Skip to main content

Advertisement

Log in

Recycling of Gold and Silver from Electronic Waste—A Review

  • Review
  • Published:
Materials Circular Economy Aims and scope Submit manuscript

Abstract

Electronic waste (e-waste is one of the fastest growing waste streams which contains valuable materials such as plastic, glass, and precious metals. This study investigates different recycling methods such as pyrometallurgy, hydrometallurgy, and bio-metallurgy process used to recover precious metals such as Au and Ag from e-waste based on the information available in the literature. Mechanisms, improvements, and suitability of each method were critically analysed and corelated to have a complete understanding in this area. It was found that recovered materials can be reused as a secondary input material source. e-waste also contains hazardous materials and chemicals which requires proper care during recycling to prevent contamination. Besides the development of proper experimental techniques, it also required to raise the awareness among the people to deal with this issue sustainably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadi A, Schaffie M, Manafi Z, Ranjbar M (2010) Electrochemical bioleaching of high grade chalcopyrite flotation concentrates in a stirred bioreactor. Hydrometallurgy 104(1):99–105

    Article  CAS  Google Scholar 

  • Ardente F, Mathieux F, Recchioni M (2014) Recycling of electronic displays: analysis of pre-processing and potential ecodesign improvements. Resour Conserv Recycl 92:158–171

    Article  Google Scholar 

  • Arshadi M, Yaghmaei S (2020) Advances in bioleaching of copper and nickel from electronic waste using Acidithiobacillus ferrooxidans: evaluating daily pH adjustment. Chem Pap 74(7):2211–2227

    Article  CAS  Google Scholar 

  • Arshadi M, Yaghmaei S, Mousavi S (2018) Content evaluation of different waste PCBs to enhance basic metals recycling. Resour Conserv Recycl 139:298–306

    Article  Google Scholar 

  • Ashiq A, Kulkarni J, Vithanage M (2019) Chapter 10 - Hydrometallurgical recovery of metals from e-waste. In: Prasad MNV, Vithanage M (eds) Electronic Waste Management and Treatment Technology. Butterworth-Heinemann, pp 225–246

    Chapter  Google Scholar 

  • Awasthi AK, Zlamparet GI, Zeng X, Li J (2017) Evaluating waste printed circuit boards recycling: opportunities and challenges, a mini review. Waste Manag Res 35(4):346–356

    Article  Google Scholar 

  • Babu BR, Parande AK, Basha CA (2007) Electrical and electronic waste: a global environmental problem. Waste Manag Res 25(4):307–318

    Article  CAS  Google Scholar 

  • Baghalha M (2012) The leaching kinetics of an oxide gold ore with iodide/iodine solutions. Hydrometallurgy 113-114:42–50

    Article  CAS  Google Scholar 

  • Bahadoran A, De Lile JR, Masudy-Panah S, Sadeghi B, Li J, Sabzalian MH, Ramakrishna S, Liu Q, Cavaliere P, Gopinathan A (2022) Photocatalytic materials obtained from e-waste recycling: review, techniques, critique, and update. J Manuf Mater Process 6(4):69

    CAS  Google Scholar 

  • Baniasadi M, Vakilchap F, Bahaloo-Horeh N, Mousavi SM, Farnaud S (2019) Advances in bioleaching as a sustainable method for metal recovery from e-waste: a review. J Ind Eng Chem 76:75–90

    Article  CAS  Google Scholar 

  • Barnwal A, Dhawan N (2019) Evaluation of fluidization process for recovery of metals from discarded printed circuit boards. J Sustain Metall 5(4):519–527

    Article  Google Scholar 

  • Belova VV (2017) Development of solvent extraction methods for recovering rare earth metals. Theor Found Chem Eng 51(4):599–609

    Article  CAS  Google Scholar 

  • Bharathi SD, Dilshani A, Rishivanthi S, Khaitan P, Vamsidhar A, Jacob S (2022) Resource recycling, recovery, and xenobiotic remediation from e-wastes through biofilm technology: a review. Appl Biochem Biotechnol 2022:1–24

    Google Scholar 

  • Bilesan MR, Makarova I, Wickman B, Repo E (2021) Efficient separation of precious metals from computer waste printed circuit boards by hydrocyclone and dilution-gravity methods. J Clean Prod 286:125505

    Article  CAS  Google Scholar 

  • Brar KK, Magdouli S, Etteieb S, Zolfaghari M, Fathollahzadeh H, Calugaru L, Komtchou S-P, Tanabene R, Brar SK (2021) Integrated bioleaching-electrometallurgy for copper recovery - a critical review. J Clean Prod 291:125257

    Article  CAS  Google Scholar 

  • Catinean A, Dascalescu L, Lungu M, Dumitran LM, Samuila A (2021) Improving the recovery of copper from electric cable waste derived from automotive industry by corona-electrostatic separation. Part Sci Technol 39(4):449–456

    Article  CAS  Google Scholar 

  • Chappell B, Pramanik A, Basak A, Sarker P, Prakash C, Debnath S, Shankar S (2022) Processing household plastics for recycling–a review. Cleaner Mater 2022:100158

    Article  Google Scholar 

  • Chauhan G, Jadhao PR, Pant K, Nigam K (2018) Novel technologies and conventional processes for recovery of metals from waste electrical and electronic equipment: challenges & opportunities–a review. J Environ Chem Eng 6(1):1288–1304

    Article  CAS  Google Scholar 

  • Chen J, Huang K (2006) A new technique for extraction of platinum group metals by pressure cyanidation. Hydrometallurgy 82(3):164–171

    Article  CAS  Google Scholar 

  • Chen X, Lam KF, Mak SF, Yeung KL (2011) Precious metal recovery by selective adsorption using biosorbents. J Hazard Mater 186(1):902–910

    Article  CAS  Google Scholar 

  • Dang H, Li N, Chang Z, Wang B, Zhan Y, Wu X, Liu W, Ali S, Li H, Guo J (2020) Lithium leaching via calcium chloride roasting from simulated pyrometallurgical slag of spent lithium ion battery. Sep Purif Technol 233:116025

    Article  CAS  Google Scholar 

  • Dang H, Wang B, Chang Z, Wu X, Feng J, Zhou H, Li W, Sun C (2018) Recycled lithium from simulated pyrometallurgical slag by chlorination roasting. ACS Sustain Chem Eng 6(10):13160–13167

    Article  CAS  Google Scholar 

  • Diaz L, Julia N, Amalric A, Nussbaum G, Bjelland KB (2021) Recycling of Mn-rich ore fines, dust and sludge briquettes in Mn alloys production, vol 3926126. Available at SSRN

    Google Scholar 

  • Ding L, Cheng J, Wang T, Zhao J, Chen C, Niu Y (2019) Continuous electrolytic refining process of cathode copper with non-dissolving anode. Miner Eng 135:21–28

    Article  CAS  Google Scholar 

  • Dutrizac JE (1992) The leaching of sulphide minerals in chloride media. Hydrometallurgy 29(1):1–45

    Article  CAS  Google Scholar 

  • Ebin B, Isik MI (2016) Pyrometallurgical processes for the recovery of metals from WEEE. In: WEEE recycling. Elsevier, pp 107–137

    Chapter  Google Scholar 

  • El-Nadi YA (2017) Solvent extraction and its applications on ore processing and recovery of metals: classical approach. Sep Purif Rev 46(3):195–215

    Article  CAS  Google Scholar 

  • Ellis TW, Mirza AH (2010) The refining of secondary lead for use in advanced lead-acid batteries. J Power Sources 195(14):4525–4529

    Article  CAS  Google Scholar 

  • Faraji F, Golmohammadzadeh R, Pickles CA (2022) Potential and current practices of recycling waste printed circuit boards: a review of the recent progress in pyrometallurgy. J Environ Manag 316:115242

    Article  CAS  Google Scholar 

  • Fleming C (1992) Hydrometallurgy of precious metals recovery. Hydrometallurgy 30(1-3):127–162

    Article  CAS  Google Scholar 

  • Forti V, Balde CP, Kuehr R, Bel G (2020) The global e-waste monitor 2020: Quantities, flows and the circular economy potential. United Nations University

    Google Scholar 

  • Fuentes-Aceituno J, Lapidus G, Doyle F (2008) A kinetic study of the electro-assisted reduction of chalcopyrite. Hydrometallurgy 92(1-2):26–33

    Article  CAS  Google Scholar 

  • Guo X-Y, Zhang L, Tian Q-H, Qin H (2020) Stepwise extraction of gold and silver from refractory gold concentrate calcine by thiourea. Hydrometallurgy 194:105330

    Article  CAS  Google Scholar 

  • Ha VH, Lee J-C, Huynh TH, Jeong J, Pandey BD (2014) Optimizing the thiosulfate leaching of gold from printed circuit boards of discarded mobile phone. Hydrometallurgy 149:118–126

    Article  CAS  Google Scholar 

  • Ha VH, Lee J-C, Jeong J, Hai HT, Jha MK (2010) Thiosulfate leaching of gold from waste mobile phones. J Hazard Mater 178(1):1115–1119

    Article  CAS  Google Scholar 

  • Hennebel T, Boon N, Maes S, Lenz M (2015) Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives. New Biotechnol 32(1):121–127

    Article  CAS  Google Scholar 

  • Hubicki Z, Wawrzkiewicz M, Wołowicz A (2008) Application of ion exchange methods in recovery of Pd (II) ions–a review. Chem Anal(Warsaw) 53:759–784

    CAS  Google Scholar 

  • Ilyas S, Lee JC (2014) Biometallurgical recovery of metals from waste electrical and electronic equipment: a review. ChemBioEng Rev 1(4):148–169

    Article  Google Scholar 

  • Ilyas S, Srivastava RR, Kim H, Ilyas N, Sattar R (2020) Extraction of nickel and cobalt from a laterite ore using the carbothermic reduction roasting-ammoniacal leaching process. Sep Purif Technol 232:115971

    Article  CAS  Google Scholar 

  • Innocenzi V, Ippolito NM, De Michelis I, Medici F, Vegliò F (2016) A hydrometallurgical process for the recovery of terbium from fluorescent lamps: experimental design, optimization of acid leaching process and process analysis. J Environ Manag 184:552–559

    Article  CAS  Google Scholar 

  • Jha MK, Lee J-C, Kim M-S, Jeong J, Kim B-S, Kumar V (2013) Hydrometallurgical recovery/recycling of platinum by the leaching of spent catalysts: a review. Hydrometallurgy 133:23–32

    Article  CAS  Google Scholar 

  • Kadivar S, Pourhossein F, Mousavi SM (2021) Recovery of valuable metals from spent mobile phone printed circuit boards using biochar in indirect bioleaching. J Environ Manag 280:111642

    Article  CAS  Google Scholar 

  • Kar B, Swamy Y (2000) Some aspects of nickel extraction from chromitiferous overburden by sulphatization roasting. Miner Eng 13(14-15):1635–1640

    Article  CAS  Google Scholar 

  • Kiddee P, Naidu R, Wong MH (2013) Electronic waste management approaches: an overview. Waste Manag 33(5):1237–1250

    Article  Google Scholar 

  • Kim S, Kim Y, Kim S, Lee J (2019) Analyses of physical properties of copper-contained sludge pelletized for applied pyro-metallurgical process. Resources Recycling 28(2):31–39

    CAS  Google Scholar 

  • Kononova O, Bryuzgina G, Apchitaeva O, Kononov Y (2019) Ion exchange recovery of chromium (VI) and manganese (II) from aqueous solutions. Arab J Chem 12(8):2713–2720

    Article  CAS  Google Scholar 

  • Konyratbekova SS, Baikonurova A, Akcil A (2015) Non-cyanide Leaching processes in gold hydrometallurgy and iodine-iodide applications: a review. Miner Process Extr Metall Rev 36(3):198–212

    Article  CAS  Google Scholar 

  • Koskela A, Heikkilä A, Bergna D, Salminen J, Fabritius T (2021) Effects of briquetting and high pyrolysis temperature on hydrolysis lignin char properties and reactivity in CO-CO2-N2 conditions. Minerals 11(2):187

    Article  CAS  Google Scholar 

  • Kumar A, Holuszko M, Espinosa DCR (2017) E-waste: an overview on generation, collection, legislation and recycling practices. Resour Conserv Recycl 122:32–42

    Article  Google Scholar 

  • Kumar PS, Yaashikaa PR (2020) Chapter 20 - Recent trends and challenges in bioleaching technologies. In: Rathinam NK, Sani RK (eds) Biovalorisation of Wastes to Renewable Chemicals and Biofuels. Elsevier, pp 373–388

    Chapter  Google Scholar 

  • Kumari R, Samadder SR (2022) A critical review of the pre-processing and metals recovery methods from e-wastes. J Environ Manag 320:115887

    Article  CAS  Google Scholar 

  • Li J, Chen Z, Shen B, Xu Z, Zhang Y (2017) The extraction of valuable metals and phase transformation and formation mechanism in roasting-water leaching process of laterite with ammonium sulfate. J Clean Prod 140:1148–1155

    Article  CAS  Google Scholar 

  • Li L, Ge J, Chen R, Wu F, Chen S, Zhang X (2010) Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Manag 30(12):2615–2621

    Article  CAS  Google Scholar 

  • Li M, Peng B, Chai L, Peng N, Yan H, Hou D (2012) Recovery of iron from zinc leaching residue by selective reduction roasting with carbon. J Hazard Mater 237:323–330

    Article  Google Scholar 

  • Li N, Guo J, Chang Z, Dang H, Zhao X, Ali S, Li W, Zhou H, Sun C (2019) Aqueous leaching of lithium from simulated pyrometallurgical slag by sodium sulfate roasting. RSC Adv 9(41):23908–23915

    Article  CAS  Google Scholar 

  • Lin P, Wu J, Ahn J, Lee J (2019) Adsorption characteristics of Cd (II) and Ni (II) from aqueous solution using succinylated hay. Int J Miner Metall Mater 26(10):1239–1246

    Article  CAS  Google Scholar 

  • Liu K, Tan Q, Yu J, Wang M (2023) A global perspective on e-waste recycling. Circular Econ 2(1):100028

    Article  Google Scholar 

  • Liu X, Jiang T, Xu B, Zhang Y, Li Q, Yang Y, He Y (2020) Thiosulphate leaching of gold in the Cu–NH3–S2O3 2−–H2O system: an updated thermodynamic analysis using predominance area and species distribution diagrams. Miner Eng 151:106336

    Article  CAS  Google Scholar 

  • Liu Y, Song Q, Zhang L, Xu Z (2021) Separation of metals from Ni-Cu-Ag-Pd-Bi-Sn multi-metal system of e-waste by leaching and stepwise potential-controlled electrodeposition. J Hazard Mater 408:124772

    Article  CAS  Google Scholar 

  • Liu Z-W, Guo X-Y, Tian Q-H, Zhang L (2022) A systematic review of gold extraction: fundamentals, advancements, and challenges toward alternative lixiviants. J Hazard Mater 440:129778

    Article  CAS  Google Scholar 

  • Ma E (2019) Recovery of waste printed circuit boards through pyrometallurgy. Electronic Waste Management and Treatment Technology, pp 247–267

    Google Scholar 

  • Mantuano DP, Dorella G, Elias RCA, Mansur MB (2006) Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid-liquid extraction with Cyanex 272. J Power Sources 159(2):1510–1518

    Article  CAS  Google Scholar 

  • Marconi M, Palmieri G, Callegari M, Germani M (2019) Feasibility study and design of an automatic system for electronic components disassembly. J Manuf Sci Eng 141(2):1

    Article  Google Scholar 

  • Marra A, Cesaro A, Belgiorno V (2018) Separation efficiency of valuable and critical metals in WEEE mechanical treatments. J Clean Prod 186:490–498

    Article  CAS  Google Scholar 

  • Marsden J, House I (2006) The chemistry of gold extraction. SME

    Google Scholar 

  • Meng Q, Yan X, Li G (2021) Eco-friendly and reagent recyclable gold extraction by iodination leaching-electrodeposition recovery. J Clean Prod 323:129115

    Article  CAS  Google Scholar 

  • Noll R, Connemann S, Fricke-Begemann C, Schreckenberg F, Ambrosch R, Tori A, Guolo M (2018) Inverse production line for the automated dismantling of mobile phones with selective laser-based detaching and sorting of valuable components. Stephanie Thiel, Elisabeth Thomé-Kozmiensky und Daniel Goldmann (Hg.): Recycling und Rohstoffe 11:533–543

    Google Scholar 

  • Oluokun OO, Otunniyi IO (2020) Chemical conditioning for wet magnetic separation of printed circuit board dust using octyl phenol ethoxylate. Sep Purif Technol 240:116586

    Article  CAS  Google Scholar 

  • Oustadakis P, Tsakiridis PE, Katsiapi A, Agatzini-Leonardou S (2010) Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: characterization and leaching by diluted sulphuric acid. J Hazard Mater 179(1):1–7

    Article  CAS  Google Scholar 

  • Pallavolu MR, Kumar YA, Mani G, Alshgari RA, Ouladsmane M, Joo SW (2021) Facile fabrication of novel heterostructured tin disulfide (SnS2)/tin sulfide (SnS)/N-CNO composite with improved energy storage capacity for high-performance supercapacitors. J Electroanal Chem 899:115695

    Article  CAS  Google Scholar 

  • Pang S-K, Yung K-C (2014) Prerequisites for achieving gold adsorption by multiwalled carbon nanotubes in gold recovery. Chem Eng Sci 107:58–65

    Article  CAS  Google Scholar 

  • Perea CG, Restrepo OJ (2018) Use of amino acids for gold dissolution. Hydrometallurgy 177:79–85

    Article  CAS  Google Scholar 

  • Popescu A, Soare V, Demidenko O, Calderon-Moreno J, Neacsu E, Donath C, Burada M, Constantin I, Constantin V (2020) Recovery of silver and gold from electronic waste by electrodeposition in ethaline ionic liquid. Rev Chim 71(1):1

    Article  Google Scholar 

  • Priya A, Hait S (2020) Biometallurgical recovery of metals from waste printed circuit boards using pure and mixed strains of Acidithiobacillus ferrooxidans and Acidiphilium acidophilum. Process Saf Environ Prot 143:262–272

    Article  CAS  Google Scholar 

  • Qin H, Guo X, Tian Q, Yu D, Zhang L (2021) Recovery of gold from sulfide refractory gold ore: oxidation roasting pretreatment and gold extraction. Miner Eng 164:106822

    Article  CAS  Google Scholar 

  • Ribeiro PPM, dos Santos ID, Dutra AJB (2019) Copper and metals concentration from printed circuit boards using a zig-zag classifier. J Mater Res Technol 8(1):513–520

    Article  CAS  Google Scholar 

  • Rodrigues ÉF, De Rossi A, Rovaris B, Valério A, de Oliveira D, Hotza D (2021) Cleaner pre-concentration of metals from printed circuit board waste using novel dense liquid medium based on sodium silicate. Waste and Biomass Valorization 12(7):4081–4087

    Article  CAS  Google Scholar 

  • Shams K, Beiggy MR, Gholamipour Shirazi A (2004) Platinum recovery from a spent industrial dehydrogenation catalyst using cyanide leaching followed by ion exchange. Appl Catal A Gen 258(2):227–234

    Article  CAS  Google Scholar 

  • Shittu OS, Williams ID, Shaw PJ (2021) Global E-waste management: can WEEE make a difference? A review of e-waste trends, legislation, contemporary issues and future challenges. Waste Manag 120:549–563

    Article  Google Scholar 

  • Tang Y, Zhang B, Xie H, Qu X, Xing P, Yin H (2020) Recovery and regeneration of lithium cobalt oxide from spent lithium-ion batteries through a low-temperature ammonium sulfate roasting approach. J Power Sources 474:228596

    Article  CAS  Google Scholar 

  • Tanısalı E, Özer M, Burat F (2021) Precious metals recovery from waste printed circuit boards by gravity separation and leaching. Miner Process Extr Metall Rev 42(1):24–37

    Article  Google Scholar 

  • Tanong K, Tran LH, Mercier G, Blais JF (2017) Recovery of Zn (II), Mn (II), Cd (II) and Ni (II) from the unsorted spent batteries using solvent extraction, electrodeposition and precipitation methods. J Clean Prod 148:233–244

    Article  CAS  Google Scholar 

  • Tanskanen P (2013) Management and recycling of electronic waste. Acta Mater 61(3):1001–1011

    Article  CAS  Google Scholar 

  • Thakur G, Singh Y, Singh R, Prakash C, Saxena KK, Pramanik A, Basak A, Subramaniam S (2022) Development of GGBS-based geopolymer concrete incorporated with polypropylene fibers as sustainable materials. Sustainability 14(17):10639

    Article  CAS  Google Scholar 

  • Tuncuk A, Stazi V, Akcil A, Yazici EY, Deveci H (2012) Aqueous metal recovery techniques from e-scrap: hydrometallurgy in recycling. Miner Eng 25(1):28–37

    Article  CAS  Google Scholar 

  • Uddin MN, Arifa K, Asmatulu E (2021) Methodologies of e-waste recycling and its major impacts on human health and the environment. Int J Environ Waste Manag 27(2):159–182

    Article  CAS  Google Scholar 

  • Xiao Z, Pramanik A, Basak A, Prakash C, Shankar S (2022) Material recovery and recycling of waste tyres-a review. Cleaner Mater 2022:100115

    Article  Google Scholar 

  • Xiu F-R, Song Z, Lu Y, Qi Y, Wang M (2022) A novel conversion strategy for organic compounds in waste liquid crystal displays based on the near/supercritical methanol process. Waste Manag 153:397–404

    Article  CAS  Google Scholar 

  • Xu B, Kong W, Li Q, Yang Y, Jiang T, Liu X (2017) A review of thiosulfate leaching of gold: focus on thiosulfate consumption and gold recovery from pregnant solution. Metals 7:222. https://doi.org/10.3390/met7060222

    Article  CAS  Google Scholar 

  • Yaashikaa P, Priyanka B, Kumar PS, Karishma S, Jeevanantham S, Indraganti S (2022) A review on recent advancements in recovery of valuable and toxic metals from e-waste using bioleaching approach. Chemosphere 287:132230

    Article  CAS  Google Scholar 

  • Yahorava V, Kotze M (2014) Ion exchange technology for the efficient recovery of precious metals from waste and low-grade streams. J South Afr Inst Min Metall 114(2):173–181

    CAS  Google Scholar 

  • Yakornov S, Panshin A, Kozlov P, Ivakin D (2017) Development of charge pelletizing technology based on electric arc furnace dust for pyrometallurgical processing in rotary kilns. Metallurgist 61(7):529–534

    Article  CAS  Google Scholar 

  • Yang C-C, Pan J, Zhu D-Q, Guo Z-Q, Li X-M (2019) Pyrometallurgical recycling of stainless steel pickling sludge: a review. J Iron Steel Res Int 26(6):547–557

    Article  CAS  Google Scholar 

  • Yang C, Zhu N, Shen W, Zhang T, Wu P (2017) Bioleaching of copper from metal concentrates of waste printed circuit boards by a newly isolated Acidithiobacillus ferrooxidans strain Z1. J Mater Cycles Waste Manag 19(1):247–255

    Article  CAS  Google Scholar 

  • Zhan L, Xu Z (2014) State-of-the-art of recycling e-wastes by vacuum metallurgy separation. Environ Sci Technol 48(24):14092–14102

  • Zhang L, Guo X-Y, Tian Q-H, Li D, Zhong S-P, Qin H (2022) Improved thiourea leaching of gold with additives from calcine by mechanical activation and its mechanism. Miner Eng 178:107403

    Article  CAS  Google Scholar 

  • Zhang M-P, Liu C-H, Zhu X-J, Xiong H-B, Zhang L-B, Gao J-Y, Liu M-H (2021a) Preparation of ammonium molybdate by oxidation roasting of molybdenum concentrate: a comparison of microwave roasting and conventional roasting. Chem Eng Process: Process Intensif 167:108550

    Article  CAS  Google Scholar 

  • Zhang Z, Yan K, Nie H, Wang R, Xu Z (2021b) Fundamental theory on pyrometallurgy direct smelting of waste printed circuit boards. JOM 73(8):2549–2557

    Article  CAS  Google Scholar 

  • Zhao F, Wang S (2019) Bioleaching of electronic waste using extreme acidophiles. In: Electronic Waste Management and Treatment Technology. Elsevier, pp 153–174

    Chapter  Google Scholar 

  • Zheng Y-X, LV J-F, Lai Z-N, Lan Z-Y, Wang H (2019) Innovative methodology for separating copper and iron from Fe-Cu alloy residues by selective oxidation smelting. J Clean Prod 231:110–120

    Article  CAS  Google Scholar 

  • Zhu X-N, Ni Y, Wang D-Z, Zhang T, Qu S-J, Qiao F-M, Ren Y-G, Nie C-C, Lyu X-J, Qiu J (2020) Effect of dissociation size on flotation behavior of waste printed circuit boards. J Clean Prod 265:121840

    Article  CAS  Google Scholar 

  • Zhuang W-Q, Fitts JP, Ajo-Franklin CM, Maes S, Alvarez-Cohen L, Hennebel T (2015) Recovery of critical metals using biometallurgy. Curr Opin Biotechnol 33:327–335

    Article  CAS  Google Scholar 

Download references

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Author information

Authors and Affiliations

Authors

Contributions

CKC and AP conceptualized the idea and listed the table of content for manuscript. AKB and CP collected the literature and relevant information. CKC, AP, AKB, and CP prepared the original draft of manuscript. SS, SD, ARD, SC, and SR reviewed and edited the original draft of manuscript, which was the major contribution in writing the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to A. Pramanik or Chander Prakash.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamage, L.E.N., Basak, A.K., Pramanik, A. et al. Recycling of Gold and Silver from Electronic Waste—A Review. Mater Circ Econ 5, 8 (2023). https://doi.org/10.1007/s42824-023-00081-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42824-023-00081-x

Keywords

Navigation