Skip to main content
Log in

Extensive Analysis of Gate Leakage Current in Nano-Scale Multi-gate MOSFETs

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Excessive gate leakage is crucial for nanoscale metal oxide semiconductor field-effect transistors (MOSFETs), resulting in unnecessary static power dissipation and switching delay. Herein, we used three-dimensional modeling to understand the gate leakage behavior of various nanoscale MOSFETs, including fin field-effect transistor and gate all around MOSFET. We used Wentzel–Kramers–Brillouin approximation to compute the direct quantum tunneling-based gate leakage current. We performed all computations of quantum transport for gate leakage current through the non-equilibrium Greens function approach. Among the MOSFET structures under study, the gate all around MOSFET demonstrates the most profound gate leakage deviation with the gate material work function and oxide thickness. A detailed analysis of the dependence of the gate leakage on the metal work function is presented, and the charge density model is used to explain this dependence. This work explores the possibilities of controlling the gate leakage through gate material variations in different nanoscale multi-gate MOSFET architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Hiramoto, in Nanoscale Silicon Devices, edited by S. Oda (CRC Press, 2016), pp. 53–81

  2. N.S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J.S. Hu, M. Jane Irwin, M. Kandemir, V. Narayanan, in Computer (Long. Beach. Calif) (2003), p. 36

  3. J. Tonfat, G. Flach, R. Reis, in Proceesings of the 2016 26th International Workshop on Power and Timing Modeling, Optimization and Simulation, PATMOS 2016 (2017), pp. 107

  4. A. Goel, S. Rewari, S. Verma, R.S. Gupta, in IEEE 16th India Council International Conference, INDICON 2019−Symposium Proceedings 2019(2019)

  5. A.K. Rana, N. Chand, V. Kapoor, J. Comput. Electron. 10, 222 (2011)

    Article  Google Scholar 

  6. S. Siddiqui, T. Ando, R.K. Pandey, D. Schepis, in Handbook Thin film deposition Fourth Ed. (Elsevier, 2018), pp. 107–145

  7. K. Tamersit, Superlattices Microstruct. 128, 252 (2019)

    Article  CAS  Google Scholar 

  8. P. Saha, S.K. Sarkar, Superlattices Microstruct. 130, 194 (2019)

    Article  CAS  Google Scholar 

  9. S. Ghosh, K. Koley, C.K. Sarkar, Microelectron. J 90, 204 (2019)

    Article  CAS  Google Scholar 

  10. V.M. Srivastava, K.S. Yadav, G. Singh, Microelectron. J 42, 1124 (2011)

    Article  Google Scholar 

  11. A. Goel, S. Rewari, S. Verma, R.S. Gupta, Appl. Phys. A Mater. Sci. Process. 126, 1 (2020)

    Article  Google Scholar 

  12. A. Goel, S. Rewari, S. Verma, R.S. Gupta, Indian J. Phys. 95, 299 (2021)

    Article  CAS  Google Scholar 

  13. A. Goel, S. Rewari, S. Verma, R.S. Gupta, J. Electron. Mater. 50, 108 (2021)

    Article  CAS  Google Scholar 

  14. S. Rewari, A. Goel, S. Verma, R.S. Gupta, in 2019 IEEE 16th India Council International Conference INDICON 2019−Symposium Proceedings 1, 2019 (2019)

  15. K.W. Huang, T.J. Chang, C.Y. Wang, S.H. Yi, C.I. Wang, Y. Sen Jiang, Y.T. Yin, H.C. Lin, M.J. Chen, Mater. Sci. Semicond. Process. 109, 104933 (2020)

    Article  CAS  Google Scholar 

  16. V. Narendar, K.A. Girdhardas, Silicon 10, 2865 (2018)

    Article  CAS  Google Scholar 

  17. H. Uribe-Vargas, J. Molina-Reyes, A. Romero-Morán, E. Ortega, A. Ponce, J. Mater. Sci. Mater. Electron. 29, 15761 (2018)

    Article  CAS  Google Scholar 

  18. A. Goel, S. Rewari, S. Verma, S.S. Deswal, R.S. Gupta, IEEE Sens. J. 21, 16731 (2021)

    Article  CAS  Google Scholar 

  19. A. Goel, S. Rewari, S. Verma, R.S. Gupta, in Proceedings of the International Conference on 2018 IEEE Electron Device Kolkata Conference EDKCON 2018, vol. 1 (2018), pp. 337

  20. A. Goel, S. Rewari, S. Verma, R.S. Gupta, Microsyst. Technol. 26, 1697 (2020)

    Article  Google Scholar 

  21. G. Thriveni, K. Ghosh, Mater. Res. Express 6, 085062 (2019)

    Article  CAS  Google Scholar 

  22. T.I. Lee, H.J. Ahn, M.J. Kim, E.J. Shin, S.H. Lee, S.W. Shin, W.S. Hwang, H.Y. Yu, B.J. Cho, IEEE Electron. Device Lett. 40, 502 (2019)

    Article  CAS  Google Scholar 

  23. Y.T. Shi, H. Lu, W.Z. Xu, C.K. Zeng, F.F. Ren, J.D. Ye, D. Zhou, D.J. Chen, R. Zhang, Y. Zheng, IEEE J. Electron. Devices Soc. 8, 15 (2020)

    Article  CAS  Google Scholar 

  24. X. Hong, L. Liao, Solution Processed Metal Oxide Thin Films for Electronic Applications (Elsevier, 2020), pp. 31–39

  25. D.G. Kim, C.H. An, S.H. Kim, D.S. Kwon, J. Lim, W. Jeon, C.S. Hwang, J. Mater. Chem. C 9, 1572 (2021)

    Article  CAS  Google Scholar 

  26. A. Hashemi, A. Bahari, S. Ghasemi, J. Mater. Sci. Mater. Electron. 28, 13313 (2017)

    Article  CAS  Google Scholar 

  27. H.K. Tyagi, P.J. George, in Journal of Materials Science: Materials in Electronics (Springer, 2008), pp. 902–907

  28. L.M. Lin, P.T. Lai, in Journal of Materials Science: Materials in Electronics (Springer, 2008), pp. 894–897

  29. J. Robertson, R.M. Wallace, Mater. Sci. Eng. R Reports 88, 1 (2015)

    Article  Google Scholar 

  30. Y. Sun, X. Yu, R. Zhang, B. Chen, R. Cheng, J. Semicond. 42, 023102 (2021)

    Article  Google Scholar 

  31. F. Palumbo, C. Wen, S. Lombardo, S. Pazos, F. Aguirre, M. Eizenberg, F. Hui, M. Lanza, Adv. Funct. Mater. 30, 1900657 (2020)

    Article  CAS  Google Scholar 

  32. N. Pratap, R. Maity, S. Baishya, in High-k Gate Dielectric Materials: Applications with Advanced Metal Oxide Semiconductor Field Effect Transistors (CRC Press, 2020), pp. 31–57

  33. L. Selegård, A. Skallberg, A. Zakharov, N. Abrikossova, K. Uvdal, Surf. Sci. 704, 121743 (2021)

    Article  Google Scholar 

  34. S. Li, Y. Lin, S. Tang, L. Feng, X. Li, J. Rare Earths 39, 121 (2020)

    Article  CAS  Google Scholar 

  35. H. Najafi-Ashtiani, Appl. Surf. Sci. 455, 373 (2018)

    Article  CAS  Google Scholar 

  36. S. Panigrahy, J.C. Dhar, J. Mater. Sci. Mater. Electron. 32, 3522 (2021)

    Article  CAS  Google Scholar 

  37. P.K. Singh, K. Baral, S. Kumar, S. Chander, M.R. Tripathy, A.K. Singh, S. Jit, Appl. Phys. A Mater. Sci. Process. 126, 166 (2020)

    Article  CAS  Google Scholar 

  38. A. Dixit, D.P. Samajdar, Appl. Phys. A 2020 12610(126), 1 (2020)

    Google Scholar 

  39. A. Goel, S. Rewari, S. Verma, R.S. Gupta, AEU - Int. J. Electron. Commun. 111, 152924 (2019)

    Article  Google Scholar 

  40. G. Brown, P. Zeitzoff, G. Bersuker, and H. Huff, Mater. Today 7, 20 (2004)

    CAS  Google Scholar 

  41. M. Pecovska-Gjorgjevich, N. Novkovski, E. Atanassova, D. Spasov, in Proceedings of the 2004 IEEE International Conference on Solid Dielectr. ICSD 2004 (2004), pp. 872–875

  42. C. Zhao, X. Wang, W. Wang, in C. Past, Present Future (Elsevier, 2018), pp. 69–103

  43. S. Chaudhury, S.K. Sinha, Carbon Nanotube and Nanowires for Future Semiconductor Devices Applications (Elsevier Inc., 2018)

  44. A.B. Bhattacharyya, Compact Mosfet Models for VLSI Design (Wiley, New York, 2010)

    Google Scholar 

  45. W.C. Lee, C. Hu, IEEE Trans. Electron. Devices 48, 1366 (2001)

    Article  Google Scholar 

  46. W. Xiong, in FinFET and Other Multi-Gate Transistors, edited by J. Colinge (Springer, 2008), pp. 49–101

  47. T.S. Arulananth, S.V.S. Prasad, K. Srinivas Rao, in High-K Mater. Multi Gate FET Devices, edited by J. Paulo Davim, P. Singla, and S. Tayal (CRC Press, 2021), p. 176

  48. W.M. Haynes, CRC Handbook of Chemistry and Physics, 97th edn. (CRC Press, Boca Raton, 2016)

    Book  Google Scholar 

  49. Silvaco ATLAS User’s Manual (Silvaco, Inc, Santa Clara, 2016)

  50. P.J. Price, J.M. Radcliffe, IBM J. Res. Dev. 3, 364 (2010)

    Article  Google Scholar 

  51. M.B. Lin, Introduction to VLSI Systems: A Logic, Circuit, and System Perspective (CRC Press, 2011)

  52. B. El-Kareh, N.H.N. Hutter, Silicon Analog Components (Springer, 2020)

  53. F.A. Chaves, D. Jiménez, F.J. García Ruiz, A. Godoy, J. Suñé, IEEE Trans. Electron. Devices 59, 2589 (2012)

    Article  CAS  Google Scholar 

  54. S.I. Garduño, J. Alvarado, A. Cerdeira, M. Estrada, V. Kilchytska, D. Flandre, Int. J. Numer. Model. Electron. Networks Devices Fields 27, 846 (2014)

    Article  Google Scholar 

  55. D. Ranka, A.K. Rana, R.Kumar Yadav, K. Yadav, D. Giri, Int. J. VLSI Des. Commun. Syst. 2, 11 (2011)

    Article  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Mohan Singh Negi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Kumar, H. & Negi, C.M.S. Extensive Analysis of Gate Leakage Current in Nano-Scale Multi-gate MOSFETs. Trans. Electr. Electron. Mater. 23, 658–665 (2022). https://doi.org/10.1007/s42341-022-00404-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-022-00404-w

Keywords

Navigation