Skip to main content
Log in

Enhanced Complexation of Toluidine Blue in Aqueous Solution with Two Oppositely Charged Polyelectrolytes: A Hydrophobic Polyanion ‘PSSNa’ and a Hydrophilic Polycation ‘PDADMAC’

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

We study in this work the interaction of the cationic dye toluidine blue (TB) with two oppositely charged polyelectrolytes: the hydrophobic polyanion poly (styrene-co-styrene sulfonate) (PSSNa) and the hydrophilic polycation poly (diallyl dimethylammonium chloride) (PDADMAC) in aqueous solution, for purpose of application in wastewater remediation by coagulation–flocculation or polyelectrolyte enhanced ultrafiltration. In this context and in order to optimize the process in conditions close to those of the industry, the effects of several intrinsic and extrinsic parameters on the interaction of TB with PSSNa and PDADMAC were investigated, such as the sulfonation degree f and the molecular weight of PSSNa, polyelectrolyte concentrations, NaCl addition, EtOH addition and temperature. By spectrophotometric study, it was first shown that the addition of cationic PDADMAC to TB-PSSNa complexes promotes the metachromasy, particularly under stoichiometric conditions, i.e. Z = \(\frac{[PDADMAC]}{[PSSNa]}\)  = 1 and at optimum concentrations of polyelectrolytes, where insoluble PSSNa-TB-PDADMAC tri-component complexes confirmed by FTIR, were formed in free-salt aqueous solution, allowing a separation of TB from the supernatant by simple decantation. Moreover, the stability of the resulting tri component PSSNa-TB-PDADMAC system decreases with the sulfonation degree f decrease, the inorganic salt and the EtOH addition as well as a temperature increase, whereas it is insensitive to the molecular weight of the PSSNa. The best experimental parameters give retention rates exceeding 80%, highlighting the efficiency of this type of flocculation process, using two oppositely charged polyelectrolytes, for wastewater treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data are available.

References

  1. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Biores Technol 77:247–255

    Article  CAS  Google Scholar 

  2. Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YAG, Elsamahy T, Jiao H, Fu Y, Sun J (2022) A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf 231:113160

    Article  CAS  PubMed  Google Scholar 

  3. Hessel C, Allegre C, Maisseu M, Charbit F, Moulin P (2007) Guidelines and legislation for dye house effluents. J Environ Manag 83:171–180

    Article  CAS  Google Scholar 

  4. Es-Sahbany H, Hsissou R, El Hachimi ML, Allaoui M, Nkhili S, Elyoubi MS (2021) Investigation of the adsorption of heavy metals (Cu Co, Ni and Pb) in treatment synthetic wastewater using natural clay as a potential adsorbent (Sale-Morocco). Mater Today: Proc 45:7290–7298

    CAS  Google Scholar 

  5. Abbou B, Lebkiri I, Ouaddari H, El Amri A, Achibat FE, Kadiri L, Ouass A, Lebkiri A, Rifi EH (2023) Improved removal of methyl orange dye by adsorption using modified clay: combined experimental study using surface response methodology. Inorg Chem Commun 155:111127

    Article  CAS  Google Scholar 

  6. Kumar N, Pandey A, Sharma YC (2023) A review on sustainable mesoporous activated carbon as adsorbent for efficient removal of hazardous dyes from industrial wastewater. J Water Process Eng 54:104054

    Article  Google Scholar 

  7. Hosny NM, Gomaa I, Elmahgary MG (2023) Adsorption of polluted dyes from water by transition metal oxides: a review. Appl Surf Sci Advnces 15:100395

    Article  Google Scholar 

  8. Abujazar MSS, Karaağaç SU, Abu Amr SS, Alazaiza MYD, Bashir MJK (2022) Recent advancement in the application of hybrid coagulants in coagulation-flocculation of wastewater: a review. J Clean Prod 345:131133

    Article  CAS  Google Scholar 

  9. Singh A, Pal DB, Mohammad A, Alhazmi A, Haque S, Yoon T, Srivastava N, Gupta VK (2022) Biological remediation technologies for dyes and heavy metals in wastewater treatment: new insight. Biores Technol 343:126154

    Article  CAS  Google Scholar 

  10. Le TMH, Nuisin R, Mongkolnavin R, Painmanakul P, Sairiam S (2022) Enhancing dye wastewater treatment efficiency in ozonation membrane contactors by chloro–and fluoro–organosilanes’ functionality on hydrophobic PVDF membrane modification. Sep Purif Technol 288:120711

    Article  Google Scholar 

  11. Shahamat YD, Masihpour M, Borghei P, Rahmati SH (2022) Removal of azo red-60 dye by advanced oxidation process O3/UV from textile wastewaters using Box-Behnken design. Inorg Chem Commun 143:109785

    Article  Google Scholar 

  12. Pang L, Wu M, Chai Z, Liu H, Chen Y, Jin B, Cao X (2023) Preparation and dye separation performance of ZIF-67/mesoporous silica ceramic nanofiltration membrane by liquid phase epitaxy (LPE) growth method. Sep Purif Technol 322:124339

    Article  CAS  Google Scholar 

  13. Michaels AS (1980) Fifteen years of ultrafiltration: problems and future promises of an adolescent technology. In: Cooper AR (ed) Ultrafiltration membranes and applications. Polymer science and technology, vol 13. Springer, Boston

    Google Scholar 

  14. Fares HM, Schlenoff JB (2017) Equilibrium over compensation in polyelectrolyte complexes. Macromolecules 50:3968–3978

    Article  ADS  CAS  Google Scholar 

  15. Joo JB, Park J, Yi J (2009) Preparation of polyelectrolyte-functionalized mesoporous silicas for the selective adsorption of anionic dye in an aqueous solution. J Hazard Mater 168:102–107

    Article  CAS  PubMed  Google Scholar 

  16. Dragan ES, Dinu IA (2009) Interaction of dis-azo dyes with quaternized poly (dimethylaminoethyl methacrylate) as a function of the dye structure and polycation charge density. J Appl Polym Sci 112:728–735

    Article  CAS  Google Scholar 

  17. D’Ilario L, Francolini I, Martinelli A, Piozzi A (2009) Insight into the heparin–toluidine blue (CI Basic Blue 17) interaction. Dyes Pigm 80:343–348

    Article  Google Scholar 

  18. Mamchits EG, Nasimova IR, Makhaeva EE, Khokhlov AR (2006) Effect of polyelectrolytes on aggregation of a cyanine dye. Polym Sci, Ser A 48:91–96

    Article  Google Scholar 

  19. Sánchez-Carrasco S, Delcros JG, Moya-García AA, Sánchez-Jiménez F, Ramírez FJ (2008) Study by optical spectroscopy and molecular dynamics of the interaction of acridine–spermine conjugate with DNA. Biophys Chem 133:54–65

    Article  PubMed  Google Scholar 

  20. Zhang YZ, Xiang X, Mei P, Dai J, Zhang LL, Liu Y (2009) Spectroscopic studies on the interaction of Congo Red with bovine serum albumin. Spectrochim Acta Part A Mol Biomol Spectrosc 72:907–914

    Article  ADS  Google Scholar 

  21. Yurekli K, Conley E, Krishnamoorti R (2005) Effect of laponite and a nonionic polymer on the absorption character of cationic dye solutions. Langmuir 21:5825–5830

    Article  CAS  PubMed  Google Scholar 

  22. Rose GR, John MRS (1987) Flocculation. In: Kroschwitz JI (ed) Encyclopedia of polymer science and engineering. Wiley, New York

    Google Scholar 

  23. Dragan ES, Ghimici L (2005) Nitrogen based synthetic polycations. Synthesis and applications. In: Dranagn ES (ed) Focus on ionic polymers. Research Signpost

    Google Scholar 

  24. Bolto B, Gregory J (2007) Organic polyelectrolytes in water treatment. Water Res 41:2301–2324

    Article  CAS  PubMed  Google Scholar 

  25. Peyratout C, Donath E, Daehne L (2001) Electrostatic interactions of cationic dyes with negatively charged polyelectrolytes in aqueous solution. J Photochem Photobiol, A 142:51–57

    Article  CAS  Google Scholar 

  26. Nandini R, Vishalakshi B (2010) A study of interaction of cationic dyes with anionic polyelectrolytes. Spectrochim Acta Part A Mol Biomol Spectrosc 75:14–20

    Article  ADS  CAS  Google Scholar 

  27. Fradj AB, Lafi R, Hamouda SB, Gzara L, Hamzaoui AH, Hafiane A (2014) Effect of chemical parameters on the interaction between cationic dyes and poly (acrylic acid). J Photochem Photobiol, A 284:49–54

    Article  Google Scholar 

  28. Fradj AB, Gzara L, Hamzaoui AH, Hafiane A (2014) Spectrophotometric study of the interaction of toluidine blue with poly (ammonium acrylate). J Mol Liq 194:110–114

    Article  Google Scholar 

  29. Fradj AB, Lafi R, Hamouda SB, Gzara L, Hamzaoui AH, Hafiane A (2014) Investigation on the interaction of Safranin T with anionic polyelectrolytes by spectrophotometric method. Spectrochim Acta Part A Mol Biomol Spectrosc 131:169–176

    Article  ADS  Google Scholar 

  30. Gadde S, Batchelor EK, Kaifer AE (2009) Controlling the formation of cyanine dye H-and J-aggregates with cucurbituril hosts in the presence of anionic polyelectrolytes. Chemistry 15:6025–6031

    Article  CAS  PubMed  Google Scholar 

  31. Moreno-Villoslada I, Fuenzalida JP, Tripailaf G, Araya-Hermosilla R, Pizarro GDC, Marambio OG, Nishide H (2010) Comparative Study of the Self-Aggregation of Rhodamine 6G in the Presence of Poly (sodium 4-styrenesulfonate), Poly (N-phenylmaleimide-co-acrylic acid), Poly (styrene-alt-maleic acid), and Poly (sodium acrylate). J Phys Chem B 114:11983–11992

    Article  CAS  PubMed  Google Scholar 

  32. Ben Mahmoud S, Hamzaoui AH, Essafi W (2016) Spectrophotometric study of the interaction of methylene blue with poly (styrene-co-sodium styrene sulfonate). Mediterr J Chem 5:493–506

    Article  CAS  Google Scholar 

  33. Zarroug S, Mahmoud SB, Hamzaoui AH, Essafi W (2019) Study of the interaction between methylene blue dye and quenched polyelectrolyte with tunable hydrophobicity in aqueous media. J Environ Chem Eng 7:103312

    Article  CAS  Google Scholar 

  34. Kasha M, Rawls HR, El-Bayoumi MA (1965) The exciton model in molecular spectroscopy. Pure Appl Chem 11:371–392

    Article  CAS  Google Scholar 

  35. Yao H, Isohashi T, Kimura K (2007) Electrolyte-induced mesoscopic aggregation of thiacarbocyanine dye in aqueous solution: counterion size specificity. J Phys Chem B 111:7176–7183

    Article  CAS  PubMed  Google Scholar 

  36. Boruah B, Saikia PM, Dutta RK (2010) Spectrophotometric investigation of the monomer–dimer process of CI Basic Blue 9 in aqueous polymer–surfactant system. Dyes Pigm 85:16–20

    Article  CAS  Google Scholar 

  37. Kabanov V (2003) Fundamentals of polyelectrolyte complexes in solution and the bulk. In: Decher G, Schlenoff JB (eds) Multilayer thin films. WILEI-VCH, pp 47–86

    Google Scholar 

  38. Bediako JK, Choi JW, Song MH, Lim CR, Yun YS (2021) Self-coagulating polyelectrolyte complexes for target-tunable adsorption and separation of metal ions. J Hazard Mater 401:123352

    Article  CAS  PubMed  Google Scholar 

  39. Park SW, Bediako JK, Song MH, Choi JW, Lee HC, Yun YS (2018) Facile fabrication of polyacrylic acid-polyvinyl chloride composite adsorbents for the treatment of cadmium-contaminated wastewater. J Environ Chem Eng 6:2401–2408

    Article  CAS  Google Scholar 

  40. Dragan S, Dragan D, Cristea M, Airinei A, Ghimici L (1999) Polyelectrolyte complexes. II. Specific aspects of the formation of polycation/dye/polyanion complexes. J Polym Sci, Part A: Polym Chem 37:409–418

    Article  ADS  CAS  Google Scholar 

  41. Petzold G, Schwarz S (2013) Polyelectrolyte complexes in flocculation applications. Adv Polym Sci 256:25–65

    Article  Google Scholar 

  42. Bediako JK, El Ouardi Y, Mouele ESM, Mensah B, Repo E (2023) Polyelectrolyte and polyelectrolyte complex-incorporated adsorbents in water and wastewater remediation—a review of recent advances. Chemosphere 325:138418

    Article  CAS  PubMed  Google Scholar 

  43. Ferreira DCM, Dos Santos TC, Dos Reis Coimbra JS, De Oliveira EB (2023) Chitosan/carboxymethylcellulose polyelectrolyte complexes (PECs) are an effective material for dye and heavy metal adsorption from water. Carbohyd Polym 315:120977

    Article  CAS  Google Scholar 

  44. Essafi W, Lafuma F, Williams CE (1994) In: Schmitz KS (ed) Macro-ion characterization: from dilute solutions to complex fluids (ACS Symposium Series 548:278–286). American Chemical Society, Washington

  45. Makowski HS, Lundberg RD, Singhal GS (1975) Flexible polymeric compositions comprising a normally plastic polymer sulfonated to about 0.2 to about 10 mole % sulfonate. U.S Patent 3870841

  46. Baigl D, Seery TA, Williams CE (2002) Preparation and characterization of hydrosoluble, partially charged poly (styrenesulfonate)s of various controlled charge fractions and chain lengths. Macromolecules 35:2318–2326

    Article  ADS  CAS  Google Scholar 

  47. Essafi W, Lafuma F, Baigl D, Williams CE (2005) Anomalous counterion condensation in salt-free hydrophobic polyelectrolyte solutions: osmotic pressure measurements. Europhys Lett 71:938–944

    Article  ADS  CAS  Google Scholar 

  48. Kocherbitov V, Ulvenlund S, Briggner LE, Kober M, Arnebrant T (2010) Hydration of a natural polyelectrolyte xanthan gum: comparison with non-ionic carbohydrates. Carbohyd Polym 82(2):284–290

    Article  CAS  Google Scholar 

  49. Pal MK, Basu S (1958) Polyelectrolyte chromotropes in metachromacy. Die Makromol Chem: Macromol Chem Phys 27:69–79

    Article  CAS  Google Scholar 

  50. Dragan S, Ghimici L, Cristea M, Airinei A (1999) Polyelectrolyte complexes. III. Binding characteristics of some polydentate anionic azo dyes to polycations with N, N-dimethyl-2-hydroxypropylene ammonium chloride units in the main chain. Acta Polym 50:260–266

    Article  CAS  Google Scholar 

  51. Thünemann AF, Müller M, Dautzenberg H, Joanny JF, Löwen H (2004) Polyelectrolyte complexes. In: Schmidt M (ed) Polyelectrolytes with defined molecular architecture II 166. Springer-Verlag, Berlin, pp 113–171

    Chapter  Google Scholar 

  52. Cundall RB, Lawton JB, Murray D, Phillips GO (1979) Polyelectrolyte complexes, 1. The effect of pH and ionic strength on the stoichiometry of model polycation—polyanion complexes. Die Makromol Chem: Macromol Chem Phys 180:2913–2922

    Article  CAS  Google Scholar 

  53. Vleugels LF, Ricois S, Voets IK, Tuinier R (2017) Reversal of metachromasy revisited; displacement of toluidine-blue from alginate by surfactants. Colloids Surf, A 529:454–461

    Article  CAS  Google Scholar 

  54. Takagishi T, Kozuka H, Kuroki N (1983) Binding of methyl orange and its homologs by polyion complexes consisting of a piperidinium cationic polymer and various polyanions in aqueous solution. J Polym Sci: Polym Chem Edn 21:447–455

    ADS  CAS  Google Scholar 

  55. Essafi W, Spiteri MN, Williams CE, Boué F (2009) Hydrophobic polyelectrolytes in better polar solvent. Structure and chain conformation as seen by SAXS and SANS. Macromolecules 42:9568–9580

    Article  ADS  CAS  Google Scholar 

  56. Jemili N, Fauquignon M, Grau E, Fatin-Rouge N, Dole F, Chapel JP, Essafi W, Schatz C (2022) Complexation in aqueous solution of a hydrophobic polyanion (PSSNa) bearing different charge densities with a hydrophilic polycation (PDADMAC). Polymers (Basel) 14:2404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nandini R, Vishalakshi B (2009) A comparative study of polyelectrolyte–dye interactions. Spectrochim Acta Part A Mol Biomol Spectrosc 74:1025–1030

    Article  ADS  CAS  Google Scholar 

  58. Xiang J, Yang X, Chen C, Tang Y, Yan W, Xu G (2006) Effects of NaCl on the J-aggregation of two thiacarbocyanine dyes in aqueous solutions. J Colloid Interface Sci 258:198–205

    Article  ADS  Google Scholar 

  59. Nierlich M, Williams CE, Boué F, Cotton JP, Daoud M, Famoux B, Jannink G, Picot C, Moan M, Rinaudo M, Wolf C, De Gennes PG (1979) Small angle neutron scattering by semi-dilute solutions of polyelectrolyte. J Phys 40:701–704

    Article  CAS  Google Scholar 

  60. Manning GS (1969) Limiting laws and counterion condensation in polyelectrolyte solutions II. Self-diffusion of the small ions. J Chem Phys 51:934–938

    Article  ADS  Google Scholar 

  61. Mukerjee P, Ghosh AK (1963) The effect of urea on methylene blue, its self-association, and interaction with polyelectrolytes in aqueous solution. J Phys Chem 67:193–197

    Article  CAS  Google Scholar 

  62. Nandini R, Vishalakshi B (2009) A spectroscopic study of interaction of cationic dyes with heparin. Orbital 1:255–272

    CAS  Google Scholar 

  63. Bergeron JA, Singer M (1958) Metachromasy: an experimental and theoretical reevaluation. J Cell Biol 4:433–457

    Article  CAS  Google Scholar 

  64. Zemaitaitiene RJ, Zliobaite E, Klimaviciute R, Zemaitaitis A (2003) The role of anionic substances in removal of textile dyes from solutions using cationic flocculant. Colloids Surf, A 214:37–47

    Article  CAS  Google Scholar 

  65. Yang JC, Jablonsky MJ, Mays JW (2002) NMR and FT-IR studies of sulfonated styrene-based homopolymers and copolymers. Polymer 43:5125–5132

    Article  CAS  Google Scholar 

  66. Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and Raman spectroscopy, 3rd edn. Academic Press Inc, New York

    Google Scholar 

  67. Fitzgerald JJ, Weiss RA (1986) Cation-anion and cation-cation interactions in sulfonated polystyrene ionomers: spectroscopic studies of the effects of solvents. In: Coulombic interactions in macromolecular systems (ACS Symposium Series). American Chemical Society, Washington

  68. Lagudu URK, Isono S, Krishnan S, Babu SV (2014) Role of ionic strength in chemical mechanical polishing of silicon carbide using silica slurries. Colloids Surf, A 445:119–127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Tunisian ministry of higher education and scientific research is acknowledged for allocating the Ph. D. research grant to N.J. We are grateful to Monia El Ouni for her technical support in Thermogravimetric Analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wafa Essafi.

Ethics declarations

Conflict of Interest

The authors declare no potential conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jemili, N., Legros, M., Rawiso, M. et al. Enhanced Complexation of Toluidine Blue in Aqueous Solution with Two Oppositely Charged Polyelectrolytes: A Hydrophobic Polyanion ‘PSSNa’ and a Hydrophilic Polycation ‘PDADMAC’. Chemistry Africa 7, 1121–1139 (2024). https://doi.org/10.1007/s42250-023-00785-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00785-2

Keywords

Navigation