Skip to main content
Log in

CBR Prediction of Pavement Materials in Unsoaked Condition Using LSSVM, LSTM-RNN, and ANN Approaches

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

The present research introduces the best architecture model for predicting the unsoaked California bearing ratio (CBRu) of soil by comparing the models based on the least square support vector machine (LSSVM), long- short-term memory (LSTM), and artificial neural network (ANN) approach. The two kernel functions, linear and polynomial, have been selected to create LSSVM models. The developed LSTM models have been optimized by the Adam algorithm. In the employed ANN models, the Levenberg–Marquardt (LM), BFGS Quasi-Newton (BFG), scaled conjugate gradient (SCG), gradient descent with momentum (GDM), gradient descent (GD), and gradient descent with adaptive learning (GDA) algorithms have been used in the backpropagation process. For this purpose, three databases, such as training, testing and validation, have been compiled from the published research. A laboratory database has been developed by performing laboratory experiments for soil samples collected from and around Kota, Rajasthan, used for cross-validation of the best architecture model. The statistical tools, such as root means square error (RMSE), mean absolute error (MAE), correlation coefficient (R), mean absolute percentage error (MAPE), variance accounted for (VAF), weighted mean absolute percentage error (WMAPE), Nash–Sutcliffe efficiency (NS), normalized mean bias error (NMBE), Legate and McCabe’s index (LMI), root mean square error to observation's standard deviation ratio (RSR), a20-index, index of agreement (IOA) and index of scatter (IOS) have been used to measure the performance of the models. The LSTM model MD 14 has achieved higher performance and accuracy (RMSE = 0.9127%, MAE = 0.8114%, R = 0.9863%, MAPE = 9.0772%, VAF = 97.26, WMAPE = 0.0669%, NS = 0.9708, NMBE = 0.0687%, LMI = 0.1926, RSR = 0.1708, a20-index = 93.88, IOA = 0.9037 and IOS = 0.0752) in testing phase. For the performance validation, model (MD) 14 has predicted the CBRu of the validation database. Also, model MD 14 has attained higher performance (RMSE = 1.2671%, MAE = 1.0161%, R = 0.9909) in the validation phase. By comparing the performances and performing score analysis, the LSTM model MD 14 has been recognized as the best architecture model for predicting the unsoaked CBR of soil. Moreover, model MD 14 has gained over 96% (R = 0.9689) accuracy in predicting the CBRu of laboratory-tested soil samples. The present research also represents that the nonlinear approach has achieved higher performance with a high overfitting ratio. In addition, the artificial neural network requires a large database to predict the unsoaked CBR with higher performance and the least overfitting ratio. The present research also rejects the null hypothesis of normality. Sensitivity analysis illustrates that gravel content and maximum dry density of soil affect the prediction of unsoaked CBR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

The database used in this research will be provided upon request.

Abbreviations

\({C}_{C}\) :

Coefficient of curvature

\({C}_{U}\) :

Coefficient of uniformity

\({D}_{30}\) :

Grain size corresponding to 30% passing

\({D}_{50}\) :

Grain size corresponding to 50% passing

\({N}_{60}\) :

Corrected SPT-N

\({\gamma }_{d}\) :

Dry unit weight

AASHTO:

American Association of State Highways and Transportation Officials

ANFIS:

Adaptive network-based fuzzy inference system

ANN:

Artificial neural networks

ASTM:

American Standards for Testing and Materials

BFG_NN:

BFGS Quasi-Newton neural network

C + S:

Clay and sand

CBR:

California bearing ratio

CBRU :

Unsoaked CBR

CH:

Inorganic clays of high plasticity

CI:

Inorganic clays of medium plasticity

CL:

Inorganic clays of low plasticity

COD:

Coefficient of determination

CS:

Coarse sand content

CSA-LSSVM:

Coupled simulated annealing least-square support vector machine

DCPT:

Depth of penetration

DE:

Differential equation

DUW:

Dry unit weight

ENRG:

Elastic net regularization regression

ERT:

Extremely randomized trees

FD:

Frequency distribution

FS:

Fine Sand content

G:

Gravel content

GA:

Genetic algorithm

GA-ANN:

Genetic algorithm optimized artificial neural network

GD_NN:

Gradient descent neural network

GDA_NN:

Gradient descent adaptive neural network

GDM_NN:

Gradient descent with momentum neural network

GEP:

Gene expression programming

GP:

Genetic programming

GPR:

Gaussian process regression

GWO:

Grey wolves optimization

L1:

Position of 1st layer

LK-Star:

Lazy K star

LL:

Liquid limit

LLSVM-P:

Polynomial LSSVM

LM_NN:

Levenberg–Marquardt neural network

LMSR:

Least median of squares regression

M5MT:

M-5 model trees

MAE:

Mean absolute error

MARS-C:

Multivariate adaptive regression splines with piecewise cubic

MARS-L:

Multivariate adaptive regression splines with piecewise linear

MDD:

Maximum dry density

MLR:

Multilinear regression

MLR:

Multilinear regression analysis

MS:

Medium sand content

N:

Number of Datasets

NL:

Number of layers

O:

Organic content

OWC:

Optimum water content

OMC:

Open method of coordination

PI:

Plasticity Index

PL:

Plastic limit

PPV:

Peak particle velocity

R:

Correlation coefficient/performance

R2 :

Coefficient of determination

RBFNN:

Radial basis function neural network

RBN:

Radial basis networks

REPTs:

Reduced error pruning trees

RF:

Random forest

RMSE:

Root mean square error

RSS–ET:

Random subsurface-based extra tree

RSS–REPT:

Random subsurface-based reduced error pruning trees

SC:

Silt clay content

SCG_NN:

Scaled conjugate gradient neural network

SL:

Position of subsequent layers

SLRA:

Single linear regression analysis

T:

Tensile strength of geosynthetic

VAF:

Variance accounted for

WC:

Water content

WMAPE:

Weighted mean absolute percentage error

References

  1. Lakshmi, S. M., Gani, M. A., Kamalesh, V., Mahalakshmi, V., & Padmesh, P. M. (2021). Correlating unsoaked CBR with UCC strength for SC and SP soil. Materials Today: Proceedings, 43, 1293–1303. https://doi.org/10.1016/j.matpr.2020.09.029.

    Article  Google Scholar 

  2. Harini, H., & Naagesh, S. (2014). Predicting CBR of fine grained soils by artificial neural network and multiple linear regression. International Journal of Civil Engineering, 5(2), 119–126.

    Google Scholar 

  3. Agarwal, K.B., & Ghanekar, K.D. (1970). Prediction of CBR from plasticity characteristics of soil. In: Proceeding of 2nd south-east Asian conference on soil engineering, Singapore (pp. 571–576).

  4. Karunaprema, K. (2002). A laboratory study to establish some useful relationships for the use of dynamic cone penetrometer. Electronic Journal of Geotechnical Engineering, 7, 17.

    Google Scholar 

  5. Kumar, P. P., Pasricha, R., Sani, R. P., Bharadwaj, A. K., Chadha, R., & Rao, P. S. K. M. (2000). An indigenous impact tester for measuring in situ CBR of pavement materials. Highway Research Bulletin, IRC, 63, 13–22.

    Google Scholar 

  6. Venkatraman, T.S., Samson, M., & Ambili, T.S. (1995). Correlation between CBR and Clegg impact value. In: Proc. Nat. Sem. On emerging trends in Highway Engineering, Centre for Transportation Engineering, Bangalore, 1, pp. 25–1.

  7. Bharath, A., Manjunatha, M., Reshma, T. V., & Preethi, S. (2021). Influence and correlation of maximum dry density on soaked & unsoaked CBR of soil. Materials Today: Proceedings, 47, 3998–4002. https://doi.org/10.1016/j.matpr.2021.04.232.

    Article  Google Scholar 

  8. Janjua, Z. S., & Chand, J. (2016). Correlation of CBR with index properties of soil. International Journal of Civil Engineering and Technology, 7(5), 57–62.

    Google Scholar 

  9. Patel, R.S., & Desai, M.D. (2010). CBR predicted by index properties for alluvial soils of South Gujarat. In Proceedings of the Indian geotechnical conference, Mumbai (pp. 79–82).

  10. Roy, T.K., Chattopadhyay, B.C., & Roy, S.K. (2009). Prediction of CBR from compaction characteristics of cohesive soil. Highway Research Journal, pp.77–88.

  11. Vinod, P., & Reena, C. (2008). Prediction of CBR value of lateritic soils using liquid limit and gradation characteristics data. Highway Research Journal, IRC, 1(1), 89–98.

    Google Scholar 

  12. Adaikkalakumar, P., & Mangaraj, A. (2021). CBR and its regression model on time-dependent field. International Journal of Research in Engineering and Science, 8(6), 44–50.

    Google Scholar 

  13. Dutta, T., & Chottopadhyay, B.C. (2011). Correlation between CBR and index properties of soil. In Proceedings of Indian Geotechnical Conference, Kochi (pp. 131–133).

  14. Hassan, J., Alshameri, B., & Iqbal, F. (2021). Prediction of California Bearing Ratio (CBR) Using Index Soil Properties and Compaction Parameters of Low Plastic Fine-Grained Soil. Transportation Infrastructure Geotechnology. https://doi.org/10.1007/s40515-021-00197-0.

    Article  Google Scholar 

  15. Al-Refeai, T., & Al-Suhaibani, A. (1997). Prediction of CBR using dynamic cone penetrometer. Journal of King Saud University-Engineering Sciences, 9(2), 191–203. https://doi.org/10.1016/S1018-3639(18)30676-7.

    Article  Google Scholar 

  16. Sagar, C. P., Badiger, M., Mamatha, K. H., & Dinesh, S. V. (2022). Prediction of CBR using dynamic cone penetrometer index. Materials Today: Proceedings, 60, 223–228. https://doi.org/10.1016/j.matpr.2021.12.467.

    Article  Google Scholar 

  17. González Farias, I., Araujo, W., & Ruiz, G. (2018). Prediction of California bearing ratio from index properties of soils using parametric and non-parametric models. Geotechnical and Geological Engineering, 36(6), 3485–3498.

    Article  Google Scholar 

  18. Pradeep Kumar, K. J., & Harish-Paten, Y. M. (2016). Soft computing technique for prediction of cbr from index properties of subgrade soil. International Journal of Innovative Research in Science, Engineering and Technology, 5(7), 13852–13860.

    Google Scholar 

  19. Lakshmi, S. M., Geetha, S., & Selvakumar, M. (2021). Predicting soaked CBR of SC subgrade from dry density for light and heavy compaction. Materials Today: Proceedings, 45, 1664–1670. https://doi.org/10.1016/j.matpr.2020.08.558.

    Article  Google Scholar 

  20. Rashed, K. A., Salih, N. B., & Abdalla, T. A. (2021). Prediction of California bearing ratio from consistency and compaction characteristics of fine-grained soils. Al-Nahrain Journal for Engineering Sciences, 24(2), 123–129. https://doi.org/10.29194/NJES.24020123.

    Article  Google Scholar 

  21. Ambrose, P., & Rimoy, S. (2021). Prediction of four-days Soaked California Bearing Ratio (CBR) Values from Soil Index Properties. Tanzania Journal of Engineering and Technology, 40(1), 28–38.

    Article  Google Scholar 

  22. Mohammed, Y., Paulmakesh, A., Admasu, B., & Shukri, S. (2021). Relationship between California bearing ratio and other geotechnical properties of sub grade soils. Journal of Physics: Conference Series, 2040(1), 012029. https://doi.org/10.1088/1742-6596/2040/1/012029.

    Article  Google Scholar 

  23. Chandrakar, V., & Yadav, R. K. (2016). Study of correlation of CBR value with engineering properties and index properties of coarse grained soil. International Research Journal of Engineering and Technology (IRJET), 3, 772–778.

    Google Scholar 

  24. Rehman, Z. U., Khalid, U., Farooq, K., & Mujtaba, H. (2017). Prediction of CBR value from index properties of different soils. Technology Journal of University of Engineering & Technology (UET), 22, 17–26.

    Google Scholar 

  25. Taskiran, T. (2010). Prediction of California bearing ratio (CBR) of fine grained soils by AI methods. Advances in Engineering Software, 41(6), 886–892. https://doi.org/10.1016/j.advengsoft.2010.01.003.

    Article  Google Scholar 

  26. Alipour, A., Jafari, A., & Hossaini, S. M. F. (2012). Application of ANNs and MVLRA for estimation of specific charge in small size tunnel. International Journal of Geomechanics, 10, 189–192.

    Article  Google Scholar 

  27. Miranda, T., Correia, A. G., Santos, M., Ribeiro e Sousa, L., & Cortez, P. (2011). New models for strength and deformability parameter calculation in rock masses using data-mining techniques. International Journal of Geomechanics, 11(1), 44–58.

    Article  Google Scholar 

  28. Yazdi, J. S., Kalantary, F., & Yazdi, H. S. (2013). Investigation on the effect of data imbalance on prediction of liquefaction. International Journal of Geomechanics, 13(4), 463–466. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000217.

    Article  Google Scholar 

  29. Alam, S. K., Mondal, A., & Shiuly, A. (2020). Prediction of CBR value of fine grained soils of Bengal Basin by genetic expression programming, artificial neural network and krigging method. Journal of the Geological Society of India, 95(2), 190–196.

    Article  Google Scholar 

  30. Bourouis el Amin, M., Zadjaoui A., Djedid A., & Bensenouci A. (2017). Design of neural networks by using genetic algorithm for the prediction of immersed CBR index. In: Long-Term Behaviour and Environmentally Friendly Rehabilitation Technologies of Dams, 331–338, https://doi.org/10.3217/978-3-85125-564-5-046.

  31. Rassoul, A., & Mojtaba, K. (2015). Predicting maximum dry density, optimum moisture content and California bearing ratio (CBR) through soil index using ordinary least squares (OLS) and artificial neural networks (ANNs). International Journal of Innovative Technology and Exploring Engineering, 5(3), 1–5. C1770084314/2015©BEIESP.

    Google Scholar 

  32. Vadi, P. K., Manjula, C., & Poornima, P. (2015). Artificial neural networks (ANNS) for prediction of California bearing ratio of soils. International Journal of Modern Engineering Research, 5(1), 15–21.

    Google Scholar 

  33. Joshua Tunbosun, A., Odeh Ehiorobo, J., Sylvester Obinna, O., & Nwankwo, E. (2021). Application of Machine Learning Techniques to Estimate Unsoaked California Bearing Ratio in Ekiti Central Senatorial District.

  34. Amin, M. N., Iqbal, M., Ashfaq, M., Salami, B. A., Khan, K., Faraz, M. I., Alabdullah, A. A., & Jalal, F. E. (2022). Prediction of strength and CBR characteristics of chemically stabilized coal gangue: ANN and random forest tree approach. Materials, 15(12), 4330. https://doi.org/10.3390/ma15124330.

    Article  Google Scholar 

  35. Tadele, M.D. (2021). Prediction of CBR value using artificial neural network and regression analysis; a case study of Burayu Town. Thesis.

  36. Reddy, S., Ruchita, N., Sharma, P., & Satyanarayana, S. V. (2019). Prediction of California bearing ratio through empirical correlations of index properties for tropical indian soils. International Journal of Innovations in Engineering and Technology, 15(1), 67–77.

    Google Scholar 

  37. Ravichandra, A. H., Shivakumar, K., VinayKumar, H., Khalid, Md., & Basavaraj, B. (2019). Prediction of CBR value by using index properties of soil, International Research Journal of. Engineering and Technology, 6(7), 3740–3747.

    Google Scholar 

  38. Gül, Y., & Çayir, H.M. (2021) Prediction of the California bearing ratio from some field measurements of soils. In: Proceedings of the Institution of Civil Engineers-Municipal Engineer (Vol. 174, No. 4, pp. 241–250). Thomas Telford Ltd, https://doi.org/10.1680/jmuen.19.00020.

  39. Haupt, F. J., & Netterberg, F. (2021). Prediction of California bearing ratio and compaction characteristics of transvaal soils from indicator properties. Journal of the South African Institution of Civil Engineering, 63(2), 47–56. https://doi.org/10.17159/2309-8775/2021/v63n2a6.

    Article  Google Scholar 

  40. Chakraborty, A., & Goswami, A. (2021). Prediction of California bearing ratio (CBR) from index properties of fine-grained soil. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 52(4), 57–64.

    Google Scholar 

  41. Raja, M. N. A., Shukla, S. K., & Khan, M. U. A. (2021). An intelligent approach for predicting the strength of geosynthetic-reinforced subgrade soil. International Journal of Pavement Engineering. https://doi.org/10.1080/10298436.2021.1904237.

    Article  Google Scholar 

  42. Bardhan, A., Gokceoglu, C., Burman, A., Samui, P., & Asteris, P. G. (2021). Efficient computational techniques for predicting the California bearing ratio of soil in soaked conditions. Engineering Geology, 291, 106239. https://doi.org/10.1016/j.enggeo.2021.106239.

    Article  Google Scholar 

  43. Trong, D. K., Pham, B. T., Jalal, F. E., Iqbal, M., Roussis, P. C., Mamou, A., Ferentinou, M., Vu, D. Q., Duc Dam, N., Tran, Q. A., & Asteris, P. G. (2021). On random subspace optimization-based hybrid computing models predicting the california bearing ratio of soils. Materials, 14(21), 6516. https://doi.org/10.3390/ma14216516.

    Article  Google Scholar 

  44. Khatti, J., & Grover, K. S. (2022). Determination of suitable hyperparameters of artificial neural network for the best prediction of geotechnical properties of soil. International Journal for Research in Applied Science and Engineering Technology, 10(5), 4934–4961. https://doi.org/10.22214/ijraset.2022.43662.

    Article  Google Scholar 

  45. Vu, D. Q., Nguyen, D. D., Bui, Q. A. T., Trong, D. K., Prakash, I., & Pham, B. T. (2021). Estimation of California bearing ratio of soils using random forest based machine learning. Journal of Science and Transport Technology, 1, 48–61.

    Article  Google Scholar 

  46. Ho, L. S., & Tran, V. Q. (2022). Machine learning approach for predicting and evaluating California bearing ratio of stabilized soil containing industrial waste. Journal of Cleaner Production, 370, 133587. https://doi.org/10.1016/j.jclepro.2022.133587.

    Article  Google Scholar 

  47. Salehi, M., Bayat, M., Saadat, M., & Nasri, M. (2022). Prediction of unconfined compressive strength and California bearing capacity of cement-or lime-pozzolan-stabilised soil admixed with crushed stone waste. Geomechanics and Geoengineering. https://doi.org/10.1080/17486025.2022.2040606.

    Article  Google Scholar 

  48. Sharma, K., & Kumar, A. (2022). Investigation of compaction, specific gravity, unconfined compressive strength and cbr of a composite having copper slag and rice husk ash mixed using an alkali activator. Innovative Infrastructure Solutions, 7(2), 1–23. https://doi.org/10.1007/s41062-022-00783-2.

    Article  Google Scholar 

  49. Khatti, J., & Grover, K. S. (2022). Prediction of soaked CBR of fine-grained soils using soft computing techniques. Multiscale and Multidisciplinary Modeling, Experiments and Design,. https://doi.org/10.1007/s41939-022-00131-y.

    Article  Google Scholar 

  50. Rehman, A. U., Farooq, K., & Mujtaba, H. (2017). Prediction of California bearing ratio (CBR) and compaction characteristics of granular soils. Acta Geotechnica Slovenica, 14(1), 63–72.

    Google Scholar 

  51. Behera, C. K., & Satyapriya, S. (2021). Soil stabilization by industrial waste (GGBS and Stone dust). International Journal of Engineering Research & Technology, 10(9), 409–415. IJERTV10IS090154.

    Google Scholar 

  52. Shivaramaiah, A., Ravi Shankar, A. U., Singh, A., & Pammar, K. H. (2020). Utilization of lateritic soil stabilized with alkali solution and ground granulated blast furnace slag as a base course in flexible pavement construction. International Journal of Pavement Research and Technology, 13(5), 478–488. https://doi.org/10.1007/s42947-020-0251-5.

    Article  Google Scholar 

  53. Murmu, A. L., Dhole, N., & Patel, A. (2020). Stabilisation of black cotton soil for subgrade application using fly ash geopolymer. Road Materials and Pavement Design, 21(3), 867–885. https://doi.org/10.1080/14680629.2018.1530131.

    Article  Google Scholar 

  54. Kodicherla, S. P. K., & Nandyala, D. K. (2019). Influence of randomly mixed coir fibres and fly ash on stabilization of clayey subgrade. International Journal of Geo-Engineering, 10(1), 1–13. https://doi.org/10.1186/s40703-019-0099-1.

    Article  Google Scholar 

  55. Vandana, R. P., Sudheer Kumar, G., & Prasanthi, B. (2018). A parametric study on black cotton soil stabilized using rice husk ash. International Journal of Advanced in Management, Technology and Engineering Sciences, 8(4), 623–632.

    Google Scholar 

  56. Rohith, M. S., Kumar, D. R. S., Paul, W., & KumaraSwamy, N. (2018). A study on the effect of stabilizers (zycobond & terrasil) on strength of subgrade on BC soil. Indian Journal of Science Research, 17(2), 86–92.

    Google Scholar 

  57. Keshav Krishna, M. K., & Mishra, J. P. S. (2018). Stabilisation of soil using sodium hydroxide additive. International Journal for Research in Engineering Application & Management, 4(2), 328–332. https://doi.org/10.18231/2454-9150.2018.0166.

    Article  Google Scholar 

  58. Kulkarni, P. P., & Mandal, J. N. (2017). Performance assessment of stabilized soil with fly ash-nano material mixes. Journal of Geotechnical and Transportation Engineering, 3(2), 35–46.

    Google Scholar 

  59. Kumar, S., & Chouksey, A. (2017). Priyanka: Stabilization of sub-grade using fly ash and geosynthetic material. The International Journal of Engineering and Advanced Technology 5(06).

  60. Aldeeky, H., & Al Hattamleh, O. (2017). Experimental study on the utilization of fine steel slag on stabilizing high plastic subgrade soil. Advances in Civil Engineering. https://doi.org/10.1155/2017/9230279.

    Article  Google Scholar 

  61. Bandyopadhyay, T. S., Singh, A. A., Pandey, V., & Singh, J. P. (2016). Stabilization of soil using GGBS and calcium carbide residue. International Journal of Innovative Research in Science, Engineering and Technology, 5(9), 17023–17030.

    Google Scholar 

  62. Vishnu, T. C., Rasheed, R., Shadiya, K., Rameesha, K., Sreelakshmi, T. R., & Parvathy, K. M. (2016). Soil Stabilization using rice husk ash, lime and jute. SSRG International Journal of Civil Engineering SSRG-IJCE, 3(2), 20–29.

    Google Scholar 

  63. Dutta, R.K., & Gupta, R. (2016). Prediction of unsoaked and soaked California bearing ratio from index properties of soil using artificial neural networks. International Journal of Civil Engineering and Applications 6.

  64. El-Hasan, T., Mahasneh, B. Z., Hadi, N. A., & Abdelhadi, M. (2014). High calcium ash incorporated into clay, sand and cement mortars used for encapsulating of heavy metals. Jordan Journal of Earth and Environmental Science, 6, 23–28.

    Google Scholar 

  65. Yildirim, E., Avci, E., & Tanbay, N. A. (2021). Prediction of unconfined compressive strength of microfine cement injected sands using fuzzy logic method. Research Square. https://doi.org/10.21203/rs.3.rs-232296/v1.

    Article  Google Scholar 

  66. Alhassan, M. (2008). Potentials of rice husk ash for soil stabilization. AU Journal of Technology, 11(4), 246–250.

    Google Scholar 

  67. Hair, J. F., Ortinau, D. J., & Harrison, D. E. (2010). Essentials of marketing research (Vol. 2). McGraw-Hill/Irwin.

    Google Scholar 

  68. Vapnik, V. (1999). The nature of statistical learning theory. Springer.

    MATH  Google Scholar 

  69. Gong, W., Tian, S., Wang, L., Li, Z., Tang, H., Li, T., & Zhang, L. (2022). Interval prediction of landslide displacement with dual-output least squares support vector machine and particle swarm optimization algorithms. Acta Geotechnica. https://doi.org/10.1007/s11440-022-01455-2.

    Article  Google Scholar 

  70. Pan, G., Dong, H., & Nouroddin, M. K. (2022). Applying ANFIS and LSSVM models for the estimation of biochar aromaticity. International Journal of Chemical Engineering. https://doi.org/10.1155/2022/5639203.

    Article  Google Scholar 

  71. Seyyedattar, M., Zendehboudi, S., & Butt, S. (2022). Relative permeability modeling using extra trees, ANFIS, and hybrid LSSVM–CSA methods. Natural Resources Research, 31(1), 571–600. https://doi.org/10.1007/s11053-021-09950-1.

    Article  Google Scholar 

  72. Chen, H., Duan, J., Yin, R., Ponkratov, V. V., & Guerrero, J. W. G. (2021). Prediction of penetration rate by coupled simulated annealing-least square Support vector machine (CSA_LSSVM) learning in a hydrocarbon formation based on drilling parameters. Energy Reports, 7, 3971–3978. https://doi.org/10.1016/j.egyr.2021.06.080.

    Article  Google Scholar 

  73. Cai, M., Hocine, O., Mohammed, A. S., Chen, X., Amar, M. N., & Hasanipanah, M. (2021). Integrating the LSSVM and RBFNN models with three optimization algorithms to predict the soil liquefaction potential. Engineering with Computers. https://doi.org/10.1007/s00366-021-01392-w.

    Article  Google Scholar 

  74. Ahangari, D., Daneshfar, R., Zakeri, M., Ashoori, S., & Soulgani, B. S. (2022). On the prediction of geochemical parameters (TOC, S1 and S2) by considering well log parameters using ANFIS and LSSVM strategies. Petroleum, 8(2), 174–184. https://doi.org/10.1016/j.petlm.2021.04.007.

    Article  Google Scholar 

  75. Hochreiter, S., & Schmidhuber, J. (1996). LSTM can solve hard long time lag problems. Advances in Neural Information Processing Systems, 9, 1735.

    Google Scholar 

  76. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.

    Article  Google Scholar 

  77. Taorui, Z., Hongwei, J., Qingli, L., & Kunlong, Y. (2022). Landslide displacement prediction based on variational mode decomposition and MIC-GWO-LSTM model. Stochastic Environmental Research and Risk Assessment, 36(5), 1353–1372.

    Article  Google Scholar 

  78. Ishfaque, M., Dai, Q., Jadoon, K., Shahzad, S. M., & Janjuhah, H. T. (2022). Use of recurrent neural network with long short-term memory for seepage prediction at Tarbela Dam, KP Pakistan. Energies, 15(9), 3123. https://doi.org/10.3390/en15093123.

    Article  Google Scholar 

  79. Zhang, N., Shen, S. L., Zhou, A., & Jin, Y. F. (2021). Application of LSTM approach for modelling stress–strain behaviour of soil. Applied Soft Computing, 100, 106959. https://doi.org/10.1016/j.asoc.2020.106959.

    Article  Google Scholar 

  80. Filipović, N., Brdar, S., Mimić, G., Marko, O., & Crnojević, V. (2022). Regional soil moisture prediction system based on long short-term memory network. Biosystems Engineering, 213, 30–38. https://doi.org/10.1016/j.biosystemseng.2021.11.019.

    Article  Google Scholar 

  81. Hsu, S.C., Lai, Y.J., & Lai, S. (2021). Rainfall Forecasting Using Recurrent Neural Network and LSTM in Central Taiwan. In: 2021 International Conference on Engineering and Emerging Technologies (ICEET) (pp. 1–5). IEEE, https://doi.org/10.1109/ICEET53442.2021.9659726.

  82. Shen, S. L., Atangana Njock, P. G., Zhou, A., & Lyu, H. M. (2021). Dynamic prediction of jet grouted column diameter in soft soil using Bi-LSTM deep learning. Acta Geotechnica, 16(1), 303–315. https://doi.org/10.1007/s11440-020-01005-8.

    Article  Google Scholar 

  83. Williams, C. G., & Ojuri, O. O. (2021). Predictive modelling of soils’ hydraulic conductivity using artificial neural network and multiple linear regression. SN Applied Sciences, 3(2), 1–13. https://doi.org/10.1007/s42452-020-03974-7.

    Article  Google Scholar 

  84. Ostad-Ali-Askari, K., & Shayannejad, M. (2021). Computation of subsurface drain spacing in the unsteady conditions using artificial neural networks (ANN). Applied Water Science, 11(2), 1–9. https://doi.org/10.1007/s13201-020-01356-3.

    Article  Google Scholar 

  85. Marrapu, B. M., Kukunuri, A., & Jakka, R. S. (2021). Improvement in prediction of slope stability & relative importance factors using ANN. Geotechnical and Geological Engineering, 39(8), 5879–5894. https://doi.org/10.1007/s10706-021-01872-2.

    Article  Google Scholar 

  86. Alaneme, G.U., Onyelowe, K.C., Onyia, M.E., Bui Van, D., Dimonyeka, M.U., Nnadi, E., Ogbonna, C., Odum, L.O., Aju, D.E., Abel, C., & Udousoro, I.M. (2021). Comparative modelling of strength properties of hydrated-lime activated rice-husk-ash (HARHA) modified soft soil for pavement construction purposes by artificial neural network (ANN) and fuzzy logic (FL). Jurnal Kejuruteraan, 33(2).

  87. Ebid, A. M., Nwobia, L. I., Onyelowe, K. C., & Aneke, F. I. (2021). Predicting nanobinder-improved unsaturated soil consistency limits using genetic programming and artificial neural networks. Applied Computational Intelligence and Soft Computing. https://doi.org/10.1155/2021/5992628.

    Article  Google Scholar 

  88. Fernando, H., Nugroho, S. A., Suryanita, R., & Kikumoto, M. (2021). Prediction of SPT value based on CPT data and soil properties using ANN with and without normalization. International Journal of Artificial Intelligence Research, 5(2), 123–131. https://doi.org/10.29099/ijair.v5i2.208.

    Article  Google Scholar 

  89. Iqbal, M., Onyelowe, K. C., & Jalal, F. E. (2021). Smart computing models of California bearing ratio, unconfined compressive strength, and resistance value of activated ash-modified soft clay soil with adaptive neuro-fuzzy inference system and ensemble random forest regression techniques. Multiscale and Multidisciplinary Modeling, Experiments and Design, 4(3), 207–225. https://doi.org/10.1007/s41939-021-00092-8.

    Article  Google Scholar 

  90. Kumar, M., Kumar, V., Biswas, R., Samui, P., Kaloop, M. R., Alzara, M., & Yosri, A. M. (2022). Hybrid ELM and MARS-based prediction model for bearing capacity of shallow foundation. Processes, 10(5), 1013. https://doi.org/10.3390/pr10051013.

    Article  Google Scholar 

  91. Willmott, C. J., Robeson, S. M., & Matsuura, K. (2012). A refined index of model performance. International Journal of Climatology, 32(13), 2088–2094. https://doi.org/10.1002/joc.2419.

    Article  Google Scholar 

  92. Mentaschi, L., Besio, G., Cassola, F., & Mazzino, A. (2013). Problems in RMSE-based wave model validations. Ocean Modelling, 72, 53–58. https://doi.org/10.1016/j.ocemod.2013.08.003.

    Article  Google Scholar 

  93. Ris, R. C., Holthuijsen, L. H., & Booij, N. (1999). A third-generation wave model for coastal regions: 2 Verification. Journal of Geophysical Research: Oceans, 104(C4), 7667–7681. https://doi.org/10.1029/1998JC900123.

    Article  Google Scholar 

  94. Smith, G. N. (1986). Probability and Statistics in Civil Engineering—An Introduction. Collins.

    Google Scholar 

  95. Ardakani, A., & Kordnaeij, A. (2019). Soil compaction parameters prediction using GMDH-type neural network and genetic algorithm. European Journal of Environmental and Civil Engineering, 23(4), 449–462. https://doi.org/10.1080/19648189.2017.1304269.

    Article  Google Scholar 

  96. Tenpe, A. R., & Patel, A. (2020). Utilization of support vector models and gene expression programming for soil strength modeling. Arabian Journal for Science and Engineering, 45(5), 4301–4319. https://doi.org/10.1007/s13369-020-04441-6.

    Article  Google Scholar 

Download references

Funding

No funding was received in assisting the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JK main author, conceptualization, literature review, manuscript preparation, application of AI models, methodological development, statistical analysis, detailing, and overall analysis. KSG Conceptualization, overall analysis, manuscript finalization, detailed review, and editing.

Corresponding author

Correspondence to Jitendra Khatti.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Software Support

MATLAB R2020a: Development, Training, Testing, Validation, and Lab-Validation of Soft Computing Models.

MiniTab Statistical Software and Origin Pro: Statistical Analysis and Graphical Presentations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatti, J., Grover, K.S. CBR Prediction of Pavement Materials in Unsoaked Condition Using LSSVM, LSTM-RNN, and ANN Approaches. Int. J. Pavement Res. Technol. (2023). https://doi.org/10.1007/s42947-022-00268-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42947-022-00268-6

Keywords

Navigation