Skip to main content
Log in

Thermal Aging and Pressure Scanning Electron Microscopic Analysis of Polymer Modified Agbabu Natural Bitumen

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

Premature failure of road pavement due to oxidative aging of bitumen is a problem affecting the durability of bitumen in pavement. Therefore, this study investigates the morphologies (microstructures) of polymer-modified Agbabu Natural Bitumen (ANB) samples as well as the effects of aging on its chemical compositions and physical properties. The raw ANB sample was purified by moisture extraction and subsequent removal of impurities to form the base. The base was modified with High Density Polyethylene (HDPE), Polyethylene-vinyl-acetate (PEVA), Polystyrene-co-butadiene (PSCB) and Polyphosphoric acid (PPA) in percentage compositions of 2, 4, and 6wt.% using melt blend technique. Pressure Scanning Electron Microscopy (PSEM) was used to investigate the morphological changes. For long-term aging, base and 6wt.% polymer modified base samples at 60 °C were used to study its effects on chemical and physical compositions of samples. PSEM analysis showed that all the polymer have good compatibilities with the base bitumen at various percentage compositions. However, PSCB showed compatibility only at 2wt.%. Thermal aging generally reduced penetration values and increased the softening points of the base and modified base samples. In addition, its effects on chemical composition of base and 6wt.% modified base samples were found to be faster in the base sample compared to the modified base samples at various aging periods. Thus, the use of PEVA, HDPE and PPA for modification at the three percentage compositions is recommended. However, for PSCB, it is recommended only at 2wt.% due to poor compatibilities at 4 and 6wt.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xing, L., Shaopeng, W., Gang, L., & Liping, L. (2015). Optical and UV-aging properties of LDH-modified bitumen. Materials, 8, 4022–4033.

    Article  Google Scholar 

  2. Mehrdad, H., Javad, T., & Mohamad, B. (2019). Bitumen and modifiers for used in pavement. Engineering, Sustainable Construction and Building Materials, 13, 250–270.

    Google Scholar 

  3. Hernandez-Bravo, R., Miranda, A. D., Martınez-Magadan, J. M., & Domınguez, J. M. (2018). Experimental and theoretical study on supramolecular ionic liquid (IL)-asphaltene complex interactions and their effects on the flow properties of heavy crude oils. The Journal of Physical Chemistry B, 122, 4325–4335.

    Article  Google Scholar 

  4. Olabemiwo, O. M., Aintomiwa, O. E., & Bakare, H. O. (2015). Preliminary investigation on modification of agbabu natural bitumen with some polymeric materials. International Journal of Scientific and Engineering Research, 6(9), 1342–1349.

    Google Scholar 

  5. Olabemiwo OM, Akintomiwa OE, Bakare HO, Agunbiade FO (2019) Polymer modified-natural bitumen: Thermal aging resistance studies. International Journal of Pavement Engineering: 1–9

  6. Airey GD (1997) Rheological Characterization of Polymer Modified and Aged Bitumens, Ph.D Thesis, University of Nottigham, p 1–256.

  7. Peterson JC (2009) A Review of the Fundamentals of Asphalt Oxidation-Chemical, Physiochemical, Physical Property, and Durability Relationship. In: Circular E-C 140, Transportation Research Board.

  8. EN 12607–1. Bitumen and Bituminous Binders. Determination of the Resistance to Hardening under Influence of Heat and Air. RTFOT Method. 2014.

  9. EN 14769:2012. Bitumen and Bituminous Binders. Accelerated Long Term Ageing Conditioning by a Pressure Ageing Vessel (PAV) 2012.

  10. Poulikakos, L. D., Hofko, B., Porot, L., Lu, X., Fischer, H., & Kringos, N. (2016). Impact of temperature on short and long term aging of asphalt binder. RILEM Technical Letters, 1, 6–9.

    Article  Google Scholar 

  11. Olabemiwo, O. M., Agbaje, L., Agunbiade, F. O., Akanji, S. B., & Bakare, H. O. (2020). The effects on oxidative aging. Physical and flow properties of agbabu natural bitumen modified with silver nanoparticles. Heliyon, 6(e04164), 1–11.

    Google Scholar 

  12. Yildirim, Y. (2007). Polymer modified asphalt binders. Construction and Building Materials, 21, 66–72.

    Article  Google Scholar 

  13. Masson, J. F. (2008). A brief review of the chemistry of polyphosphoric acid (PPA) and bitumen. Energy & Fuels, 22, 2637–2640.

    Article  Google Scholar 

  14. Baumgardner, G. L., Masson, J. F., Hardee, J. R., Menapace, A. M., & Williams, A. G. (2005). Polyphosphoric acid modified asphalt: Proposed mechanisms. Journal Association of Asphalt Paving Technologists, 74, 283–305.

    Google Scholar 

  15. Bakare, H. O., & Olabemiwo, O. M. (2016). Efficacy of Polyphosphoric Acid in Reducing the Degree of Thermal Aging of Agbabu Natural Bitumen. Covenant Journal of Physical and Life Sciences, 4(2), 1–17.

    Google Scholar 

  16. Xing, L., Shaopeng, W., Gang, L., & Liping, L. (2015). Effect of ultraviolet aging on rheology and chemistry of LDH-modified bitumen. Material, 8(8), 5238–5249.

    Article  Google Scholar 

  17. Chen, J. S., Liao, M. C., & Lin, C. H. (2003). Determination of polymer content in modified bitumen. Materials and Structures/Materiaux et Constructions, 36, 594–598.

    Google Scholar 

  18. Gupta, R. S., & Kaur, V. (2012). Characterization of bitumen and modified bitumen (e-PMB) using FTIR, thermal and SEM techniques. International science congress association Research journal of chemical Sciences, 2(8), 31–36.

    Google Scholar 

  19. Stulirova, J., & Pospisil, K. (2008). Observation of bitumen microstructure changes using scanning electron microscopy. Road Materials and Pavement Design, 9(4), 745–754.

    Article  Google Scholar 

  20. Loeber, L., Alexandre, S., Muller, G., Triquigneaux, J.-C., Jolivet, Y., & Malot, M. (2000). Bituminous emulsions and their characterization by atomic force microscopy. Journal of Microscopy, 198, 10–16.

    Article  Google Scholar 

  21. Bragado, G. A. C., Guzman, E. T. R., & Yacaman, M. J. (2001). Preliminary studies of asphaltene aggregates by low vacuum scanning eelectron microscopy. Petroleum Science and Technology, 19(1–2), 45–53.

    Article  Google Scholar 

  22. Yousefi, A. A. (2003). Polyethylene dispersions in bitumen: The effects of the polymer structural parameters. Journal of Applied Polymer Science, 90(12), 3183–3190.

    Article  Google Scholar 

  23. Polacco, G., Stastna, J., Biondi, D., & Zanzotto, L. (2006). Relation between polymer architecture and nonlinear viscoelastic behaviour of modified asphalts. Current Opinion in Colloid & Interface Science, 11(4), 230–245.

    Article  Google Scholar 

  24. Esteban, A. G. G., & Rafael, H. N. (2016). Effect of stirring in hot mixing process of modified asphalt with sbs copolymer on polymeric distribution and its rheology properties. Symposia Proceedings, Materials Research Society. https://doi.org/10.1557/opI.2016.5

    Article  Google Scholar 

  25. Vernon, H. S., & Katy, T. (1979). Processing for removing water from heavy crude oil. US Patent Patent No, 6(007), 702.

    Google Scholar 

  26. Rubinstein, I., & Strausz, O. P. (1979). Thermal treatment of the athabasca oil sand bitumen and its component parts. Geochimica et Cosmochimica Acta, 43, 1887–1893.

    Article  Google Scholar 

  27. Olabemiwo, O. M., Akintomiwa, O. E., Adediran, G. O., & Bakare, H. O. (2016). The performance of Agbabu natural bitumen modified with polyphosphoric acid through fundamental and fourier transform infrared spectroscopic investigations. Case Study in Construction Materials, 5, 39–45.

    Article  Google Scholar 

  28. Zhang, J. I., Junlong, W., Yiqian, W., Wenxiu, S., & Yunpu, W. (2009). Thermal behaviour and improved properties of SBR and SBR/natural bitumen modified bitumens. Iranian Polymer Journal, 18(6), 465–478.

    Google Scholar 

  29. ASTM D5–97 Standard Test Method for Penetration of Bituminous Materials (1998). Annual book of ASTM standards, Volume 04.03. In: American Society for Testing and Materials, Philadelphia: 19103–1187.

  30. ASTM D36/D36M-09. Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus): 1–4.

  31. Sonibare, O., Alimi, H., Jarvie, D., & Ehinola, O. A. (2008). Origin and occurrence of crude oil in the Niger Delta, Nigeria. Journal of Petroleum Science and Engineering, 61, 99–107.

    Article  Google Scholar 

  32. Singh, B., Lokesh, K., Gupta, M., & Chauhan, G. S. (2012). Polymer-modified bitumen of recycled ldpe and maleated bitumen. Journal of Applied Polymer Science. https://doi.org/10.1002/app.36810

    Article  Google Scholar 

  33. Cesare, O. R., Assunta, S. B., Teltayev, G. I., Yerik, A., & Villiam, B. (2015). Polymer modified bitumen: Rheological properties and structural characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects. https://doi.org/10.1016/j.colsurfa.2015.02.048

    Article  Google Scholar 

  34. Adebayo, O. S., Stephen, E. N., & Oluwasegun, J. A. (2016). Recycling of polyethylene terephthalate (PET) plastic bottle wastes in bituminous asphaltic concrete. Cogent Engineering, 3(1), 1–56.

    Google Scholar 

  35. Praveen, K., Tanvee, K., & Maninder, S. (2013). Study on EVA modified bitumen. Elixir Chemical Engineering, 54A, 12616–12618.

    Google Scholar 

  36. Garcı́a-Morales M, Partal P, Navarro FJ, Martı́nez-Boza F, Gallegos C, González N, Muñoz ME (2004) Viscous properties and microstructure of recycled eva modified bitumen. Fuel 83(1):31–38

  37. Qunshan, Y., & Hongyuan, F. (2014). Rheological properties of polyphosphoric acid modified asphalt binder. Indian Journal of Engineering and Materials Sciences, 21, 214–218.

    Google Scholar 

  38. Yousefi, A. A. (2008). The thermo-rheological behaviour of bitumen. The Progress in Color, Colorants and Coatings, 1, 45–55.

    Google Scholar 

  39. Peterson, J. C. (2000). Chemical composition of asphalt as related to asphalt durability, asphaltenes and asphalts, 2. Developments in Petroleum Science, 40B, 363–399.

    Article  Google Scholar 

Download references

Funding

This study was self-funded by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan O. Bakare.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest with respect to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakare, H.O., Olabemiwo, O.M., Agunbiade, F.O. et al. Thermal Aging and Pressure Scanning Electron Microscopic Analysis of Polymer Modified Agbabu Natural Bitumen. Int. J. Pavement Res. Technol. 16, 487–502 (2023). https://doi.org/10.1007/s42947-021-00144-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-021-00144-9

Keywords

Navigation