Skip to main content

Advertisement

Log in

Assessment of mycorrhizal association of a threatened medicinal plant Clerodendrum indicum (L.) O. Kuntze (Verbenaceae) in different ecological variations

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Mycorrhizae association is reported to enhance the survivability of the host plant under adverse environmental conditions. The present study aims to explore the mycorrhizal association in the roots of different ecotypes of a threatened medicinal plant, Clerodendrum indicum (L.) O. Kuntze (Verbenaceae), collected from W.B., India, which correlates the degree of root colonization to the nutritional status of the native soil. Ten ecotypes of C. indicum having diverse morphological variations were collected. The mycorrhizae were characterized by both morphological and molecular methods. The nutritional status of the native soils was estimated. The study revealed that all the ecotypes have an association with mycorrhizal forms like hyphae, arbuscules, and vesicles. The molecular analysis showed Glomus intraradices and Rhizophagus irregularis as the associated arbuscular mycorrhizal fungi (AMF). A significant variation in arbuscule and vesicle formation was found growing in the varied nutritional statuses concerning soil parameters. The arbuscule was found negatively correlated with pH, conductivity, and potassium and positively correlated with organic carbon, nitrogen, and phosphorus. The vesicle was found positively correlated with pH, organic carbon, and potassium and negatively correlated with conductivity, nitrogen, and phosphorus. The interaction between conductivity: nitrogen, conductivity: phosphorus, organic-carbon: nitrogen, and pH: conductivity was significant in influencing vesicle formation. However, none of the interactions between parameters was found significant in influencing arbuscule formation. Thus, the study concludes that G. intraradices and R. irregularis are the principle mycorrhizae forming the symbiotic association with the threatened medicinal plant, C. indicum. They form vesicles and arbuscules based on their soil nutritive factors. Therefore, a large-scale propagation through a selective AMF association would help in the conservation of this threatened species from extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Taram M, Borah D, Tag H, Choudhary RK (2020) An inventory of the native flowering plants in East Siang District of Arunachal Pradesh, India. J Threatened Taxa 12(17):17299–17322. https://doi.org/10.11609/jott.6241.12.17.17299-17322

  2. Srivastava N, Patel T (2007) Clerodendrum and healthcare: an overview-part II phytochemistry and biotechnology. Med Aromat Plant Sci Biotechnol 1(2):209–223

    Google Scholar 

  3. Wahba HM, AbouZid SF, Sleem AA, Apers S, Pieters L, Shahat AA (2011) Chemical and biological investigation of some Clerodendrum species cultivated in Egypt. Pharm Biol 49(1):66–72. https://doi.org/10.3109/13880209.2010.494674

    Article  PubMed  CAS  Google Scholar 

  4. Kyaw EH, Iwasaki A, Suenaga K, Kato-Noguchi H (2021) Phytotoxic activity of Clerodendrum indicum (L.) Kuntze and its potential phytotoxic substance. Emir J Food Agric 33(10):884–892

    Google Scholar 

  5. Sidde LS, Malathi S, Malathi SS (2018) A brief review on Clerodendrum indicum. Int J Indig Med Plants 31:1-4

  6. Pal A, Mahmud ZA, Akter N, Islam S, Bachar SC (2012) Evaluation of antinociceptive, antidiarrheal and antimicrobial activities of leaf extracts of Clerodendrum indicum. Pharmacogn J 4:41e46. https://doi.org/10.5530/pj.2012.30.8

    Article  Google Scholar 

  7. Majumder S, Nahar T, Mahmud S (2019) Investigation on in vitro antioxidant and in vivo neurobehavioral activities of Clerodendrum indicum leaf extract. Biores Com (BRC). 5(2):770–781

    Google Scholar 

  8. Tian J, Zhao QS, Zhang HJ, Lin ZW, Sun HD (1997) New cleroindicins from Clerodendrum indicum. J Nat Prod 60(8):766–769. https://doi.org/10.1021/np9606759

    Article  CAS  Google Scholar 

  9. Jun T, Handong S (1999) Chemical constituents of Clerodendrum indicum. Nat Prod Res Develop 11(3):1–5

    Google Scholar 

  10. Ravindranath N, Ramesh C, Kishore KH, Murty USN, Das B (2003) Clerodendrone, a novel hydroquinone diterpenoid from Clerodendrum indicum. J Chem Res 2003, 440-441. https://doi.org/10.3184/2F030823403103174452

  11. Wang JH, Luan F, He XD, Wang Y, Li MX (2018) Traditional uses and pharmacological properties of Clerodendrum phytochemicals. J Trad Complement Med 8(1):24–38. https://doi.org/10.1016/j.jtcme.2017.04.001

    Article  CAS  Google Scholar 

  12. Sushma M, Lahari S, Mounika A, Sailaja KE (2021) Phytochemical screening & in-vitro evaluation of anti-inflammatory activity of Clerodendrum indicum roots. World J Curr Med Pharm Res 28:140–143. https://doi.org/10.37022/wjcmpr.v3i6.201

    Article  CAS  Google Scholar 

  13. Gogoi B, Gogoi D, Silla Y, Kakoti BB, Bhau BS (2017) Network pharmacology-based virtual screening of natural products from Clerodendrum species for identification of novel anti-cancer therapeutics. Mol BioSyst 13(2):406–416. https://doi.org/10.1039/C6MB00807K

    Article  PubMed  CAS  Google Scholar 

  14. Somwong P, Suttisri R (2018) Cytotoxic activity of the chemical constituents of Clerodendrum indicum and Clerodendrum villosum roots. J Integr Med 16(1):57–61. https://doi.org/10.1016/j.joim.2017.12.004

    Article  PubMed  Google Scholar 

  15. Kar P, Dutta S, Chakraborty AK, Roy A, Sen S, Kumar A, Lee J, Chaudhuri TK, Sen A (2019) The antioxidant-rich active principles of Clerodendrum sp. controls haloalkane xenobiotic induced hepatic damage in the murine model. Saudi. J Biol Sci 26(7):1539–1547. https://doi.org/10.1016/j.sjbs.2018.12.006

    Article  CAS  Google Scholar 

  16. Priya K, Setty MM, Pai K (2020) In vitro and in vivo evaluation of anticancer properties of Clerodendrum indicum (L.) Kuntze in colon cancer. Res J Pharm Technol 13(5):2321–2328. https://doi.org/10.5958/0974-360X.2020.00418.7

    Article  Google Scholar 

  17. Ghosh A, Pal PK (2015) Seedling phenology of Clerodendrum indicum exhibiting the unusual epigeal cryptocotylar type of germination. Acta Bot Gall 162(3):233–237. https://doi.org/10.1080/12538078.2015.1023218

    Article  Google Scholar 

  18. Ghosh A, Pal PK (2017) Pollination ecology of Clerodendrum indicum (Lamiaceae): first report of deceit pollination by anther-mimicking stigma in a bisexual flower. Rev Biol Trop 65(3):988. https://doi.org/10.15517/rbt.v65i3.29450

    Article  Google Scholar 

  19. Borkataki SH, Das PU, Deka RL, Borua IC, Saud BK, Sharma A (2018) Influence of weather factors on incidence and intensity of Black inchworm (Hyposidra talaca Walker) on Clerodendrum indicum (L.) Kuntze at Jorhat. J Agrometeorol 20:98–101

    Google Scholar 

  20. Morgan JA, Bending GD, White PJ (2005) Biological costs and benefits to plant–microbe interactions in the rhizosphere. Journal of Experimental Botany. 56(417):1729–1739. https://doi.org/10.1093/jxb/eri205

    Article  PubMed  CAS  Google Scholar 

  21. Humphreys CP, Franks PJ, Rees M, Bidartondo MI, Leake JR, Beerling DJ (2010) Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat Commun 1(1):1–7. https://doi.org/10.1038/ncomms1105

    Article  CAS  Google Scholar 

  22. Jeffries P, Gianinazzi S, Perotto S et al (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16. https://doi.org/10.1007/s00374-002-0546-5

    Article  Google Scholar 

  23. Martin FM, Uroz S, Barker DG (2017) Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science 356(6340):eaad4501. https://doi.org/10.1126/science.aad4501

    Article  PubMed  CAS  Google Scholar 

  24. Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179. https://doi.org/10.1111/j.1462-2920.2009.02099.x

    Article  PubMed  CAS  Google Scholar 

  25. Lekberg Y, Schnoor T, Kjøller R, Gibbons SM, Hansen LH, Al-Soud WA, Sorensen SJ, Rosendahl S (2012) 454-Sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities. J Ecol 100:151–160. https://doi.org/10.1111/j.1365-2745.2011.01894.x

    Article  Google Scholar 

  26. Xiang D, Verbruggen E, Hu Y, Veresoglou SD, Rillig MC, Zhou W, Xu T, Li H, Hao Z, Chen Y, Chen B (2014) Land use influences arbuscular mycorrhizal fungal communities in the farming-pastoral ecotone of Northern China. New Phytol 204:968–978. https://doi.org/10.1111/nph.12961

    Article  PubMed  CAS  Google Scholar 

  27. Gosling P, Mead A, Proctor M, Hammond JP, Bending GD (2013) Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytol 198:546–556. https://doi.org/10.1111/nph.12169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bainard LD, Bainard JD, Hamel C, Gan Y (2014) Spatial and temporal structuring of arbuscular mycorrhizal communities is differentially influenced by abiotic factors and host crop in a semi-arid prairie agroecosystem. FEMS Microbiol Ecol 88:333–344. https://doi.org/10.1111/1574-6941.12300

    Article  PubMed  CAS  Google Scholar 

  29. Higo M, Isobe K, Drijber RA, Kondo K, Yamaguchi M, Takeyama S, Suzuki Y, Niijima D, Matsuda Y, Ishii R, Torigoe Y (2014) Impact of a 5-year winter cover crop rotational system on the molecular diversity of arbuscular mycorrhizal fungi colonizing roots of subsequent Soybean. Biol Fertil Soils 50:913–926. https://doi.org/10.1007/s00374-014-0912-0

    Article  Google Scholar 

  30. Fuchs B, Haselwandter K (2008) Arbuscular mycorrhiza of endangered plant species: potential impacts on restoration strategies. In: Varma, A. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78826-3_27

  31. Bothe H, Turnau K, Regvar M (2010) The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza 20:445–457. https://doi.org/10.1007/s00572-010-0332-4

    Article  PubMed  Google Scholar 

  32. Radhika KP, Rodrigues BF (2010) Arbuscular mycorrhizal fungal diversity in some commonly occurring medicinal plants of the Western Ghats, Goa region. J For Res 21:45–52. https://doi.org/10.1007/s11676-010-0007-1

    Article  Google Scholar 

  33. Gupta N, Das P (2001) Study on arbuscular mycorrhizal associations in ornamental plants—a survey. J Phytol Res 14:171–174

    Google Scholar 

  34. Kalita RK, Bora DP, Dutta D (2002) Vesicular arbuscular mycorrhizal association with some native plants. Ind J Fores 25(1/2):143–146

    Google Scholar 

  35. Ghanta R, Dutta S, Mukhopadhyay R (2013) Investigation on arbuscular mycorrhizal alliances in some threatened medicinal herbs of Burdwan district, West Bengal. India. J Med Plants Res 7(7):315–323

    Google Scholar 

  36. Sharma C, Gupta RK, Pathak RK, Choudhary KK (2013) Seasonal colonization of arbuscular mycorrhiza fungi in the roots of Camellia sinensis (Tea) in different tea gardens of India. ISRN Biodiversity 2013:1–6. https://doi.org/10.1155/2013/593087

    Article  Google Scholar 

  37. Phillip JM, Hayman DS (1970) Improved procedure for clearing roots and staining parasites and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–160

    Article  Google Scholar 

  38. Brundrett MC, Bougher N, Dell B, Grove T, Malajczuk N (Editors) (1996) Working with mycorrhizas in forestry and agriculture. 374p. ACIAR Monograph 32. Australian Centre for International Agricultural Research, Canberra, Australia

  39. Keb-Llanes M, González G, Chi-Manzanero B, Infante D (2002) A rapid and simple method for small-scale DNA extraction in Agavaceae and other tropical plants. Plant Mol Biol Rep 20(3):299–299. https://doi.org/10.1007/bf02782465

    Article  Google Scholar 

  40. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. 2nd Edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

  41. Redecker D (2000) Specific PCR primers to identify arbuscular mycorrhizal fungi within colonized roots. Mycorrhiza 10:73–80. https://doi.org/10.1007/s005720000061

    Article  CAS  Google Scholar 

  42. Lee J, Lee S, Young JP (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65(2):339–349. https://doi.org/10.1111/j.1574-6941.2008.00531.x

    Article  PubMed  CAS  Google Scholar 

  43. Goswami BR, Parakhia MV, Golakiya BA, Kothari CR (2018) Morphological and molecular identification of Arbuscular Mycorrhizal (AM) fungi. Int J Curr Microbiol App Sci 7(01):2336–2347. https://doi.org/10.20546/ijcmas.2018.701.282

    Article  CAS  Google Scholar 

  44. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376. https://doi.org/10.1007/BF01734359

    Article  PubMed  CAS  Google Scholar 

  45. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Jukes TH, Cantor CR (1969) Evolution of protein molecules. Academic Press, New York, pp 21–132

    Google Scholar 

  47. Sarkar DK, Haldar A (2005) Physical and chemical methods of soil analysis. New Age International Publishers

    Google Scholar 

  48. Sparks DL, Page AL, Helmke PA, Loeppert RH (eds) (1996) Methods of soil analysis. Part 3. Chemical methods. Soil Science Society of America, Madison, Wisconsin

    Google Scholar 

  49. Datar R, Garg H (2019) Hands-on exploratory data analysis with R. Packt Publishing. https://www.packtpub.com/product/hands-on-exploratory-data-analysis-with-r/9781789804379

  50. Zelterman D (2015) Applied multivariate statistics with R. Springer Publishing. https://doi.org/10.1007/978-3-319-14093-3

  51. Lenth RV (2009) Response-surface methods inR, Usingrsm. Journal of Statistical Software 32(7):1–21. https://doi.org/10.18637/jss.v032.i07

    Article  Google Scholar 

  52. Van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205(4):1406–1423. https://doi.org/10.1111/nph.13288

    Article  PubMed  CAS  Google Scholar 

  53. Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular-arbuscular mycorrhizae. Proc Natl Acad Sci USA 91(25):11841–11843. https://doi.org/10.1073/pnas.91.25.11841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59(5):1115–1126. https://doi.org/10.1093/jxb/ern059

    Article  PubMed  CAS  Google Scholar 

  55. Kala CP, Dhyani PP, Sajwan BS (2006) Developing the medicinal plants' sector in northern India: challenges and opportunities. J Ethnobiol Ethnomedicine 2(1):1–5. https://doi.org/10.1186/1746-4269-2-32

    Article  Google Scholar 

  56. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 69-72. http://dx.doi.org/https://doi.org/10.1038/23932

  57. Ghosh A, Kumar RV, Manna MC, Singh AK, Parihar CM, Kumar S, Roy AK, Koli P (2021) Eco-restoration of degraded lands through trees and grasses improve soil carbon sequestration and biological activity in tropical climates. Ecol Eng 162:106176. https://doi.org/10.1016/j.ecoleng.2021.106176

    Article  Google Scholar 

  58. Johnson NC, Angelard C, Sanders IR, Kiers ET (2013) Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecol Lett 16:140–153. https://doi.org/10.1111/ele.12085

    Article  PubMed  Google Scholar 

  59. Song J, Han Y, Bai B, Jin S, He Q, Ren J (2019) Diversity of arbuscular mycorrhizal fungi in rhizosphere soils of the Chinese medicinal herb Sophora flavescens Ait. Soil Tillage Res 195:104423. https://doi.org/10.1016/j.still.2019.104423

    Article  Google Scholar 

  60. Schalamuk S, Velazquez S, Chidichimo H, Cabello M (2006) Fungal spore diversity of arbuscular mycorrhizal fungi associated with spring wheat: effects of tillage. Mycologia 98(1):16–22. https://doi.org/10.1080/15572536.2006.11832708

    Article  PubMed  CAS  Google Scholar 

  61. Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177(3):779–789. https://doi.org/10.1111/j.1469-8137.2007.02294.x

    Article  PubMed  CAS  Google Scholar 

  62. Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D (2015) Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS One 10(4):e0127472. https://doi.org/10.1371/journal.pone.0127472

  63. Hodge A, Storer K (2015) Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil 386:1–19. https://doi.org/10.1007/s11104-014-2162-1

    Article  CAS  Google Scholar 

  64. Zubek S, Błaszkowski J (2009) Medicinal plants as hosts of arbuscular mycorrhizal fungi and dark septate endophytes. Phytochem Rev 8(3):571–580. https://doi.org/10.1007/s11101-009-9135-7

    Article  CAS  Google Scholar 

  65. Islam M, Al-Hashimi A, Ayshasiddeka M, Ali H, El Enshasy HA, Dailin DJ, Sayyed RZ, Yeasmin T (2022) Prevalence of mycorrhizae in host plants and rhizosphere soil: a biodiversity aspect. PLoS One 17(3):e0266403. https://doi.org/10.1371/journal.pone.0266403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Medeiros AS, Goto BT, Ganade G (2021) Ecological restoration methods influence the structure of arbuscular mycorrhizal fungal communities in degraded drylands. Pedobiol 84:150690. https://doi.org/10.1016/j.pedobi.2020.150690

    Article  Google Scholar 

  67. Asmelash F, Bekele T, Birhane E (2016) The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front Microbiol 7:1095. https://doi.org/10.3389/fmicb.2016.01095

    Article  PubMed  PubMed Central  Google Scholar 

  68. Thirkell TJ, Charters MD, Elliott AJ, Sait SM, Field KJ (2017) Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. J Ecol 105(4):921–929. https://doi.org/10.1111/1365-2745.12788

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Indrajit Mandal (Research Scholar) and Professor Swadesh Pal, Department of Geography, University of Gour Banga, Malda-732103, W.B., India, for providing the geographical map of West Bengal. We are grateful to Dr. Biraj Sarkar (Research Scholar) and Dr. Sukhendu Mandal, Department of Microbiology, Calcutta University, for the phylogenetic tree preparation. We are grateful to the Soil testing laboratory, Govt. of West Bengal, English Bazar, Malda-732103 for soil nutritional parameters analysis. We are also grateful to Late Prof. Pankaj Kumar Pal, Department of Botany, The University of Burdwan, W.B., India for his valuable suggestion and guidance in this research work.

Availability of data and material

The data has been submitted as a supplementary compressed file along with this article.

Code availability

Not applicable

Database accession numbers

The GenBank Accession number of Glomus sp. clones of Clerosp_ Gour-01 is MN134340, that of Clerosp_ Sabang is MN134343, and that of Clerosp_ NBU-01 is MN134341. The Glomus sp. clones were marked along with GenBank Ac. No. as in the phylogenetic tree.

Funding

This work was supported by the Department of Science and Technology, Government of West Bengal, for funding the project [Sanction letter No.: 285/(Sanc.)/ST/P/S&T/2G-10/2017, Dated: 28.03.2018] and by UGC-DAE-CRS (Sanction letter No.: UGC-DAE-CSR-KC/CRS/19/RB-02/1045/1063; Dated: 10.05.2019).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Prashanta Kumar Mitra, Rajsekhar Adhikary, and Ashutosh Kundu performed the material preparation, data collection, and analysis. Prashanta Kumar Mitra, Rajsekhar Adhikary, and Ashutosh Kundu wrote the first draft of the manuscript, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Conceptualization and design of experimentation: Vivekananda Mandal; methodology: Prashanta Kumar Mitra, Rajsekhar Adhikary, Prithwish Mandal, and Ashutosh Kundu did the experimentations; Prashanta Kumar Mitra did the statistical analysis and data analysis for its presentation; formal analysis and investigation: Prashanta Kumar Mitra, Rajsekhar Adhikary; writing — original draft preparation: Prashanta Kumar Mitra, Rajsekhar Adhikary. All the authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved; writing — review and editing: Vivekananda Mandal; supervision: Vivekananda Mandal; funding acquisition: Vivekananda Mandal.

Corresponding author

Correspondence to Vivekananda Mandal.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible editor: Derlene Attili Agellis

Online documents

1.India Biodiversity Portal. https://indiabiodiversity.org/species/show/229224. Accessed 16 July 2022

2.The Plant List (TPL). http://www.theplantlist.org/. Accessed 16 July 2022

3.IUCN 2022. The IUCN Red List of Threatened Species. Version 2021-3. https://www.iucnredlist.org. Accessed 16 July 2022

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 3961 kb)

ESM 2

(DOCX 18 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, P.K., Adhikary, R., Mandal, P. et al. Assessment of mycorrhizal association of a threatened medicinal plant Clerodendrum indicum (L.) O. Kuntze (Verbenaceae) in different ecological variations. Braz J Microbiol 53, 2039–2050 (2022). https://doi.org/10.1007/s42770-022-00805-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00805-2

Keywords

Navigation