Skip to main content
Log in

Surface Energy Effect on Free Vibration Characteristics of Nano-plate Submerged in Viscous Fluid

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

The free vibration problem of a thin nanoplate with surface energy immersed in a viscous fluid medium is investigated in this article to assess the influence of different fluids on the vibration behavior of small-scale plates.

Methods

Fluid–solid interaction is modeled based on Navier-Stokes equations, and surface energy is considered to apply small-scale effects. Finally, the solution of the equation of motion of nanoplate coupled with fluid is realized using the Galerkin weighted residual method.

Results and Conclusion

According to the findings of this study, fluid density has a considerable impact on the reduction of the natural frequencies of plates at small scales, whereas viscosity has a negligible effect on the system's vibrational response. Moreover, the thickness of a nanoplate is inversely proportional to the influence of surface parameters on the nanoplate vibration as well as the effect of fluid on natural frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lamb H (1920) On the vibrations of an elastic plate in contact with water. Proc R Soc Lond Ser A 98:205–206

    ADS  Google Scholar 

  2. Muthuveerappan G, Ganesan N, Veluswami MA (1979) A note on vibration of a cantilever plate immersed in water. J Sound Vib 63(3):385–391

    ADS  Google Scholar 

  3. Yuning F, Price WG (1987) Interactions between a partially or totally immersed vibrating cantilever plate and the surrounding fluid. J Sound Vib 118(3):495–513

    ADS  Google Scholar 

  4. Haddara MR, Cao S (1996) A study of the dynamic response of submerged rectangular flat plates. Mar Struct 9(10):913–933

    Google Scholar 

  5. Cheung YK, Zhou D (2000) Coupled vibratory characteristics of a rectangular container bottom plate. J Fluids Struct 14(3):339–357

    Google Scholar 

  6. Ergin A, Uğurlu B (2003) Linear vibration analysis of cantilever plates partially submerged in fluid. J Fluids Struct 17(7):927–939

    Google Scholar 

  7. Kerboua Y, Lakis AA, Thomas M, Marcouiller L (2008) Vibration analysis of rectangular plates coupled with fluid. Appl Math Model 32(12):2570–2586

    Google Scholar 

  8. Kramer MR, Liu Z, Young YL (2013) Free vibration of cantilevered composite plates in air and in water. Compos Struct 95:254–263

    Google Scholar 

  9. Liao C-Y, Ma C-C (2016) Vibration characteristics of rectangular plate in compressible inviscid fluid. J Sound Vib 362:228–251

    ADS  Google Scholar 

  10. Atkinson C, de Lara MM (2007) The frequency response of a rectangular cantilever plate vibrating in a viscous fluid. J Sound Vib 300(1–2):352–367

    ADS  Google Scholar 

  11. Kozlovsky Y (2009) Vibration of plates in contact with viscous fluid: extension of Lamb’s model. J Sound Vib 326(1–2):332–339

    ADS  Google Scholar 

  12. Facci AL, Porfiri M (2013) Analysis of three-dimensional effects in oscillating cantilevers immersed in viscous fluids. J Fluids Struct 38:205–222

    Google Scholar 

  13. Önsay T (1994) Dynamic interactions between the bending vibrations of a plate and a fluid layer attenuator. J Sound Vib 178(3):289–313

    ADS  Google Scholar 

  14. Enelund, M (1995) Vibration and damping of a plate on a viscous fluid layer. In: Proceedings of the 13th International Modal Analysis Conference, vol. 2460, pp 261

  15. Rabczuk T, Samaniego E, Belytschko T (2007) Simplified model for predicting impulsive loads on submerged structures to account for fluid-structure interaction. Int J Impact Eng 34(2):163–177

    Google Scholar 

  16. Rabczuk T et al (2010) Immersed particle method for fluid–structure interaction. Int J Numer Methods Eng 81.1:48–71

    MathSciNet  Google Scholar 

  17. Akbarov SD, Ismailov MI (2014) Frequency response of a viscoelastic plate under compressible viscous fluid loading. Int J Mech 8:332–344

    Google Scholar 

  18. Vančura C, Dufour I, Heinrich SM, Josse F, Hierlemann A (2008) Analysis of resonating microcantilevers operating in a viscous liquid environment. Sens Actu A 141(1):43–51

    Google Scholar 

  19. Wu Z, Wright MT, Ma X (2010) The experimental evaluation of the dynamics of fluid-loaded microplates. J Micromech Microeng 20(7):075034

    Google Scholar 

  20. Ricci A, Giancarlo C, Ivan F, Simone LM, Carlo R (2013) A finite element model for the frequency spectrum estimation of a resonating microplate in a microfluidic chamber. Microfluid Nanofluid 15(2):275–284

    CAS  Google Scholar 

  21. Ruiz-Díez V, Hernando-García J, Manzaneque T, Kucera M, Schmid U, Sánchez-Rojas JL (2015) Modelling out-of-plane and in-plane resonant modes of microplates in liquid media. J Micromech Microeng 25(7):074005

    Google Scholar 

  22. Farajpour A et al (2018) Nonlinear mechanics of nanotubes conveying fluid. Int J Eng Sci 133:132–143

    MathSciNet  CAS  Google Scholar 

  23. Ghayesh MH, Farokhi H, Farajpour A (2019) Global dynamics of fluid conveying nanotubes. Int J Eng Sci 135:37–57

    MathSciNet  CAS  Google Scholar 

  24. Farajpour A, Farokhi H, Ghayesh MH (2019) Chaotic motion analysis of fluid-conveying viscoelastic nanotubes. Eur J Mech A/Solids 74:281–296

    MathSciNet  Google Scholar 

  25. Ghayesh MH, Farajpour A, Farokhi H (2019) Viscoelastically coupled mechanics of fluid-conveying microtubes. Int J Eng Sci 145:103139

    MathSciNet  Google Scholar 

  26. Gurtin ME, Ian Murdoch A (1978) Surface stress in solids. Int J Solid Struct 14(6):431–440

    Google Scholar 

  27. Streitz FH, Cammarata RC, Sieradzki K (1994) Surface-stress effects on elastic properties. I. Thin metal films. Phys Rev B 49(15):10699

    ADS  CAS  Google Scholar 

  28. Cammarata RC, Karl S (1989) Effects of surface stress on the elastic moduli of thin films and superlattices. Phys Rev Lett 62(17):2005

    ADS  CAS  PubMed  Google Scholar 

  29. Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3):139

    ADS  CAS  Google Scholar 

  30. Sharma P, Ganti S, Bhate N (2003) Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl Phys Lett 82(4):535–537

    ADS  CAS  Google Scholar 

  31. Duan HL, Wang J-X, Huang ZP, Lal Karihaloo B (2005) Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J Mech Phys Solids 53(7):1574–1596

    ADS  MathSciNet  Google Scholar 

  32. Zhou LG, Hanchen H (2004) Are surfaces elastically softer or stiffer? Appl Phys Lett 84(11):1940–1942

    ADS  CAS  Google Scholar 

  33. He LH, Lim CW, Wu BS (2004) A continuum model for size-dependent deformation of elastic films of nano-scale thickness. Int J Solids Struct 41(3–4):847–857

    Google Scholar 

  34. Dingreville R, Jianmin Qu, Cherkaoui M (2005) Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J Mech Phys Solids 53(8):1827–1854

    ADS  MathSciNet  CAS  Google Scholar 

  35. Wang G-F, Feng X-Q (2007) Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl Phys Lett 90(23):231904

    ADS  Google Scholar 

  36. Abbasion S, Rafsanjani A, Avazmohammadi R, Farshidianfar A (2009) Free vibration of microscaled Timoshenko beams. Appl Phys Lett 95(14):143122

    ADS  Google Scholar 

  37. Hosseini-Hashemi S, Reza AA, Sasan R, Ali A-S (2019) Free vibration analysis of nano-plate in viscous fluid medium using nonlocal elasticity. Eur J Mech A/Solids 74:440-448.f

    MathSciNet  Google Scholar 

  38. Dangi C, Roshan L (2022) Nonlinear thermal effect on free vibration of FG rectangular mindlin nanoplate of bilinearly varying thickness via Eringen’s nonlocal theory. J Vib Eng Technol 2022:1–1

    Google Scholar 

  39. Luo Q, Li C, Li S (2021) Transverse free vibration of axisymmetric functionally graded circular nanoplates with radial loads. J Vib Eng Technol 9(6):1253–1268

    Google Scholar 

  40. Hao-nan Li, Cheng Li, Ji-ping S, Lin-quan Y (2021) Vibration analysis of rotating functionally graded piezoelectric nanobeams based on the nonlocal elasticity theory. J Vib Eng Technol 9(6):1155–1173

    Google Scholar 

  41. Jin H, Sui S, Zhu C, et al (2022) Axial free vibration of rotating FG piezoelectric nano-rods accounting for nonlocal and strain gradient effects. J Vib Eng Technol.

  42. He J, Lilley CM (2008) Surface effect on the elastic behavior of static bending nanowires. Nano Lett 8(7):1798–1802

    ADS  CAS  PubMed  Google Scholar 

  43. Huang L, Zhai Y, Dong S, Wang J (2009) Efficient preparation of silver nanoplates assisted by non-polar solvents. J Colloid Interface Sci 331(2):384–388

    ADS  CAS  PubMed  Google Scholar 

  44. Jamshidian M, Prakash T, Timon R (2015) A continuum state variable theory to model the size-dependent surface energy of nanostructures. Phys Chem Chem Phys 17(38):25494–25498

    CAS  PubMed  Google Scholar 

  45. Nanthakumar SS et al (2015) Surface effects on shape and topology optimization of nanostructures. Comput Mech 56(1):97–112

    MathSciNet  Google Scholar 

  46. Abouelregal AE, Sedighi HM, Shirazi AH (2022) The effect of excess carrier on a semiconducting semi-infinite medium subject to a normal force by means of Green and Naghdi approach. SILICON 14(9):4955–4967

    CAS  Google Scholar 

  47. Liu Y, Wang L, Kaixuan Gu, Li M (2022) Artificial neural network (ANN)-bayesian probability framework (BPF) based method of dynamic force reconstruction under multi-source uncertainties. Knowl Based Syst 237:107796

    Google Scholar 

  48. Wang L, Li Z, Ni BoWen, Wang X, Chen W (2022) A robust topology optimization method considering bounded field parameters with uncertainties based on the variable time step parametric level-set method. Appl Math Model 107:441–463

    MathSciNet  Google Scholar 

  49. Lu P, He LH, Lee HP, Lu C (2006) Thin plate theory including surface effects. Int J Solids Struct 43(16):4631–4647

    Google Scholar 

  50. Wang L, Ni Q (2009) A reappraisal of the computational modelling of carbon nanotubes conveying viscous fluid. Mech Res Commun 36(7):833–837

    CAS  Google Scholar 

  51. Ku HH (1966) Notes on the use of propagation of error formulas. J Res Natl Bur Stand 70(4):263–273

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrokh Hosseini Hashemi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arpanahi, R.A., Eskandari, A., Hosseini-Hashemi, S. et al. Surface Energy Effect on Free Vibration Characteristics of Nano-plate Submerged in Viscous Fluid. J. Vib. Eng. Technol. 12, 67–76 (2024). https://doi.org/10.1007/s42417-022-00828-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-022-00828-x

Keywords

Navigation