Skip to main content
Log in

A note on the Fisher information matrix for the flexible generalized-skew-normal model

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

The purpose of this paper is to derive the Fisher information matrix for the Flexible Generalized Skew-Normal distribution (FGSN). Initially we derive the score functions which lead to the maximum likelihood estimators. We then compute the information matrix and consider the special cases corresponding to the skew-normal distribution and the normal distribution. We provide an algorithm to generate FGSN random variables and carry out a simulation to investigate the behavior of the estimators. The paper concludes with an application of the FGSN model which fits a real dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.

    MathSciNet  MATH  Google Scholar 

  • Arellano-Valle, R., & Azzalini, A. (2008). The centred parametrization for the multivariate skew-normal distribution. Journal of Multivariate Analysis, 99, 1362–1382.

    Article  MathSciNet  Google Scholar 

  • Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 12, 171–178.

    MathSciNet  MATH  Google Scholar 

  • Chiogna, M. (2005). A note on the asymptotic distribution of the maximum likelihood estimator for the scalar skew-normal distribution. Statistical Methods and Applications, 14, 331–341.

    Article  MathSciNet  Google Scholar 

  • DiCiccio, T. J., & Monti, A. C. (2004). Inferential aspects of the skew exponential power distribution. Journal of the American Statistical Association, 99, 439–450.

    Article  MathSciNet  Google Scholar 

  • DiCiccio, T. J., & Monti, A. C. (2011). Inferential aspects of the skew \(t\)-distribution. Quaderni di Statistica, 13, 1–21.

    Google Scholar 

  • Hallin, M., & Ley, C. (2012). Skew-symmetric distributions and Fisher information—A tale of two densities. Bernoulli, 18(3), 747–763.

    Article  MathSciNet  Google Scholar 

  • Hallin, M., & Ley, C. (2014). Skew-symmetric distributions and Fisher information: The double sin of the skew-normal. Bernoulli, 20(3), 1432–1453.

    Article  MathSciNet  Google Scholar 

  • Lehmann, E. L., & Casella, G. (1998). Theory of point estimation. New York: Springer.

    MATH  Google Scholar 

  • Ley, C., & Paindaveine, D. (2010a). On Fisher information matrices and profile log-likelihood functions in generalized skew-elliptical models. METRON, 68(3), 235–250.

    Article  MathSciNet  Google Scholar 

  • Ley, C., & Paindaveine, D. (2010b). On the singularity of multivariate skewsymmetric models. Journal of Multivariate Analysis, 101(6), 1434–1444.

    Article  MathSciNet  Google Scholar 

  • Ma, Y., & Genton, M. G. (2004). Flexible class of skew-symmetric distributions. Scandinavian Journal of Statistics, 31, 459–468.

    Article  MathSciNet  Google Scholar 

  • R Development Core Team. (2015). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org. ISBN 3-900051-07-0.

  • Rotnitzky, A., Cox, D. R., Bottai, M. J., & Robins, J. (2000). Likelihood-based inference with singular information matrix. Bernoulli, 6, 243–284.

    Article  MathSciNet  Google Scholar 

  • Salinas, H. S., Arellano-Valle, R., & Gómez, H. W. (2007). The extended skew-exponential power distribution and its derivation. Communications in Statistics: Theory and Methods, 36(9), 1673–1689.

    Article  MathSciNet  Google Scholar 

  • Wang, J., Boyer, J., & Genton, M. G. (2004). A skew-symmetric representation of multivariate distribution. Statistica Sinica, 14, 1259–1270.

    MathSciNet  MATH  Google Scholar 

  • Weisberg, S. (2005). Applied linear regression. New York: Wiley.

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank the two anonymous referees and the associate editor for their thorough suggestions and comments that significantly improved the presentation of the paper. The research of Héctor W. Gómez was supported by Grant SEMILLERO UA-2020 (Chile). The research of Osvaldo Venegas was supported by Vicerrectoría de Investigación y Postgrado de la Universidad Católica de Temuco, Projecto FEQUIP 2019-INRN-03 (Chile).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo Venegas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

A. The first-order and second-order derivatives of (4) are

$$\begin{aligned} \frac{\partial l_1({\varvec{\theta }})}{\partial \xi }&=\frac{z}{\eta }-\frac{\alpha }{\eta }\,R(z)-\frac{3\beta }{\eta }z^2\,R(z),\quad \frac{\partial l_1({\varvec{\theta }})}{\partial \eta }=\frac{z^2-1}{\eta }-\frac{\alpha }{\eta }z\,R(z)-\frac{3\beta }{\eta }z^3\,R(z),\\ \frac{\partial l_1({\varvec{\theta }})}{\partial \alpha }&=z\,R(z)\quad \text{ and }\quad \frac{\partial l_1({\varvec{\theta }})}{\partial \beta }=z^3\,R(z). \end{aligned}$$
$$\begin{aligned} \frac{\partial ^2 l_1({\varvec{\theta }})}{\partial \xi ^2}= & {} -\frac{1}{\eta ^2}+\frac{(6\beta -\alpha ^3)}{\eta ^2}\,zR(z)-\frac{7\alpha ^2\beta }{\eta ^2}\,z^3R(z)-\frac{15\alpha \beta ^2}{\eta ^2}\,z^5R(z)\\&-\,\frac{9\beta ^3}{\eta ^2}\,z^7R(z)-\frac{\alpha ^2}{\eta ^2}\,R^2(z)-\frac{6\alpha \beta }{\eta ^2}\,z^2R^2(z)-\frac{9\beta ^2}{\eta ^2}\,z^4R^2(z),\\ \frac{\partial ^2 l_1({\varvec{\theta }})}{\partial \eta \partial \xi }= & {} -\frac{2z}{\eta ^2}+\frac{\alpha }{\eta ^2}\,R(z)+\frac{(9\beta -\alpha ^3)}{\eta ^2}\,z^2R(z)-\frac{7\alpha ^2\beta }{\eta ^2}\,z^4R(z)-\frac{15\alpha \beta ^2}{\eta ^2}\,z^6R(z)\\&-\,\frac{9\beta ^3}{\eta ^2}\,z^8R(z)-\frac{\alpha ^2}{\eta ^2}\,zR^2(z)-\frac{6\alpha \beta }{\eta ^2}\,z^3R^2(z)-\frac{9\beta ^2}{\eta ^2}\,z^5R^2(z),\\ \frac{\partial ^2 l_1({\varvec{\theta }})}{\partial \alpha \partial \xi }= & {} -\frac{1}{\eta }\,R(z)+\frac{\alpha ^2}{\eta }\,z^2R(z)+\frac{4\alpha \beta }{\eta }\,z^4R(z)+\frac{3\beta ^2}{\eta }\,z^6R(z)+\frac{\alpha }{\eta }\,zR^2(z)\\&+\,\frac{3\beta }{\eta }\,z^3R^2(z),\\ \frac{\partial ^2 l_1({\varvec{\theta }})}{\partial \beta \partial \xi }= & {} -\frac{3}{\eta }\,z^2R(z)+\frac{\alpha ^2}{\eta }\,z^4R(z)+\frac{4\alpha \beta }{\eta }\,z^6R(z)+\frac{3\beta ^2}{\eta }\,z^8R(z)+\frac{\alpha }{\eta }\,z^3R^2(z),\\&+\,\frac{3\beta }{\eta }\,z^5R^2(z),\\ \frac{\partial ^2 l_1({\varvec{\theta }})}{\partial \eta ^2}= & {} \frac{1}{\eta ^2}-\frac{3z^2}{\eta ^2}+\frac{2\alpha }{\eta ^2}\,zR(z)+\frac{(12\beta -\alpha ^3)}{\eta ^2}\,z^3R(z)-\frac{7\alpha ^2\beta }{\eta ^2}\,z^5R(z)\\&-\,\frac{15\alpha \beta ^2}{\eta ^2}\,z^7R(z)-\frac{9\beta ^3}{\eta ^2}\,z^9R(z)-\frac{6\alpha \beta }{\eta ^2}\,z^4R^2(z)-\frac{\alpha ^2}{\eta ^2}\,z^2R^2(z)\\&-\,\frac{9\beta ^2}{\eta ^2}\,z^6R^2(z),\\ \frac{\partial ^2 l_1({\varvec{\theta }})}{\partial \alpha \partial \eta }= & {} -\frac{1}{\eta }\,zR(z)+\frac{\alpha ^2}{\eta }\,z^3R(z)+\frac{4\alpha \beta }{\eta }\,z^5R(z)+\frac{3\beta ^2}{\eta }\,z^7R(z)+\frac{\alpha }{\eta }\,z^2R^2(z),\\&+\,\frac{3\beta }{\eta }\,z^4R^2(z),\\ \frac{\partial ^2 l_1({\varvec{\theta }})}{\partial \beta \partial \eta }= & {} -\frac{3}{\eta }\,z^3R(z)+\frac{\alpha ^2}{\eta }\,z^5R(z)+\frac{4\alpha \beta }{\eta }\,z^7R(z)+\frac{3\beta ^2}{\eta }\,z^9R(z)+\frac{\alpha }{\eta }\,z^4R^2(z),\\&+\,\frac{3\beta }{\eta }\,z^6R^2(z),\\ \frac{\partial ^2 l_1({\varvec{\theta }})}{\partial \alpha ^2}= & {} -\alpha z^3\,R(z)-\beta z^5\,R(z)-z^2\,R^2(z),\\ \frac{\partial ^2 l_1({\varvec{\theta }})}{\partial \beta \partial \alpha }= & {} -\alpha z^5\,R(z)-\beta z^7\,R(z)-z^4\,R^2(z), \\ \frac{\partial ^2 l_1({\varvec{\theta }})}{\partial \beta ^2}= & {} -\alpha z^7\,R(z)-\beta z^9\,R(z)-z^6\,R^2(z). \end{aligned}$$

where \(z=\eta ^{-1}(x-\xi )\), \(R(z)=\phi (\alpha z+\beta z^3)/\Phi (\alpha z+\beta z^3)\) and \(l_1({\varvec{\theta }}):=l_1(x;{\varvec{\theta }})\).

B. For the purpose of writing the derivatives with respect to \({\widetilde{\alpha }}\) of the likelihood function as simply as possible, in each reparametrization, we consider the following expressions and corresponding notation: taking \(y:=y({\widetilde{\theta }})=\frac{x-{\widetilde{\xi }}+K_{11}{\widetilde{\alpha }}}{{\widetilde{\eta }}-\frac{1}{2}K_{22}{\widetilde{\alpha }}^2}\), where \({\widetilde{\theta }}=({\widetilde{\xi }},{\widetilde{\eta }},{\widetilde{\alpha }},{\widetilde{\beta }})\), we obtain

$$\begin{aligned} \frac{dy}{d{\widetilde{\alpha }}}= & {} y_{{\widetilde{\alpha }}}=\frac{K_{11}+K_{22}{\widetilde{\alpha }} y}{{\widetilde{\eta }}-\frac{1}{2}K_{22}{\widetilde{\alpha }}^2},\\ \frac{d^2y}{d{\widetilde{\alpha }}^2}= & {} y_{{\widetilde{\alpha }}{\widetilde{\alpha }}}=\frac{K_{22}(y+{\widetilde{\alpha }}y_{{\widetilde{\alpha }}}) }{{\widetilde{\eta }}-\frac{1}{2}K_{22}{\widetilde{\alpha }}^2}+\frac{K_{22}{\widetilde{\alpha }} y_{{\widetilde{\alpha }}}}{{\widetilde{\eta }}-\frac{1}{2}K_{22}{\widetilde{\alpha }}^2},\\ \frac{d^3y}{d{\widetilde{\alpha }}^3}= & {} y_{(3{\widetilde{\alpha }})}=K_{22}\frac{(3y_{{\widetilde{\alpha }}}+2{\widetilde{\alpha }}y_{{\widetilde{\alpha }}{\widetilde{\alpha }}}) }{{\widetilde{\eta }}-\frac{1}{2}K_{22}{\widetilde{\alpha }}^2}+K_{22}^2\frac{(y+2{\widetilde{\alpha }} y_{{\widetilde{\alpha }}}){\widetilde{\alpha }}}{({\widetilde{\eta }}-\frac{1}{2}K_{22}{\widetilde{\alpha }}^2)^2},\\ \frac{d^4y}{d{\widetilde{\alpha }}^4}= & {} y_{(4{\widetilde{\alpha }})}=K_{22}\frac{5y_{{\widetilde{\alpha }}{\widetilde{\alpha }}}+2{\widetilde{\alpha }}y_{(3{\widetilde{\alpha }})} }{{\widetilde{\eta }}-\frac{1}{2}K_{22}{\widetilde{\alpha }}^2}+K_{22}^2\frac{y+8{\widetilde{\alpha }} y_{{\widetilde{\alpha }}}+4{\widetilde{\alpha }}^2y_{{\widetilde{\alpha }}{\widetilde{\alpha }}}}{({\widetilde{\eta }}-\frac{1}{2}K_{22}{\widetilde{\alpha }}^2)^2}\\&+\,K_{22}^3\frac{2{\widetilde{\alpha }}^2(y+2{\widetilde{\alpha }} y_{{\widetilde{\alpha }}})}{({\widetilde{\eta }}-\frac{1}{2}K_{22}{\widetilde{\alpha }}^2)^3} \end{aligned}$$

Now, evaluating in \({\varvec{\theta }}={\varvec{\theta }}^{*}=(\xi ^{*},\eta ^{*},0,0)\) we have:

$$\begin{aligned} y_{{\widetilde{\alpha }}}( {\varvec{\theta }}^{*})= & {} \frac{K_{11}}{{\widetilde{\eta }}}=\sqrt{\frac{2}{\pi }},\quad \quad y_{{\widetilde{\alpha }}{\widetilde{\alpha }}}( {\varvec{\theta }}^{*})=\frac{K_{22}}{{\widetilde{\eta }}}Z^*=-\frac{2}{\pi }Z^*,\\ y_{(3{\widetilde{\alpha }})}( {\varvec{\theta }}^{*})= & {} -3\left( \frac{2}{\pi }\right) ^{3/2},\quad \quad y_{(4{\widetilde{\alpha }})}( {\varvec{\theta }}^{*})=\frac{24}{\pi ^2}Z^*. \end{aligned}$$

For the third reparameterization we consider the following function log-likelihood

$$\begin{aligned} L:=l_1({\widetilde{\theta }})=\log (2)-\log ({\widetilde{\eta }})+\log (\phi (y))+\log (\Phi (w)), \end{aligned}$$
(7)

where \(w={\widetilde{\alpha }}y+{\widetilde{\beta }}y^3\) and consider \(R(w)=\frac{\phi }{\Phi }(w)\) with the idea of calculating \(\frac{d^3}{d{\widetilde{\alpha }}^3}L=L_{(3{\widetilde{\alpha }})}\) for L defined in (7).

We start with calculations of the derivatives with respect to \({\widetilde{\alpha }}\) of w and R and then evaluate in \({\varvec{\theta }}={\varvec{\theta }}^{*}\).

$$\begin{aligned} w_{{\widetilde{\alpha }}}= & {} y+{\widetilde{\alpha }}y_{{\widetilde{\alpha }}}+3{\widetilde{\beta }}y^2y_{{\widetilde{\alpha }}}\\ w_{{\widetilde{\alpha }}{\widetilde{\alpha }}}= & {} 2y_{{\widetilde{\alpha }}}+{\widetilde{\alpha }}y_{{\widetilde{\alpha }}{\widetilde{\alpha }}}+6{\widetilde{\beta }}yy_{{\widetilde{\alpha }}}^2+3{\widetilde{\beta }}y^2y_{{\widetilde{\alpha }}{\widetilde{\alpha }}}\\ w_{(3{\widetilde{\alpha }})}= & {} 3y_{{\widetilde{\alpha }}{\widetilde{\alpha }}}+{\widetilde{\alpha }}y_{(3{\widetilde{\alpha }})}+6{\widetilde{\beta }}y_{{\widetilde{\alpha }}}^3+18{\widetilde{\beta }}yy_{{\widetilde{\alpha }}}y_{{\widetilde{\alpha }}{\widetilde{\alpha }}}+3{\widetilde{\beta }}y^2y_{(3{\widetilde{\alpha }})}\\ R_{{\widetilde{\alpha }}}(w)= & {} -w_{{\widetilde{\alpha }}}[wR(w)+R^2(w)],\\ R_{{\widetilde{\alpha }}{\widetilde{\alpha }}}(w)= & {} -w_{{\widetilde{\alpha }}{\widetilde{\alpha }}}[wR(w)+R^2(w)]-w_{{\widetilde{\alpha }}}[w_{{\widetilde{\alpha }}}R(w)+wR_{{\widetilde{\alpha }}}(w)+2R(w)R_{{\widetilde{\alpha }}}(w)]. \end{aligned}$$

Evaluating in \({\varvec{\theta }}={\varvec{\theta }}^{*}\) we have

\(w_{{\widetilde{\alpha }}}({\varvec{\theta }}^{*})=Z^*\), \(w_{{\widetilde{\alpha }}{\widetilde{\alpha }}}({\varvec{\theta }}^{*})=2\sqrt{\frac{2}{\pi }}\) and \(w_{(3{\widetilde{\alpha }})}({\varvec{\theta }}^{*})=-\frac{6}{\pi }Z^*\).

\(R(w({\varvec{\theta }}^{*}))=\sqrt{\frac{2}{\pi }}\), \(R_{{\widetilde{\alpha }}}(w({\varvec{\theta }}^{*}))=-\frac{2}{\pi }Z^*\) and \(R_{{\widetilde{\alpha }}{\widetilde{\alpha }}}(w({\varvec{\theta }}^{*}))=-2\left( \frac{2}{\pi }\right) ^{3/2} -\sqrt{\frac{2}{\pi }}{Z^*}^2+2\left( \frac{2}{\pi }\right) ^{3/2}{Z^*}^2\).

From the above, we have

\(L_{(3{\widetilde{\alpha }})}=-3y_{{\widetilde{\alpha }}}y_{{\widetilde{\alpha }}{\widetilde{\alpha }}}-yy_{(3{\widetilde{\alpha }})}+R_{{\widetilde{\alpha }}{\widetilde{\alpha }}}(w)w_{{\widetilde{\alpha }}}+2R_{{\widetilde{\alpha }}}(w)w_{{\widetilde{\alpha }}{\widetilde{\alpha }}}+R(w)w_{(3{\widetilde{\alpha }})}\) and when evaluating and simplifying we obtain the expression given in the manuscript, \(L_{(3{\widetilde{\alpha }})}({\varvec{\theta }}^{*})={\widetilde{S}}_3^{(3)}=\frac{\sqrt{2}}{\pi ^{3/2}}[-6Z^*+(4-\pi ){Z^*}^3].\)

In the case of the next reparametrization, the log-likelihood function is given by

$$\begin{aligned} L:=l_1({\widetilde{\theta }})=\log (2)-\log ({\widetilde{\eta }})+\log (\phi (y))+\log (\Phi (s)), \end{aligned}$$
(8)

where \(s={\widetilde{\alpha }}y+({\widetilde{\beta }}-\frac{1}{6}K_{33}{\widetilde{\alpha }}^3)y^3\).

By direct calculations we find

$$\begin{aligned} s_{{\widetilde{\alpha }}}= & {} y+{\widetilde{\alpha }}y_{{\widetilde{\alpha }}}-\frac{1}{2}K_{33}{\widetilde{\alpha }}^2y^3+3{\widetilde{\beta }}y^2y_{{\widetilde{\alpha }}}-\frac{1}{2}K_{33}{\widetilde{\alpha }}^3y^2y_{{\widetilde{\alpha }}},\\ s_{{\widetilde{\alpha }}{\widetilde{\alpha }}}= & {} 2y_{{\widetilde{\alpha }}}+{\widetilde{\alpha }}y_{{\widetilde{\alpha }}{\widetilde{\alpha }}}-K_{33}{\widetilde{\alpha }}y^3-3K_{33}{\widetilde{\alpha }}^2y^2y_{{\widetilde{\alpha }}}-K_{33}{\widetilde{\alpha }}^3yy_{{\widetilde{\alpha }}}^2-\frac{1}{2}K_{33}{\widetilde{\alpha }}^3y^2y_{{\widetilde{\alpha }}{\widetilde{\alpha }}}\\&+\,6{\widetilde{\beta }}yy_{{\widetilde{\alpha }}}^2+3{\widetilde{\beta }}y^2y_{{\widetilde{\alpha }}{\widetilde{\alpha }}}\\ s_{(3{\widetilde{\alpha }})}= & {} 3y_{{\widetilde{\alpha }}{\widetilde{\alpha }}}+{\widetilde{\alpha }}y_{(3{\widetilde{\alpha }})}-K_{33}y^3-9K_{33}{\widetilde{\alpha }}^2yy_{{\widetilde{\alpha }}}^2-\frac{9}{2}K_{33}{\widetilde{\alpha }}^2y^2y_{{\widetilde{\alpha }}{\widetilde{\alpha }}}-K_{33}{\widetilde{\alpha }}^3y_{{\widetilde{\alpha }}}^3\\&-\,3K_{33}{\widetilde{\alpha }}^3yy_{{\widetilde{\alpha }}}y_{{\widetilde{\alpha }}{\widetilde{\alpha }}}-\frac{1}{2}K_{33}{\widetilde{\alpha }}^3y^2y_{(3{\widetilde{\alpha }})}+18{\widetilde{\beta }}yy_{{\widetilde{\alpha }}}y_{{\widetilde{\alpha }}{\widetilde{\alpha }}}+6{\widetilde{\beta }}y_{{\widetilde{\alpha }}}^3\\&+\,3{\widetilde{\beta }}y^2y_{(3{\widetilde{\alpha }})}\\ s_{(4{\widetilde{\alpha }})}= & {} 4y_{(3{\widetilde{\alpha }})}+{\widetilde{\alpha }}y_{(4{\widetilde{\alpha }})}-12K_{33}y^2y_{{\widetilde{\alpha }}}-36K_{33}{\widetilde{\alpha }}yy_{{\widetilde{\alpha }}}^2\\&-\,18K_{33}{\widetilde{\alpha }}y^2y_{{\widetilde{\alpha }}{\widetilde{\alpha }}}-12K_{33}{\widetilde{\alpha }}^2y_{{\widetilde{\alpha }}}^3\\&-\,36K_{33}{\widetilde{\alpha }}^2yy_{{\widetilde{\alpha }}}y_{{\widetilde{\alpha }}{\widetilde{\alpha }}}-6K_{33}{\widetilde{\alpha }}^3y_{{\widetilde{\alpha }}}^2y_{{\widetilde{\alpha }}{\widetilde{\alpha }}}-3K_{33}{\widetilde{\alpha }}^3yy_{{\widetilde{\alpha }}{\widetilde{\alpha }}}^2-4K_{33}{\widetilde{\alpha }}^3yy_{{\widetilde{\alpha }}}y_{(3{\widetilde{\alpha }})}\\&-\,\frac{3}{2}K_{33}{\widetilde{\alpha }}^2y^2y_{(3{\widetilde{\alpha }})}-\frac{1}{2}K_{33}{\widetilde{\alpha }}^3y^2y_{(4{\widetilde{\alpha }})}+36{\widetilde{\beta }}y_{{\widetilde{\alpha }}}^2y_{{\widetilde{\alpha }}{\widetilde{\alpha }}}+18{\widetilde{\beta }}yy_{{\widetilde{\alpha }}{\widetilde{\alpha }}}^2\\&+\,24{\widetilde{\beta }}yy_{{\widetilde{\alpha }}}y_{(3{\widetilde{\alpha }})}+3{\widetilde{\beta }}y^2y_{(4{\widetilde{\alpha }})}\\ R_{{\widetilde{\alpha }}}(s)= & {} -s_{{\widetilde{\alpha }}}[sR(s)+R^2(s)]\\ R_{{\widetilde{\alpha }}{\widetilde{\alpha }}}(s)= & {} -ss_{{\widetilde{\alpha }}{\widetilde{\alpha }}}R(s)-s_{{\widetilde{\alpha }}{\widetilde{\alpha }}}R^2(s)-s_{{\widetilde{\alpha }}}^2R(s)-ss_{{\widetilde{\alpha }}}R_{{\widetilde{\alpha }}}(s)-2s_{{\widetilde{\alpha }}}R(s)R_{{\widetilde{\alpha }}}(s)\\ R_{(3{\widetilde{\alpha }})}(s)= & {} -3s_{{\widetilde{\alpha }}}s_{{\widetilde{\alpha }}{\widetilde{\alpha }}}R(s)-ss_{(3{\widetilde{\alpha }})}R(s)-2ss_{{\widetilde{\alpha }}{\widetilde{\alpha }}}R_{{\widetilde{\alpha }}}(s)-s_{(3{\widetilde{\alpha }})}R^2(s)-4s_{{\widetilde{\alpha }}{\widetilde{\alpha }}}R(s)R_{{\widetilde{\alpha }}}(s)\\&-\,2s_{{\widetilde{\alpha }}}^2R_{{\widetilde{\alpha }}}(s)-ss_{{\widetilde{\alpha }}}R_{{\widetilde{\alpha }}{\widetilde{\alpha }}}(s)-2s_{{\widetilde{\alpha }}}R_{{\widetilde{\alpha }}}^2(s)-2s_{{\widetilde{\alpha }}}R(s)R_{{\widetilde{\alpha }}{\widetilde{\alpha }}}(s) \end{aligned}$$

Now, evaluating in \({\varvec{\theta }}={\varvec{\theta }}^{*}\) we get

$$\begin{aligned} s({\varvec{\theta }}^{*})= & {} 0, \quad s_{{\widetilde{\alpha }}}({\varvec{\theta }}^{*})=Z^*,\quad s_{{\widetilde{\alpha }}{\widetilde{\alpha }}}({\varvec{\theta }}^{*})=2\sqrt{\frac{2}{\pi }},\\ s_{(3{\widetilde{\alpha }})}({\varvec{\theta }}^{*})= & {} -\frac{6}{\pi }Z^*-\frac{4-\pi }{\pi }{Z^*}^3, \quad s_{(4{\widetilde{\alpha }})}({\varvec{\theta }}^{*}){=}{-}12\left( \frac{2}{\pi }\right) ^{3/2}{-}12\sqrt{\frac{2}{\pi }}\frac{4{-}\pi }{\pi }{Z^*}^2\\ R(s({\varvec{\theta }}^{*}))= & {} \sqrt{\frac{2}{\pi }},\quad R_{{\widetilde{\alpha }}}(s({\varvec{\theta }}^{*}))=-\frac{2}{\pi }Z^*\\ R_{{\widetilde{\alpha }}{\widetilde{\alpha }}}(s({\varvec{\theta }}^{*}))= & {} -2\left( \frac{2}{\pi }\right) ^{3/2}-\sqrt{\frac{2}{\pi }}{Z^*}^2+2\left( \frac{2}{\pi }\right) ^{3/2}{Z^*}^2\\ R_{(3{\widetilde{\alpha }})}(s({\varvec{\theta }}^{*}))= & {} \left( -\frac{12}{\pi }-\frac{60}{\pi ^2}\right) Z^*+\left( \frac{6}{\pi }-\frac{16}{\pi ^2}\right) {Z^*}^3 \end{aligned}$$

The fourth derivative with respect to \({\widetilde{\alpha }}\) of the log-likelihood function defined in (8), is as follows

$$\begin{aligned} L_{4{\widetilde{\alpha }}}&=-3y_{{\widetilde{\alpha }}{\widetilde{\alpha }}}^2-4y_{{\widetilde{\alpha }}}y_{(3{\widetilde{\alpha }})}-yy_{(4{\widetilde{\alpha }})}\\&\quad +s_{{\widetilde{\alpha }}}R_{3{\widetilde{\alpha }}}(s)+3s_{{\widetilde{\alpha }}{\widetilde{\alpha }}}R_{{\widetilde{\alpha }}{\widetilde{\alpha }}}(s)+3s_{(3{\widetilde{\alpha }})}R_{{\widetilde{\alpha }}}(s)+s_{(4{\widetilde{\alpha }})}R(s). \end{aligned}$$

Hence, considering the above calculations and evaluating at \({\varvec{\theta }}={\varvec{\theta }}^{*}\), we have that \(L_{4{\widetilde{\alpha }}}({\varvec{\theta }}^{*})={\widetilde{S}}_3^{(4)}=\frac{4}{\pi ^2}[-12+3{Z^*}^2+2{Z^*}^4].\)

C. For the derivation of the Fisher information of (2), the following integrals need to be calculated, which can be done numerically using the (R Development Core Team 2015):

$$\begin{aligned} a_k:= a_k(\alpha ,\beta )=\int _0^{\infty }4z^k\phi (z)\phi (\alpha z+\beta z^3)\,dz,\quad k=0,2,4,6,8. \end{aligned}$$

where \(\phi \) and \(\Phi \) are the pdf and cdf of the standardized normal distribution respectively.

Proposition 4.1

Let \(Z\sim FGSN(\alpha ,\beta )\), then

$$\begin{aligned} c_r:= c_r(\alpha ,\beta )= & {} E\left\{ Z^r\left( \frac{\phi (\alpha Z+\beta Z^3)}{\Phi (\alpha Z+\beta Z^3)}\right) ^2\right\} ,\quad r=0,1,2\ldots 6,\\= & {} \left\{ \begin{array}{ll} d_r, &{} r\quad {\text{ is } \text{ even }}, \\ d_r-\int _0^{\infty }4z^r\frac{\phi ^2(\alpha z+\beta z^3)\phi (z)}{1-\Phi (\alpha z+\beta z^3)}\,dz, &{} r\quad {\text{ is } \text{ odd }}. \end{array} \right. \end{aligned}$$

where \(d_r:= d_r(\alpha ,\beta )=\int _0^{\infty }2z^r\frac{\phi ^2(\alpha z+\beta z^3)\phi (z)}{(1-\Phi (\alpha z+\beta z^3))\Phi (\alpha z+\beta z^3)}\,dz.\)

Proof

By definition of expected value and algebraic manipulation, we have

$$\begin{aligned} E\left\{ Z^r\left[ \frac{\phi (\alpha Z+\beta Z^3)}{\Phi (\alpha Z+\beta Z^3)}\right] ^2\right\}= & {} \int _{-\infty }^{\infty }2z^r\left[ \frac{\phi (\alpha z+\beta z^3)}{\Phi (\alpha z+\beta z^3)}\right] ^2\phi (z)\Phi (\alpha z+\beta z^3)\,dz\\= & {} \int _{-\infty }^{\infty }2z^r\frac{\phi ^2(\alpha z+\beta z^3)\phi (z)}{\Phi (\alpha z+\beta z^3)}\,dz \end{aligned}$$

Using a change of variables, we have the following expression for the expected value \(c_r\)

$$\begin{aligned} c_r=\int _{0}^{\infty }2(-z)^r\frac{\phi ^2(\alpha z+\beta z^3)\phi (z)}{1-\Phi (\alpha z+\beta z^3)}\,dz+\int _{0}^{\infty }2z^r\frac{\phi ^2(\alpha z+\beta z^3)\phi (z)}{\Phi (\alpha z+\beta z^3)}\,dz \end{aligned}$$

If r is even, \(c_r\) is reduced to the expression defined as \(d_r\)

$$\begin{aligned} c_r= & {} \int _{0}^{\infty }2z^r\phi ^2(\alpha z+\beta z^3)\phi (z)\left\{ \frac{1}{1-\Phi (\alpha z+\beta z^3)}+\frac{1}{\Phi (\alpha z+\beta z^3)}\right\} \,dz\\= & {} \int _{0}^{\infty }2z^r\frac{\phi ^2(\alpha z+\beta z^3)\phi (z)}{(1-\Phi (\alpha z+\beta z^3))\Phi (\alpha z+\beta z^3)}\,dz\\= & {} d_r \end{aligned}$$

Otherwise, if r is odd, \(c_r\) is reduced to:

$$\begin{aligned} c_r= & {} \int _{0}^{\infty }2z^r\phi ^2(\alpha z+\beta z^3)\phi (z)\left\{ \frac{-1}{1-\Phi (\alpha z+\beta z^3)}+\frac{1}{\Phi (\alpha z+\beta z^3)}\right\} \,dz\\= & {} \int _{0}^{\infty }2z^r\phi ^2(\alpha z+\beta z^3)\phi (z)\left\{ \frac{1-2\Phi (\alpha z+\beta z^3)}{(1-\Phi (\alpha z+\beta z^3))\Phi (\alpha z+\beta z^3)}\right\} \,dz\\= & {} \int _{0}^{\infty }2z^r\frac{\phi ^2(\alpha z+\beta z^3)\phi (z)}{(1-\Phi (\alpha z+\beta z^3))\Phi (\alpha z+\beta z^3)}\,dz-\int _{0}^{\infty }4z^r\frac{\phi ^2(\alpha z+\beta z^3)\phi (z)}{1-\Phi (\alpha z+\beta z^3)}\,dz\\= & {} d_r-\int _{0}^{\infty }4z^r\frac{\phi ^2(\alpha z+\beta z^3)\phi (z)}{1-\Phi (\alpha z+\beta z^3)}\,dz. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venegas, O., Salinas, H.S. & Gómez, H.W. A note on the Fisher information matrix for the flexible generalized-skew-normal model. J. Korean Stat. Soc. 49, 499–515 (2020). https://doi.org/10.1007/s42952-019-00025-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-019-00025-9

Keywords

Navigation