Skip to main content
Log in

A Fresh Look at the Structures of Nylons and the Brill Transition

  • Perspective
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

The common knowledge of the crystal structures of nylons dates back to the early 1950s with the work of Bunn and Garner. It describes the packing of sheets made of hydrogen-bonded stems in an extended chain conformation. These alpha phase structures have a specific powder X-ray diffraction pattern with reflections at 4.4 Å and 3.7 Å. On heating, reflections transform progressively and merge at ≈ 4.2 Å at the so-called “Brill transition”. Other diffraction patterns have been recorded for different types of nylons and thermal histories. These patterns were interpreted only as indicating the existence of “variants” of the alpha phase. However, neither their structure, nor the origin of the Brill transition were established. Recent structural analyses and molecular modeling approaches have provided new insights in these long-standing structural puzzles. The “variants” feature chain conformations that are “pleated”. The Brill transition does not involve the standard extended chains of the alpha phase but corresponds to a dynamic interconversion (≈ 1010/s) between mirror conformations of these pleated stems.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

(Reproduced from Ramesh [6], with permission)

Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bunn CW, Garner EV. The crystal structures of two polyamides (“nylons”). Proc R Soc Lond Ser A Math Phys Sci. 1947;A189:39–68.

    Google Scholar 

  2. Holmes DR, Bunn CW, Smith DJ. The crystal structure of polycaproamide: Nylon 6. J Polym Sci. 1955;17:159–77.

    Article  CAS  Google Scholar 

  3. Brill R. Über das Verhalten von Polyamiden beim Erhitzen. J Prakt Chem. 1942;161:49–64. https://doi.org/10.1002/prac.19421610104.

    Article  CAS  Google Scholar 

  4. Ramesh C, Keller A, Eltink SJEA. Studies on the crystallization and melting of nylon-6,6:1. The dependence of the Brill transition on the crystallization temperature. Polymer. 1994;35:2483–7.

    Article  CAS  Google Scholar 

  5. Yang X, Tan S, Li G, Zhou E. Dependence of the Brill transition on the crystal size of nylon 10 10. Macromolecules. 2001;34:5936–42.

    Article  CAS  Google Scholar 

  6. Ramesh C. New crystalline transitions in nylon 4,6, 6,10 and 6,12 using high temperature X-ray diffraction studies. Macromolecules. 1999;32:3721–6. https://doi.org/10.1021/ma981284z.

    Article  CAS  Google Scholar 

  7. Tashiro K, Yoshioka Y. Conformational disorder in the Brill transition of uniaxially-oriented nylon 10/10 sample investigated through the temperature-dependent measurement of X-ray fiber diagram. Polymer. 2004;45:6349–53.

    Article  CAS  Google Scholar 

  8. Morales-Gamez L, Ricart A, Franco L, Puiggali J. Study of the Brill transition and melt crystallization of nylon 65: a polymer able to adopt a structure with two hydrogen bonding directions. Eur Polym J. 2010;46(10):2063–77.

    Article  CAS  Google Scholar 

  9. Yan D, Li Y, Zhu X. Brill transition in Nylon 10 12 investigated by variable temperature XRD and real time FT-IR. Macromol Rapid Commun. 2000;21(15):1040–3.

    Article  CAS  Google Scholar 

  10. Hirschinger J, Miura H, Gardner KH, English AD. Segmental dynamics in the crystalline phase of nylon 66. Solid-state 2H NMR. Macromolecules. 1990;23(8):2153–69. https://doi.org/10.1021/ma00210a009.

    Article  CAS  Google Scholar 

  11. Yoshioka Y, Tashiro K, Ramesh C. Structural change in the Brill transition of nylon m/n (2) conformational disordering as viewed from the temperature-dependent infrared spectral measurements. Polymer. 2003;44:6407–17. https://doi.org/10.1016/S0032-3861(03)00593-7.

    Article  CAS  Google Scholar 

  12. Yoshioka Y, Tashiro K, Ramesh C. New interpretation of progression bands observed in infrared spectra of nylon-m/n. J Polym Sci B Polym Phys. 2003;41(12):1294–307. https://doi.org/10.1002/polb.10457.

    Article  CAS  Google Scholar 

  13. Cooper SJ, Coogan M, Everall N, Priestnall I. A polarised μ-FTIR study on a model system for nylon 6 6: implications for the nylon Brill structure. Polymer. 2001;42:10119–32. https://doi.org/10.1016/S0032-3861(01)00566-3.

    Article  CAS  Google Scholar 

  14. Wendoloski JJ, Gardner KH, Hirschinger J, Miura H, English AD. Molecular dynamics in ordered structures: computer simulation and experimental results for nylon 66 crystals. Science. 1990;247(4941):431–6.

    Article  CAS  Google Scholar 

  15. Tashiro K, Yoshioka Y. Molecular dynamics simulation of the structural and mechanical property changes in the Brill transition of nylon 10/10 crystal. Polymer. 2004;45:4337–48. https://doi.org/10.1016/j.polymer.2004.03.082.

    Article  CAS  Google Scholar 

  16. Jones NAJ, Atkins EDT, Hill MJ. Comparison of structures and behavior on heating of solution-grown, chain-folded lamellar crystals of 31 even-even Nylons. Macromolecules. 2000;33:2642–50.

    Article  CAS  Google Scholar 

  17. Vinken E, Terry AE, van Asselen O, Spoelstra AB, Graf R, Rastogi S. Role of superheated water in the dissolution and perturbation of hydrogen bonding in the crystalline lattice of polyamide 4,6. Langmuir. 2008;24(12):6313–26.

    Article  CAS  Google Scholar 

  18. Lotz B. Original crystal structures of even-even polyamides made of pleated and rippled sheets. Macromolecules. 2021;54(2):551–64. https://doi.org/10.1021/acs.macromol.0c02404.

    Article  CAS  Google Scholar 

  19. Lotz B. Brill transition in nylons: the structural scenario. Macromolecules. 2021;54(2):565–83. https://doi.org/10.1021/acs.macromol.0c02409.

    Article  CAS  Google Scholar 

  20. Pauling L, Corey RB. Configurations of polypeptide chains with favored orientations around single bonds: two new pleated sheets. Proc Natl Acad Sci USA. 1951;37:729–40.

    Article  CAS  Google Scholar 

  21. Pauling L, Corey RB. Two rippled-sheet configurations of polypeptide chains, and a note about the pleated sheets. Proc Natl Acad Sci USA. 1953;39:253–6.

    Article  CAS  Google Scholar 

  22. Kinoshita Y. An investigation of the structures of polyamide series. Makromol Chem. 1959;33:1–20.

    Article  CAS  Google Scholar 

  23. Kinoshita Y. The crystal structure of polyheptamethylene pimelamide (nylon 77). Makromol Chem. 1959;33:21–31.

    Article  CAS  Google Scholar 

  24. Li Y, Yan D, Zhu X. Crystalline transition in Nylon 10 10. Macromol Rapid Commun. 2000;21:1282–11285.

    Article  CAS  Google Scholar 

  25. Lovinger AJ. Crystallographic factors affecting the structure of polymeric spherulites. I. Morphology of directionally solidified spherulites. J Appl Phys. 1978;49(10):5003–13.

    Article  CAS  Google Scholar 

  26. Lovinger AJ. Crystallographic factors affecting the structure of polymeric spherulites. II. X-ray diffraction analysis of directionally solidified polyamides and general conclusions. J Appl Phys. 1978;49(10):5014–28.

    Article  CAS  Google Scholar 

  27. Tonelli A. Melting of aliphatic nylons. J Polym Sci Polym Phys Ed. 1977;15:2051–3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Lotz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotz, B. A Fresh Look at the Structures of Nylons and the Brill Transition. Adv. Fiber Mater. 3, 203–209 (2021). https://doi.org/10.1007/s42765-021-00085-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00085-9

Keywords

Navigation