (2017) Molecular structure, vibrational spectra, NBO, Fukui function, HOMO-LUMO analysis and molecular docking study of 6-[(2-methylphenyl) sulfanyl]-5-propylpyrimidine-2, 4 (1H, 3H)-dione. Maced J Chem Chem Eng 36(1):59–80

    Article  CAS  Google Scholar 

  61. Szafran M, Komasa A, Bartoszak-Adamska E (2007) Crystal and molecular structure of 4–Carboxypiperidinium chloride (4-piperidinecarboxylic acid hydrochloride). J Mol Struct 827(1–3):101–107. https://doi.org/10.1016/j.molstruc.2006.05.012

    Article  CAS  Google Scholar 

  62. Sebastian S, Sundaraganesan N (2010) The spectroscopic (FT-IR, FT-IR gas phase, FT-Raman and UV) and NBO analysis of 4-hydroxypiperidine by density functional method. Spectrochim Acta Part A Mol Biomol Spectrosc 75(3):941–952. https://doi.org/10.1016/j.saa.2009.11.030

    Article  CAS  Google Scholar 

  63. Zochedh A, Priya M, Chakaravarthy C, Sultan AB, Kathiresan T (2022) Experimental and computational evaluation of syringic acid-structural, spectroscopic, biological activity and docking simulation. Polycyclic Aromat Compd. https://doi.org/10.1080/10406638.2022.2118332

    Article  Google Scholar 

  64. Clark DE (1999) Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. J Pharmac Sci 88(8):807–814. https://doi.org/10.1021/js9804011

    Article  CAS  Google Scholar 

  65. Zochedh A, Priya M, Shunmuganarayanan A, Thandavarayan K, Sultan AB (2022) Investigation on structural, spectroscopic, DFT, biological activity and molecular docking simulation of essential oil Gamma-Terpinene. J Mol Struct 1268:133651. https://doi.org/10.1016/j.molstruc.2022.133651

    Article  CAS  Google Scholar 

  66. Sharmili Banu R, Mohana Priya I, Azar Zochedh A (2022) Identification of novel bioactive compounds from banana fruit (Musa sapientum) as antidepressant in pregnant women: molecular docking, physiochemical and ADMET evaluation. AJBGE 55(1):9–24

    Google Scholar 

  67. Chandran K, Shane DI, Zochedh A, Sultan AB, Kathiresan T (2022) Docking simulation and ADMET prediction based investigation on the phytochemical constituents of Noni (Morinda citrifolia) fruit as a potential anticancer drug. In Silico Pharmacol 10(1):1–14. https://doi.org/10.1007/s40203−022−00130-4

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during this study.

Author information

Authors and Affiliations

Authors

Contributions

The work was carried out in collaboration among all authors. Quantum chemical investigation and analysis was performed by ABS and AZ. The Molecular docking and Drug-likeness investigation was performed by MP and analyzed by KA. RC plot analysis was performed by AZ. Validation of the manuscript was done by ABS and AZ. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Azar Zochedh.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priya, M., Zochedh, A., Arumugam, K. et al. Quantum Chemical Investigation, Drug-Likeness and Molecular Docking Studies on Galangin as Alpha-Synuclein Regulator for the Treatment of Parkinson’s Disease. Chemistry Africa 6, 287–309 (2023). https://doi.org/10.1007/s42250-022-00508-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00508-z

Keywords

Navigation