Skip to main content
Log in

Effect of Nb-content on the corrosion resistance of Co-free high entropy alloys in chloride environment

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

This study investigated the effect of Nb-content on the corrosion behavior of the \({\text{Al}}_{7}{{\text{Cr}}}_{20}{{\text{Fe}}}_{\text{35} - {{x}}}{\text{Ni}}_{35}{{\text{Mo}}}_{3}{{\text{Nb}}}_{{x}}\) (x = 0, 1 and 2) high-entropy alloys in a Cl environment. The results indicated that only the face centered cubic phase existed in the Nb0 and Nb1 alloys, while the emergence of Laves phase was observed when Nb-content reached 2 at.%. The Nb0 and Nb1 alloys exhibited pitting corrosion, while the NiAl-rich phase experienced localized preferential corrosion in the Nb2 alloy. The electrochemical results revealed that the corrosion current density of the \({\text{Nb}}_{{x}}\) (x = 0, 1 and 2) alloys fell within the range of 10−8–10−7 A·cm−2, with a pitting corrosion potential exceeding 700 mVSCE. Notably, the Nb1 alloy exhibited the most impressive corrosion resistance, as its corrosion current density (7 × 10−8 A·cm−2) was merely half that of 316LN stainless steel. This is attributed to its rapid passivation process, resulting in the development of a protective film characterized by an increased \({\text{Cr}}_{2}{{\text{O}}}_{3}{\text{/Al}}_{2}{{\text{O}}}_{3}{\text{+Cr(OH)}}_{3}\) ratio. This study highlighted that the addition of Nb contributed to grain refinement, decreased corrosion current density, and elevated pitting potential, favoring passivation and improving corrosion resistance. However, excessive Nb-content resulted in the emergence of the Laves phase, inducing galvanic corrosion and diminishing resistance to corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data generated during and/or analyzed in this article are available from the corresponding author on reasonable request.

References

  1. Hou BR, Li XG, Ma XM, Du CW, Zhang DW, Zheng M, Xu WC, Lu DZ, Ma FB. The cost of corrosion in China. Npj Mater Degrad. 2017;1(1):4. https://doi.org/10.1038/s41529-017-0005-2.

    Article  Google Scholar 

  2. Ahmed N, Barsoum I, Haidemenopoulos G, Al-Rub RKA. Process parameter selection and optimization of laser powder bed fusion for 316L stainless steel: a review. J Manuf Process. 2022;75:415. https://doi.org/10.1016/j.jmapro.2021.12.064.

    Article  Google Scholar 

  3. Wang L, Liu F, Cheng JJ, Zuo Q, Chen CF. Hot deformation characteristics and processing map analysis for nickel-based corrosion resistant alloy. J Alloys Compd. 2015;623:69. https://doi.org/10.1016/j.jallcom.2014.10.034.

    Article  CAS  Google Scholar 

  4. Zhang LC, Chen LY. A review on biomedical titanium alloys: recent progress and prospect. Adv Eng Mater. 2019;21(4):1801215. https://doi.org/10.1002/adem.201801215.

    Article  CAS  Google Scholar 

  5. Azuma S, Kudo T, Miyuki H, Yamashita M, Uchida H. Effect of nickel alloying on crevice corrosion resistance of stainless steels. Corros Sci. 2004;46(9):2265. https://doi.org/10.1016/j.corsci.2004.01.003.

    Article  CAS  Google Scholar 

  6. Gupta RK, Birbilis N. The influence of nanocrystalline structure and processing route on corrosion of stainless steel: a review. Corros Sci. 2015;92:1. https://doi.org/10.1016/j.corsci.2014.11.041.

    Article  CAS  Google Scholar 

  7. Du XH, Li WP, Chang HT, Yang T, Duan GS, Wu BL, Huang JC, Chen FR, Liu CT, Chuang WS, Lu Y, Sui ML, Huang EW. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy. Nat Commun. 2020;11(1):2390. https://doi.org/10.1038/s41467-020-16085-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fan L, Yang T, Zhao Y, Luan J, Zhou G, Wang H, Jiao Z, Liu CT. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures. Nat Commun. 2020;11(1):6240. https://doi.org/10.1038/s41467-020-20109-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ma Y, Zhang Y, Zhang Z, Liu L, Sun L. Two novel Zr-rich refractory high-entropy alloys with excellent tensile mechanical properties. Intermetallics. 2023;157:107872. https://doi.org/10.1016/j.intermet.2023.107872.

    Article  CAS  Google Scholar 

  10. Liu L, Zhang Y, Li J, Fan M, Wang X, Wu G, Yang Z, Luan J, Jiao Z, Liu CT, Liaw PK, Zhang Z. Enhanced strength-ductility synergy via novel bifunctional nano-precipitates in a high-entropy alloy. Int J Plasticity. 2022;153:103235. https://doi.org/10.1016/j.ijplas.2022.103235.

    Article  CAS  Google Scholar 

  11. Lu C, Niu L, Chen N, Jin K, Yang T, Xiu P, Zhang Y, Gao F, Bei H, Shi S, He MR, Robertson IM, Weber WJ, Wang L. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat Commun. 2016;7(1):13564. https://doi.org/10.1038/ncomms13564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Su Z, Ding J, Song M, Jiang L, Shi T, Li Z, Wang S, Gao F, Yun D, Ma E, Lu C. Enhancing the radiation tolerance of high-entropy alloys via solute-promoted chemical heterogeneities. Acta Mater. 2023;245:118662. https://doi.org/10.1016/j.actamat.2022.118662.

    Article  CAS  Google Scholar 

  13. Su Z, Shi T, Yang J, Shen H, Li Z, Wang S, Ran G, Lu C. The effect of interstitial carbon atoms on defect evolution in high entropy alloys under helium irradiation. Acta Mater. 2022;233:117955. https://doi.org/10.1016/j.actamat.2022.117955.

    Article  CAS  Google Scholar 

  14. Shi T, Lei PH, Yan X, Li J, Zhou YD, Wang YP, Su ZX, Dou YK, He XF, Yun D, Yang W, Lu CY. Current development of body-centered cubic high-entropy alloys for nuclear applications. Tungsten. 2021;3(2):197. https://doi.org/10.1007/s42864-021-00086-6.

    Article  Google Scholar 

  15. He F, Wang Z, Shang X, Leng C, Li J, Wang J. Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures. Mater Des. 2016;104:259. https://doi.org/10.1016/j.matdes.2016.05.044.

    Article  CAS  Google Scholar 

  16. Lim KR, Lee KS, Lee JS, Kim JY, Chang HJ, Na YS. Dual-phase high-entropy alloys for high-temperature structural applications. J Alloys Compd. 2017;728:1235. https://doi.org/10.1016/j.jallcom.2017.09.089.

    Article  CAS  Google Scholar 

  17. Luo H, Li Z, Mingers AM, Raabe D. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corros Sci. 2018;134:131. https://doi.org/10.1016/j.corsci.2018.02.031.

    Article  CAS  Google Scholar 

  18. Nene SS, Frank M, Liu K, Sinha S, Mishra RS, McWilliams BA, Cho KC. Corrosion-resistant high entropy alloy with high strength and ductility. Scr Mater. 2019;166:168. https://doi.org/10.1016/j.scriptamat.2019.03.028.

    Article  CAS  Google Scholar 

  19. Wu P, Gan K, Yan D, Fu Z, Li Z. A non-equiatomic FeNiCoCr high-entropy alloy with excellent anti-corrosion performance and strength-ductility synergy. Corros Sci. 2021;183:109341. https://doi.org/10.1016/j.corsci.2021.109341.

    Article  CAS  Google Scholar 

  20. Yang J, Shi K, Zhang W, Chen Q, Ning Z, Zhu C, Liao J, Yang Y, Liu N, Zhang W, Yang J. A novel AlCrFeMoTi high-entropy alloy coating with a high corrosion-resistance in lead-bismuth eutectic alloy. Corros Sci. 2021;187:109524. https://doi.org/10.1016/j.corsci.2021.109524.

    Article  CAS  Google Scholar 

  21. Yang J, Zhang F, Chen Q, Zhang W, Zhu C, Deng J, Zhong Y, Liao J, Yang Y, Liu N, Yang J. Effect of Au-ions irradiation on mechanical and LBE corrosion properties of amorphous AlCrFeMoTi HEA coating: enhanced or deteriorated? Corros Sci. 2021;192:109862. https://doi.org/10.1016/j.corsci.2021.109862.

    Article  CAS  Google Scholar 

  22. Hu Q, Ye CP, Zhang SC, Wang XZ, Du CF, Wang H. Mo content-depended competition between Cr2O3 enrichment and selective dissolution of CoCrFeNiMox high entropy alloys. Npj Mater Degrad. 2022;6(1):97. https://doi.org/10.1038/s41529-022-00313-6.

    Article  CAS  Google Scholar 

  23. Fu J, Wang J, Li F, Cui K, Du X, Wu Y. Effect of Nb addition on the microstructure and corrosion resistance of ferritic stainless steel. Appl Phys A Mater Sci Process. 2020;126(3):194. https://doi.org/10.1007/s00339-020-3383-1.

    Article  CAS  Google Scholar 

  24. Afonso CRM, Martinez-Orozco K, Amigó V, Della Rovere CA, Spinelli JE, Kiminami CS. Characterization, corrosion resistance and hardness of rapidly solidified Ni–Nb alloys. J Alloys Compd. 2020;829:154529. https://doi.org/10.1016/j.jallcom.2020.154529.

    Article  CAS  Google Scholar 

  25. Liu C, Gao Y, Chong K, Guo F, Wu D, Zou Y. Effect of Nb content on the microstructure and corrosion resistance of FeCoCrNiNbx high-entropy alloys in chloride ion environment. J Alloys Compd. 2023;935:168013. https://doi.org/10.1016/j.jallcom.2022.168013.

    Article  CAS  Google Scholar 

  26. Tanji A, Fan X, Sakidja R, Liaw PK, Hermawan H. Niobium addition improves the corrosion resistance of TiHfZrNbx high-entropy alloys in Hanks’ solution. Electrochim Acta. 2022;424:140651. https://doi.org/10.1016/j.electacta.2022.140651.

    Article  CAS  Google Scholar 

  27. Tsau CH, Yeh CY, Tsai MC. The effect of Nb-content on the microstructures and corrosion properties of CrFeCoNiNbx high-entropy alloys. Materials. 2019. https://doi.org/10.3390/ma12223716.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tong Y, Chen D, Han B, Wang J, Feng R, Yang T, Zhao C, Zhao YL, Guo W, Shimizu Y, Liu CT, Liaw PK, Inoue K, Nagai Y, Hu A, Kai JJ. Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures. Acta Mater. 2019;165:228. https://doi.org/10.1016/j.actamat.2018.11.049.

    Article  CAS  Google Scholar 

  29. Li R, Ren J, Zhang GJ, He JY, Lu YP, Wang TM, Li TJ. Novel (CoFe2NiV0.5Mo0.2)100−xNbx eutectic high-entropy alloys with excellent combination of mechanical and corrosion properties. Acta Metallurgica Sinica (English Letters). 2020;33(8):1046. https://doi.org/10.1007/s40195-020-01072-6.

    Article  CAS  Google Scholar 

  30. Zhao YL, Yang T, Zhu JH, Chen D, Yang Y, Hu A, Liu CT, Kai JJ. Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates. Scr Mater. 2018;148:51. https://doi.org/10.1016/j.scriptamat.2018.01.028.

    Article  CAS  Google Scholar 

  31. Kumar NAPK, Li C, Leonard KJ, Bei H, Zinkle SJ. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 2016;113:230. https://doi.org/10.1016/j.actamat.2016.05.007.

    Article  CAS  Google Scholar 

  32. Li C, Hu X, Yang T, Kumar NAPK, Wirth BD, Zinkle SJ. Neutron irradiation response of a Co-free high entropy alloy. J Nucl Mater. 2019;527:151838. https://doi.org/10.1016/j.jnucmat.2019.151838.

    Article  CAS  Google Scholar 

  33. Han J, Zhang Y, Zhang Z, Liu L, Li J, Yu Y, Sun L. Strength-plasticity regulation via nanoscale precipitation and coprecipitation in cobalt-free medium-entropy alloys. Mater Charact. 2022;193:112263. https://doi.org/10.1016/j.matchar.2022.112263.

    Article  CAS  Google Scholar 

  34. Han HJ, Zhang Y, Sun Z, Zhang Y, Zhao Y, Sun L, Zhang Z. Enhanced irradiation tolerance of a medium entropy alloy via precipitation and dissolution of nanoprecipitates. J Nucl Mater. 2023;586:154693. https://doi.org/10.1016/j.jnucmat.2023.154693.

    Article  CAS  Google Scholar 

  35. Conejero O, Palacios M, Rivera S. Premature corrosion failure of a 316L stainless steel plate due to the presence of sigma phase. Eng Fail Anal. 2009;16(3):699. https://doi.org/10.1016/j.engfailanal.2008.06.022.

    Article  CAS  Google Scholar 

  36. Shi YZ, Yang B, Xie X, Brechtl J, Dahmen KA, Liaw PK. Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros Sci. 2017;119:33. https://doi.org/10.1016/j.corsci.2017.02.019.

    Article  CAS  Google Scholar 

  37. Duan XT, Han TZ, Guan X, Wang YN, Su HH, Ming KS, Wang J, Zheng SJ. Cooperative effect of Cr and Al elements on passivation enhancement of eutectic high-entropy alloy AlCoCrFeNi2.1 with precipitates. J Mater Sci Technol. 2023;136:97. https://doi.org/10.1016/j.jmst.2022.07.023.

    Article  CAS  Google Scholar 

  38. McCafferty E. Validation of corrosion rates measured by the tafel extrapolation method. Corros Sci. 2005;47(12):3202. https://doi.org/10.1016/j.corsci.2005.05.046.

    Article  CAS  Google Scholar 

  39. Chai WK, Lu T, Pan Y. Corrosion behaviors of FeCoNiCrx (x = 0, 0.5, 1.0) multi-principal element alloys: role of Cr-induced segregation. Intermetallics. 2020;116:106654. https://doi.org/10.1016/j.intermet.2019.106654.

    Article  CAS  Google Scholar 

  40. Xu ZL, Zhang H, Du XJ, He YZ, Luo H, Song GS, Mao L, Zhou TW, Wang LL. Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing. Corros Sci. 2020;177:108954. https://doi.org/10.1016/j.corsci.2020.108954.

    Article  CAS  Google Scholar 

  41. Shi YZ, Collins L, Feng R, Zhang C, Balke N, Liaw PK, Yang B. Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance. Corros Sci. 2018;133:120. https://doi.org/10.1016/j.corsci.2018.01.030.

    Article  CAS  Google Scholar 

  42. Yi JZ, Hu HX, Wang ZB, Zheng YG. Comparison of critical flow velocity for erosion-corrosion of six stainless steels in 3.5 wt% NaCl solution containing 2 wt% silica sand particles. Wear. 2018;416-417:62. https://doi.org/10.1016/j.wear.2018.10.006.

    Article  Google Scholar 

  43. Ming TY, Peng QJ, Han YL, Zhang T. Effect of water jet cavitation peening on electrochemical corrosion behavior of nickel-based alloy 600 in NaCl solution. Mater Chem Phys. 2023;295:127122. https://doi.org/10.1016/j.matchemphys.2022.127122.

    Article  CAS  Google Scholar 

  44. Peng X, Zhang Y, Zhao J, Wang F. Electrochemical corrosion performance in 3.5% NaCl of the electrodeposited nanocrystalline Ni films with and without dispersions of Cr nanoparticles. Electrochim Acta. 2006;51(23):4922. https://doi.org/10.1016/j.electacta.2006.01.035.

    Article  CAS  Google Scholar 

  45. Chen T, John H, Xu J, Lu QH, Hawk J, Liu XB. Influence of surface modifications on pitting corrosion behavior of nickel-base alloy 718. Part 1: effect of machine hammer peening. Corros Sci. 2013;77:230. https://doi.org/10.1016/j.corsci.2013.08.007.

    Article  CAS  Google Scholar 

  46. Hemmasian Ettefagh A, Zeng C, Guo S, Raush J. Corrosion behavior of additively manufactured Ti-6Al-4V parts and the effect of post annealing. Addit Manuf. 2019;28:252. https://doi.org/10.1016/j.addma.2019.05.011.

    Article  CAS  Google Scholar 

  47. Delgado-Alvarado C, Sundaram PA. A study of the corrosion behavior of gamma titanium aluminide in 3.5wt% NaCl solution and seawater. Corros Sci. 2007;49(9):3732. https://doi.org/10.1016/j.corsci.2007.04.001.

    Article  CAS  Google Scholar 

  48. Pu J, Zhang YL, Zhang XG, Yuan XL, Ren PD, Jin ZM. Mapping the fretting corrosion behaviors of 6082 aluminum alloy in 3.5% NaCl solution. Wear. 2021;482–483:203975. https://doi.org/10.1016/j.wear.2021.203975.

    Article  CAS  Google Scholar 

  49. Zhu M, Zhao BZ, Yuan YF, Guo SY, Pan J. Effect of solution temperature on the corrosion behavior of 6061–T6 aluminum alloy in NaCl Solution. J Mater Eng Perform. 2020;29(7):4725. https://doi.org/10.1007/s11665-020-04932-5.

    Article  CAS  Google Scholar 

  50. Zhang Y, Xiao Z, Zhao YY, Li Z, Xing Y, Zhou KC. Effect of thermo-mechanical treatments on corrosion behavior of Cu-15Ni-8Sn alloy in 3.5 wt% NaCl solution. Mater Chem Phys. 2017;199:54. https://doi.org/10.1016/j.matchemphys.2017.06.041.

    Article  CAS  Google Scholar 

  51. Song SL, Li DG, Chen DR, Liang P. The role of Ti in cavitation erosion and corrosion behaviours of NAB alloy in 3.5 % NaCl solution. J Alloys Compd. 2022. https://doi.org/10.1016/j.jallcom.2022.165728.

    Article  Google Scholar 

  52. Cui PC, Bao ZJ, Liu Y, Zhou F, Lai ZH, Zhou Y, Zhu JC. Corrosion behavior and mechanism of dual phase Fe1.125Ni1.06CrAl high entropy alloy. Corros Sci. 2022;201:110276. https://doi.org/10.1016/j.corsci.2022.110276.

    Article  CAS  Google Scholar 

  53. Zhao QC, Pan ZM, Wang XF, Luo H, Liu Y, Li XG. Corrosion and passive behavior of AlxCrFeNi3−x (x = 0.6, 0.8, 1.0) eutectic high entropy alloys in chloride environment. Corros Sci. 2022;208:110666. https://doi.org/10.1016/j.corsci.2022.110666.

    Article  CAS  Google Scholar 

  54. Della Rovere CA, Alano JH, Silva R, Nascente PAP, Otubo J, Kuri SE. Characterization of passive films on shape memory stainless steels. Corros Sci. 2012;57:154. https://doi.org/10.1016/j.corsci.2011.12.022.

    Article  CAS  Google Scholar 

  55. Zhang MD, Shi XL, Li ZY, Xu HQ, Li G. Corrosion behaviors and mechanism of CrFeNi2 based high-entropy alloys. Corros Sci. 2022;207:110562. https://doi.org/10.1016/j.corsci.2022.110562.

    Article  CAS  Google Scholar 

  56. Kumar AM, Khan A, Khan MY, Suleiman RK, Jose J, Dafalla H. Hierarchical graphitic carbon nitride-ZnO nanocomposite: viable reinforcement for the improved corrosion resistant behavior of organic coatings. Mater Chem Phys. 2020;251:122987. https://doi.org/10.1016/j.matchemphys.2020.122987.

    Article  CAS  Google Scholar 

  57. Luo H, Zou SW, Chen YH, Li ZM, Du CW, Li XG. Influence of carbon on the corrosion behaviour of interstitial equiatomic CoCrFeMnNi high-entropy alloys in a chlorinated concrete solution. Corros Sci. 2020;163:108287. https://doi.org/10.1016/j.corsci.2019.108287.

    Article  CAS  Google Scholar 

  58. Zhang ZC, Lan AD, Zhang M, Qiao JW. Effect of Ce on the pitting corrosion resistance of non-equiatomic high-entropy alloy Fe40Mn20Cr20Ni20 in 3.5wt% NaCl solution. J Alloys Compd. 2022. https://doi.org/10.1016/j.jallcom.2022.164641.

    Article  Google Scholar 

  59. Song LF, Wb Hu, Liao BK, Wan S, Kang L, Guo XP. Corrosion behavior of AlCoCrFeNi2.1 eutectic high-entropy alloy in Cl–containing solution. J Alloys Compd. 2023;938:168609. https://doi.org/10.1016/j.jallcom.2022.168609.

    Article  CAS  Google Scholar 

  60. Luo H, Yu Q, Dong CF, Sha G, Liu ZB, Liang JX, Wang L, Han G, Li XG. Influence of the aging time on the microstructure and electrochemical behaviour of a 15–5PH ultra-high strength stainless steel. Corros Sci. 2018;139:185. https://doi.org/10.1016/j.corsci.2018.04.032.

    Article  CAS  Google Scholar 

  61. Kissi M, Bouklah M, Hammouti B, Benkaddour M. Establishment of equivalent circuits from electrochemical impedance spectroscopy study of corrosion inhibition of steel by pyrazine in sulphuric acidic solution. Appl Surf Sci. 2006;252(12):4190. https://doi.org/10.1016/j.apsusc.2005.06.035.

    Article  CAS  Google Scholar 

  62. Wei L, Liu Y, Li Q, Cheng YF. Effect of roughness on general corrosion and pitting of (FeCoCrNi)0.89(WC)0.11 high-entropy alloy composite in 3.5 wt.% NaCl solution. Corros Sci. 2019;146:44. https://doi.org/10.1016/j.corsci.2018.10.025.

    Article  CAS  Google Scholar 

  63. Du YF, Yang GM, Chen SY, Ren YS. Research on the erosion-corrosion mechanism of 304 stainless steel pipeline of mine water in falling film flow. Corros Sci. 2022;206:110531. https://doi.org/10.1016/j.corsci.2022.110531.

    Article  CAS  Google Scholar 

  64. Jin J, Zhang JZ, Hu M, Li LX. Investigation of high potential corrosion protection with titanium carbonitride coating on 316L stainless steel bipolar plates. Corros Sci. 2021;191:109757. https://doi.org/10.1016/j.corsci.2021.109757.

    Article  CAS  Google Scholar 

  65. Wang JM, Jiang H, Chang XX, Zhang LJ, Wang HX, Zhu L, Qin SX. Effect of Cu content on the microstructure and corrosion resistance of AlCrFeNi3Cux high entropy alloys. Corros Sci. 2023;221:111313. https://doi.org/10.1016/j.corsci.2023.111313.

    Article  CAS  Google Scholar 

  66. Carmezim MJ, Simões AM, Montemor MF, Cunha Belo MD. Capacitance behaviour of passive films on ferritic and austenitic stainless steel. Corros Sci. 2005;47(3):581. https://doi.org/10.1016/j.corsci.2004.07.002.

    Article  CAS  Google Scholar 

  67. Macdonald DD. The history of the point defect model for the passive state: a brief review of film growth aspects. Electrochim Acta. 2011;56(4):1761. https://doi.org/10.1016/j.electacta.2010.11.005.

    Article  CAS  Google Scholar 

  68. Gao J, Ma QC, Sun Y, Wang KN, Song Q, Wang CM. Effect of Nb content on microstructure and corrosion resistance of Inconel 625 coating formed by laser cladding. Surf Coat Technol. 2023;458:129311. https://doi.org/10.1016/j.surfcoat.2023.129311.

    Article  CAS  Google Scholar 

  69. Zheng ZJ, Gao Y, Gui Y, Zhu M. Corrosion behaviour of nanocrystalline 304 stainless steel prepared by equal channel angular pressing. Corros Sci. 2012;54:60. https://doi.org/10.1016/j.corsci.2011.08.049.

    Article  CAS  Google Scholar 

  70. Gu XY, Zhuang YX, Huang D. Corrosion behaviors related to the microstructural evolutions of as-cast Al0.3CoCrFeNi high entropy alloy with addition of Si and Ti elements. Intermetallics. 2022. https://doi.org/10.1016/j.intermet.2022.107600.

    Article  Google Scholar 

  71. Wang WR, Wang JQ, Sun ZH, Li JT, Li LF, Song X, Wen XD, Xie L, Yang X. Effect of Mo and aging temperature on corrosion behavior of (CoCrFeNi)100-xMox high-entropy alloys. J Alloys Compd. 2020;812:152139. https://doi.org/10.1016/j.jallcom.2019.152139.

    Article  CAS  Google Scholar 

  72. Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim Acta. 2010;55(21):6218. https://doi.org/10.1016/j.electacta.2009.10.065.

    Article  CAS  Google Scholar 

  73. Liu CT, Wu JK. Influence of pH on the passivation behavior of 254SMO stainless steel in 3.5% NaCl solution. Corros Sci. 2007;49(5):2198. https://doi.org/10.1016/j.corsci.2006.10.032.

    Article  CAS  Google Scholar 

  74. Khireche S, Boughrara D, Kadri A, Hamadou L, Benbrahim N. Corrosion mechanism of Al, Al–Zn and Al–Zn–Sn alloys in 3 wt.% NaCl solution. Corros Sci. 2014. https://doi.org/10.1016/j.corsci.2014.07.018.

    Article  Google Scholar 

Download references

Acknowledgements

The present work was supported by the National Natural Science Foundation of China (NSFC) (52001083, U2141207, 52171111), Natural Science Foundation of Heilongjiang (YQ2023E026).

Author information

Authors and Affiliations

Authors

Contributions

Peng-Fei Dai: investigation, methodology, data curation, formal analysis, and writing original draft. Yang Zhang: writing—review and editing, visualization, supervision, and funding acquisition. Ji-Hong Han: analyzing and discussing data. Shu-Wen Li: analyzing and discussing data. Zhong-Wu Zhang: funding acquisition, supervision, writing—review and editing.

Corresponding authors

Correspondence to Yang Zhang or Zhong-Wu Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, PF., Zhang, Y., Rogozhkin, S. et al. Effect of Nb-content on the corrosion resistance of Co-free high entropy alloys in chloride environment. Tungsten (2024). https://doi.org/10.1007/s42864-024-00274-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42864-024-00274-0

Keywords

Navigation