Skip to main content
Log in

Recent advances in amino acid sensing and new challenges for protein nutrition in aquaculture

  • Review
  • Published:
Marine Life Science & Technology Aims and scope Submit manuscript

Abstract

From the conventional knowledge of protein nutrition to the molecular nutrition of amino acids, our understanding of protein/amino acid nutrition is rapidly increasing. Amino acids control cell growth and metabolism through two amino acid-sensing pathways, i.e. target of rapamycin complex 1 (TORC1) and the general control nonderepressible 2 (GCN2) signaling pathway. In the amino acid-abundant status, TORC1 dominates intracellular signaling and increases protein synthesis and cell growth. In contrast, amino acid deprivation actives GCN2 resulting in repression of general protein synthesis but facilitates the amino acid transport and synthesis process. By integrating and coordinating nutrition and hormone signaling, TORC1 and GCN2 control the switch of the catabolism and anabolism phase in most eukaryotes. Now, we appreciate that the availability of individual amino acids is sensed by intracellular sensors. These cutting-edge findings expand our knowledge of amino acid nutrition. Although the TORC1 and GCN2 were discovered decades ago, the study of molecular amino acid nutrition in aquaculture animals is still at its infancy. The aquaculture industry is highly dependent on the supply of fishmeal, which is the major protein source in aquacultural animal diets. Some concerted efforts were conducted to substitute for fishmeal due to limited supply of it. However, the concomitant issues including the unbalanced amino acid profile of alternative protein sources limited the utilization of those proteins. Continued study of the molecular nutrition of amino acid in aquaculture animals may be expected in the immediate future to expand our knowledge on the utilization of alternative protein sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albanese AA (1959) Protein and amino acid nutrition. Academic Press, New York. https://doi.org/10.1016/B978-0-12-395683-5.X5001-9

    Book  Google Scholar 

  • Anthony TG, McDaniel BJ, Byerley RL, McGrath BC, Cavener DR, McNurlan MA, Wek RC (2004) Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2. J Biol Chem 279:36553–36561

    CAS  PubMed  Google Scholar 

  • B’chir W, Maurin A-C, Carraro V, Averous J, Jousse C, Muranishi Y, Parry L, Stepien G, Fafournoux P, Bruhat A (2013) The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res 41:7683–7699

    PubMed  PubMed Central  Google Scholar 

  • Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM (2013) A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340:1100–1106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berlanga JJ, Santoyo J, De Haro C (1999) Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2alpha kinase. Eur J Biochem 265:754–762

    CAS  PubMed  Google Scholar 

  • Bian F, Jiang H, Man M, Mai K, Zhou H, Xu W, He G (2017) Dietary gossypol suppressed postprandial TOR signaling and elevated ER stress pathways in turbot (Scophthalmus maximus L.). Am J Physiol Endocrinol Metab 312:E37–E47

    PubMed  Google Scholar 

  • Bowen SH (1987) Dietary protein requirements of fishes—a reassessment. Can J Fish Aquat Sci 44:1995–2001

    CAS  Google Scholar 

  • Buckbinder L, Talbott R, Seizinger BR, Kley N (1994) Gene regulation by temperature-sensitive p53 mutants: identification of p53 response genes. Proc Natl Acad Sci USA 91:10640–10644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134:451–460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Budanov AV, Shoshani T, Faerman A, Zelin E, Kamer I, Kalinski H, Gorodin S, Fishman A, Chajut A, Einat P, Skaliter R, Gudkov AV, Chumakov PM, Feinstein E (2002) Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene 21:6017–6031

    CAS  PubMed  Google Scholar 

  • Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM (2004) Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304:596–600

    CAS  PubMed  Google Scholar 

  • Bunpo P, Dudley A, Cundiff JK, Cavener DR, Wek RC, Anthony TG (2009) GCN2 protein kinase is required to activate amino acid deprivation responses in mice treated with the anti-cancer agent L-asparaginase. J Biol Chem 284:32742–32749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan EY (2009) mTORC1 phosphorylates the ULK1-mAtg13-FIP200 autophagy regulatory complex. Sci Signal 2:pe51

    PubMed  Google Scholar 

  • Chan C-P, Kok K-H, Tang H-MV, Wong C-M, Jin D-Y (2013) Internal ribosome entry site-mediated translational regulation of ATF4 splice variant in mammalian unfolded protein response. Biochimica et Biophysica Acta (BBA)-Mol Cell Res 1833:2165–2175. https://doi.org/10.1016/j.bbamcr.2013.05.002

    Article  CAS  Google Scholar 

  • Chantranupong L, Wolfson RL, Orozco JM, Saxton RA, Scaria SM, Bar-Peled L, Spooner E, Isasa M, Gygi SP, Sabatini DM (2014) The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep 9:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chantranupong L, Wolfson RL, Sabatini DM (2015) Nutrient-sensing mechanisms across evolution. Cell 161:67–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chantranupong L, Scaria SM, Saxton RA, Gygi MP, Shen K, Wyant GA, Wang T, Harper JW, Gygi SP, Sabatini DM (2016) The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165:153–164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Ai Q, Mai K, Xu W, Liufu Z, Zhang W, Cai Y (2011) Effects of dietary soybean saponins on feed intake, growth performance, digestibility and intestinal structure in juvenile Japanese flounder (Paralichthys olivaceus). Aquaculture 318:95–100

    CAS  Google Scholar 

  • Conde-Sieira M, Soengas JL (2017) Nutrient sensing systems in fish: impact on food intake regulation and energy homeostasis. Front Nneurosci 10:603

    Google Scholar 

  • Cowey C (1994) Amino acid requirements of fish: a critical appraisal of present values. Aquaculture 124:1–11

    CAS  Google Scholar 

  • Cowey C (1995) Protein and amino acid requirements: a critique of methods. J Appl Ichthyol 11:199–204

    CAS  Google Scholar 

  • Cowey CB, Luquet P (1983) Physiological basis of protein requirements of fishes. Critical analysis of allowances. In: Pion R, Amal M, Bonin D (eds) Protein metabolism and nutrition, vol 1. INRA, Paris, pp 364–384

    Google Scholar 

  • Dai W, Panserat S, Plagnes-Juan E, Seiliez I, Skiba-Cassy S (2015) Amino acids attenuate insulin action on gluconeogenesis and promote fatty acid biosynthesis via mtorc1 signaling pathway in trout hepatocytes. Cell Physiol Biochem 36:1084–1100

    CAS  PubMed  Google Scholar 

  • Dardevet D (2016) The molecular nutrition of amino acids and proteins: a volume in the molecular nutrition series. Academic Press, Cambridge

    Google Scholar 

  • Dias J, Alvarez MJ, Arzel J, Corraze G, Diez A, Bautista JM, Kaushik SJ (2005) Dietary protein source affects lipid metabolism in the European seabass (Dicentrarchus labrax). Comp Biochem Physiol A 142:19–31

    CAS  Google Scholar 

  • Dibble CC, Cantley LC (2015) Regulation of mTORC1 by PI3K signaling. Trends Cell Biol 25:545–555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong J, Qiu H, Garcia-Barrio M, Anderson J, Hinnebusch AG (2000) Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol Cell 6:269–279

    CAS  PubMed  Google Scholar 

  • FAO (2018) The state of world fisheries and aquaculture 2018. Meeting the sustainable development goals. Food and Agriculture Organization of the United Nations, Rome

  • Figueiredo-Silva A, Corraze G, Borges P, Valente L (2010) Dietary protein/lipid level and protein source effects on growth, tissue composition and lipid metabolism of blackspot seabream (Pagellus bogaraveo). Aquacult Nutr 16:173–187

    CAS  Google Scholar 

  • Gao Z, Wang X, Tan C, Zhou H, Mai K, He G (2019) Effect of dietary methionine levels on growth performance, amino acid metabolism and intestinal homeostasis in turbot (Scophthalmus maximus L.). Aquaculture 498:335–342

    CAS  Google Scholar 

  • Gu X, Orozco JM, Saxton RA, Condon KJ, Liu GY, Krawczyk PA, Scaria SM, Harper JW, Gygi SP, Sabatini DM (2017) SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science 358:813–818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo F, Cavener DR (2007) The GCN2 eIF2alpha kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid. Cell Metab 5:103–114

    CAS  PubMed  Google Scholar 

  • Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, Ha SH, Ryu SH, Kim S (2012) Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149:410–424

    CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5:897–904

    CAS  PubMed  Google Scholar 

  • Heesom KJ, Denton RM (1999) Dissociation of the eukaryotic initiation factor-4E/4E-BP1 complex involves phosphorylation of 4E-BP1 by an mTOR-associated kinase. FEBS Lett 457:489–493

    CAS  PubMed  Google Scholar 

  • Heitman J, Movva NR, Hall MN (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905–909

    CAS  PubMed  Google Scholar 

  • Hinnebusch AG (1988) Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 52:248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59:407–450

    CAS  PubMed  Google Scholar 

  • Ho A, Cho CS, Namkoong S, Cho US, Lee JH (2016) Biochemical basis of sestrin physiological activities. Trends Biochem Sci 41:621–632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ibba M, Soll D (2000) Aminoacyl-tRNA synthesis. Annu Rev Biochem 69:617–650

    CAS  PubMed  Google Scholar 

  • Inoki K, Li Y, Xu T, Guan K-L (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17:1829–1834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H, Tanaka H, Maruyama M, Satoh R, Okubo S, Kizawa H, Komatsu H, Matsumura F, Noguchi Y, Shinohara T, Hinuma S et al (2003) Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422:173–176

    CAS  PubMed  Google Scholar 

  • Jiang H, Bian F, Zhou H, Wang X, Wang K, Mai K, He G (2017) Nutrient sensing and metabolic changes after methionine deprivation in primary muscle cells of turbot (Scophthalmus maximus L.). J Nutr Biochem 50:74–82

    CAS  PubMed  Google Scholar 

  • Jung J, Genau HM, Behrends C (2015) Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol Cell Biol 35:2479–2494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung JW, Macalino SJY, Cui M, Kim JE, Kim HJ, Song DG, Nam SH, Kim S, Choi S, Lee JW (2019) Transmembrane 4 L six family member 5 Senses arginine for mTORC1 signaling. Cell Metab 29:1306–1319

    CAS  PubMed  Google Scholar 

  • Karpinski BA, Morle GD, Huggenvik J, Uhler MD, Leiden JM (1992) Molecular cloning of human CREB-2: an ATF/CREB transcription factor that can negatively regulate transcription from the cAMP response element. Proc Natl Acad Sci USA 89:4820–4824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushik SJ, Seiliez I (2010) Protein and amino acid nutrition and metabolism in fish: current knowledge and future needs. Aquacult Res 41:322–332

    CAS  Google Scholar 

  • Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL (2008) Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10:935–945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JS, Ro SH, Kim M, Park HW, Semple IA, Park H, Cho US, Wang W, Guan KL, Karin M, Lee JH (2015) Sestrin2 inhibits mTORC1 through modulation of GATOR complexes. Sci Rep 5:9502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krogdahl Å, Gajardo K, Kortner TM, Penn M, Gu M, Berge GM, Bakke AM (2015) Soya saponins induce enteritis in Atlantic salmon (Salmo salar L.). J Agric Food Dhem 63:3887–3902

    CAS  Google Scholar 

  • Krokowski D, Han J, Saikia M, Majumder M, Yuan CL, Guan B-J, Bevilacqua E, Bussolati O, Bröer S, Arvan P (2013) A self-defeating anabolic program leads to β-cell apoptosis in endoplasmic reticulum stress-induced diabetes via regulation of amino acid flux. J Biol Chem 288:17202–17213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Budanov AV, Park EJ, Birse R, Kim TE, Perkins GA, Ocorr K, Ellisman MH, Bodmer R, Bier E, Karin M (2010) Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science 327:1223–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lei H-T, Ma J, Martinez SS, Gonen T (2018) Crystal structure of arginine-bound lysosomal transporter SLC38A9 in the cytosol-open state. Nat Struct Mol Biol 25:522–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Zhang CS, Zong Y, Feng JW, Ma T, Hu M, Lin Z, Li X, Xie C, Wu Y et al (2019) Transient receptor potential V channels are essential for glucose sensing by aldolase and AMPK. Cell Metab 30:508–524. https://doi.org/10.1016/j.cmet.2019.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim C, Webster CD, Lee C-S (2008) Alternative protein sources in aquaculture diets. Haworth Press, New York

    Google Scholar 

  • Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J (2005) Rheb binds and regulates the mTOR kinase. Curr Biol 15:702–713

    CAS  PubMed  Google Scholar 

  • Longchamp A, Mirabella T, Arduini A, MacArthur MR, Das A, Trevino-Villarreal JH, Hine C, Ben-Sahra I, Knudsen NH, Brace LE, Reynolds J, Mejia P, Tao M, Sharma G, Wang R, Corpataux JM, Haefliger JA, Ahn KH, Lee CH, Manning BD et al (2018) Amino acid restriction triggers angiogenesis via GCN2/ATF4 regulation of VEGF and H2S production. Cell 173:117–129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mai K, Wan J, Ai Q, Xu W, Liufu Z, Zhang L, Zhang C, Li H (2006a) Dietary methionine requirement of large yellow croaker, Pseudosciaena crocea R. Aquaculture 253:564–572

    CAS  Google Scholar 

  • Mai K, Zhang L, Ai Q, Duan Q, Zhang C, Li H, Wan J, Liufu Z (2006b) Dietary lysine requirement of juvenile Japanese seabass, Lateolabrax japonicus. Aquaculture 258:535–542

    CAS  Google Scholar 

  • Makkar H (1993) Antinutritional factors in foods for livestock. BSAP Occas Publ 16:69–85

    Google Scholar 

  • Mambrini M, Kaushik S (1995) Indispensable amino acid requirements of fish: correspondence between quantitative data and amino acid profiles of tissue proteins. J Appl Ichthyol 11:240–247

    CAS  Google Scholar 

  • Maurin AC, Jousse C, Averous J, Parry L, Bruhat A, Cherasse Y, Zeng H, Zhang Y, Harding HP, Ron D, Fafournoux P (2005) The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores. Cell Metab 1:273–277

    CAS  PubMed  Google Scholar 

  • Moon TW (2001) Glucose intolerance in teleost fish: fact or fiction? Comp Biochem Physiol Part B 129:243–249

    CAS  Google Scholar 

  • Noda T, Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273:3963–3966

    CAS  PubMed  Google Scholar 

  • Oldham S, Hafen E (2003) Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control. Trends Cell Biol 13:79–85

    CAS  PubMed  Google Scholar 

  • Padyana AK, Qiu H, Roll-Mecak A, Hinnebusch AG, Burley SK (2005) Structural basis for autoinhibition and mutational activation of eukaryotic initiation factor 2α protein kinase GCN2. J Biol Chem 280:29289–29299

    CAS  PubMed  Google Scholar 

  • Panchaud N, Peli-Gulli M-P, De Virgilio C (2013) Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci Signal 6:ra42

    PubMed  Google Scholar 

  • Parmigiani A, Nourbakhsh A, Ding B, Wang W, Kim YC, Akopiants K, Guan KL, Karin M, Budanov AV (2014) Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Rep 9:1281–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng M, Yin N, Li MO (2014) Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell 159:122–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng M, Yin N, Li MO (2017) SZT2 dictates GATOR control of mTORC1 signalling. Nature 543:433–437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quaas M, Hoffmann J, Kamin K, Kleemann L, Schacht K (2016) Fishing for proteins, How marine fisheries impact on global food security up to 2050. A global Prognnosis. WWF Germany, International WWF Centre for Marine Conservation, Hamburg, Germany

  • Raught B, Peiretti F, Gingras AC, Livingstone M, Shahbazian D, Mayeur GL, Polakiewicz RD, Sonenberg N, Hershey JW (2004) Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J 23:1761–1769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rebsamen M, Pochini L, Stasyk T, de Araujo ME, Galluccio M, Kandasamy RK, Snijder B, Fauster A, Rudashevskaya EL, Bruckner M, Scorzoni S, Filipek PA, Huber KV, Bigenzahn JW, Heinz LX, Kraft C, Bennett KL, Indiveri C, Huber LA, Superti-Furga G (2015) SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519:477–481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rzymski T, Milani M, Pike L, Buffa F, Mellor HR, Winchester L, Pires I, Hammond E, Ragoussis I, Harris AL (2010) Regulation of autophagy by ATF4 in response to severe hypoxia. Oncogene 29:4424–4435

    CAS  PubMed  Google Scholar 

  • Sabatini DM (2017) Twenty-five years of mTOR: uncovering the link from nutrients to growth. Proc Natl Acad Sci USA 114:11818–11825

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25:903–915

    CAS  PubMed  Google Scholar 

  • Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–1501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saxton RA, Knockenhauer KE, Schwartz TU, Sabatini DM (2016a) The apo-structure of the leucine sensor Sestrin2 is still elusive. Sci Signal 9:ra92

    PubMed  PubMed Central  Google Scholar 

  • Saxton RA, Knockenhauer KE, Wolfson RL, Chantranupong L, Pacold ME, Wang T, Schwartz TU, Sabatini DM (2016b) Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science 351:53–58

    CAS  PubMed  Google Scholar 

  • Sengupta S, Peterson TR, Sabatini DM (2010) Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40:310–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Senoo H, Kamimura Y, Kimura R, Nakajima A, Sawai S, Sesaki H, Iijima M (2019) Phosphorylated Rho–GDP directly activates mTORC2 kinase towards AKT through dimerization with Ras–GTP to regulate cell migration. Nat Cell Biol 21:867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen K, Sabatini DM (2018) Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Proc Natl Acad Sci USA 115:9545–9550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skiba-Cassy S, Geurden I, Panserat S, Seiliez I (2016) Dietary methionine imbalance alters the transcriptional regulation of genes involved in glucose, lipid and amino acid metabolism in the liver of rainbow trout (Oncorhynchus mykiss). Aquaculture 454:56–65

    CAS  Google Scholar 

  • Song F, Xu D, Mai K, Zhou H, Xu W, He G (2016) Comparative study on the cellular and systemic nutrient sensing and intermediary metabolism after partial replacement of fishmeal by meat and bone meal in the diet of turbot (Scophthalmus maximus L.). PLoS ONE 11:e0165708

    PubMed  PubMed Central  Google Scholar 

  • Stone DA (2003) Dietary carbohydrate utilization by fish. Rev Fish Sci 11:337–369

    CAS  Google Scholar 

  • Tan C, Zhou H, Wang X, Mai K, He G (2019) Resveratrol attenuates oxidative stress and inflammatory response in turbot fed with soybean meal based diet. Fish Shellfish Immunol 91:130–135

    CAS  PubMed  Google Scholar 

  • Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J (2003) Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13:1259–1268

    CAS  PubMed  Google Scholar 

  • Thorens B, Mueckler M (2010) Glucose transporters in the 21st Century. Am J Physiol Endocrinol Metab 298:E141–E145

    CAS  PubMed  Google Scholar 

  • Tian J, Wang K, Wang X, Wen H, Zhou H, Liu C, Mai K, He G (2018) Soybean saponin modulates nutrient sensing pathways and metabolism in zebrafish. Gen Comp Endocrinol 257:246–254

    CAS  PubMed  Google Scholar 

  • Tsun Z-Y, Bar-Peled L, Chantranupong L, Zoncu R, Wang T, Kim C, Spooner E, Sabatini DM (2013) The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell 52:495–505

    CAS  PubMed  Google Scholar 

  • Vezina C, Kudelski A, Sehgal SN (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 28:721–726

    CAS  Google Scholar 

  • Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantranupong L, Comb W, Wang T, Bar-Peled L, Zoncu R, Straub C, Kim C, Park J, Sabatini BL, Sabatini DM (2015) Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347:188–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhou H, He R, Xu W, Mai K, He G (2016) Effects of soybean meal fermentation by Lactobacillus plantarum P8 on growth, immune responses, and intestinal morphology in juvenile turbot (Scophthalmus maximus L.). Aquaculture 464:87–94

    CAS  Google Scholar 

  • Wang J, Zhou H, Wang X, Mai K, He G (2019) Effects of silymarin on growth performance, antioxidant capacity and immune response in turbot (Scophthalmus maximus L.). J World Aquacult Soc. https://doi.org/10.1111/jwas.12614

    Article  Google Scholar 

  • Wang K, Liu C, Hou Y, Zhou H, Wang X, Mai K, He G (2019b) Differential apoptotic and mitogenic effects of lectins in Zebrafish. Front Endocrinol (Lausanne) 10:356

    CAS  Google Scholar 

  • Wek SA, Zhu S, Wek RC (1995) The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol Cell Biol 15:4497–4506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RP (1986) Protein and amino acid requirements of fishes. Annu Rev Nutr 6:225–244

    CAS  PubMed  Google Scholar 

  • Wilson RP (2002) Amino acids and Proteins. In: John EH, Ronald WH (eds) Fish Nutrition, 3rd edn. Academic press, San Diego, California, USA, pp 143–177

    Google Scholar 

  • Wolfson RL, Sabatini DM (2017) The dawn of the age of amino acid sensors for the mTORC1 pathway. Cell Metab 26:301–309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, Cantor JR, Sabatini DM (2016) Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351:43–48

    CAS  PubMed  Google Scholar 

  • Wolfson RL, Chantranupong L, Wyant GA, Gu X, Orozco JM, Shen K, Condon KJ, Petri S, Kedir J, Scaria SM, Abu-Remaileh M, Frankel WN, Sabatini DM (2017) KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature 543:438–442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright MD, Ni J, Rudy GB (2000) The L6 membrane proteins–a new four-transmembrane superfamily. Protein Sci 9:1594–1600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wyant GA, Abu-Remaileh M, Wolfson RL, Chen WW, Freinkman E, Danai LV, Vander Heiden MG, Sabatini DM (2017) mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient. Cell 171:642–654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, He G, Mai K, Zhou H, Xu W, Song F (2016) Postprandial nutrient-sensing and metabolic responses after partial dietary fishmeal replacement by soyabean meal in turbot (Scophthalmus maximus L.). Br J Nutr 115:379–388

    CAS  PubMed  Google Scholar 

  • Yang G, Murashige DS, Humphrey SJ, James DE (2015) A positive feedback loop between Akt and mTORC2 via SIN1 phosphorylation. Cell Rep 12:937–943

    CAS  PubMed  Google Scholar 

  • Zhang P, McGrath BC, Reinert J, Olsen DS, Lei L, Gill S, Wek SA, Vattem KM, Wek RC, Kimball SR, Jefferson LS, Cavener DR (2002) The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice. Mol Cell Biol 22:6681–6688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Zhang W, Zhou Y, Li F, Wei H, Peng J (2016) Recent advances in understanding amino acid sensing mechanisms that regulate mTORC1. Int J Mol Sci 17:1636

    PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (2018YFD0900400), National Natural Scientific Foundation of China Grant (31772860), Aoshan Talents Cultivation Program Supported by Qingdao National Laboratory for marine science and technology (2017ASTCP-OS12), Fundamental Research Funds for the Central Universities (201822017) to GH, and China Agriculture Research System (CARS-47-G10) to KM.

Author information

Authors and Affiliations

Authors

Contributions

GH and KM designed this review. CL, XW, and HZ wrote the article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gen He.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Animal and human rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Edited by Xin Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Wang, X., Zhou, H. et al. Recent advances in amino acid sensing and new challenges for protein nutrition in aquaculture. Mar Life Sci Technol 1, 50–59 (2019). https://doi.org/10.1007/s42995-019-00022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42995-019-00022-1

Keywords

Navigation