Skip to main content

Advertisement

Log in

Effects of hafnium on the structural, optical and ferroelectric properties of sol–gel synthesized barium titanate ceramics

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

For future electronic devices, barium titanate based multifunctional ceramics falling under the category of ABO3 perovskite type rose to prominence among scientists and engineers around the world. Moreover, the remarkable properties can be tuned by a strategy known as doping. The synthesis of hafnium (Hf4+) doped BaHfxTi(1-x)O3, x = 0.00, 0.05, 0.10, 0.15 ceramics based on a wet chemical technique known as sol–gel, where the total time and temperature required for complete phase formation is considerably less, is reported in this article. The formation of a well-defined crystal structure with tetragonal phase showing P4mm space group was confirmed for BaHfxTi(1-x)O3 ceramics calcined at 1000 °C using Raman spectroscopy and X-ray diffraction (XRD). The calcined powders consisting of grains with polyhedral shapes possessed particle sizes ranging from 160 to 460 nm. A significant peak corresponding to metal oxide formation was obtained at 565 cm−1 for all the compositions in Fourier transform infrared (FTIR) spectra, proving the existence of the required perovskite phase. A minor variation in band gap energy with increase in Hafnium (Hf4+) was found out using Ultraviolet–Visible-near-IR (UV–Visible-NIR) spectroscopy. Photoluminescence (PL) spectrum analysis, put forward the possibility of slight disorders in the ceramics; nonetheless, the spectra were found to be composed of peaks corresponding to blue, red and green emissions. The remnant polarization (Pr), saturation polarization (Ps) and coercive electric field (Ec) of BaHfxTi(1-x)O3, calculated from ferroelectric hysteresis loop were found to vary appreciably with corresponding rise in hafnium (Hf4+) concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Code availability

Not applicable.

References

  1. J. Jacob, N. More, C. Mounika, P. Gondaliya, K. Kalia, G. Kapusetti, Smart piezoelectric nanohybrid of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and barium titanate for stimulated cartilage regeneration. ACS Appl. Bio Mater. 2(11), 4922 (2019)

    Article  CAS  Google Scholar 

  2. G.H. Lee, H. Moon, H. Kim, G.H. Lee, W. Kwon, S. Yoo, D. Myung, S.H. Yun, Z. Bao, S.K. Hahn, Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 5, 149 (2020)

    Article  Google Scholar 

  3. A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications, 2nd edn. (John Wiley & Sons, Chichester, 2003), pp. 364–366

    Book  Google Scholar 

  4. L.G.A. Marques, L.S. Cavalcante, A.Z. Simoes, F.M. Pontes, L.S. Santos Junior, M.R.M.C. Santos, I.L.V. Roso, J.A. Varela, E. Longo, Temperature dependence of dielectric properties for Ba(Zr0.25Ti0.75)O3 thin films obtained from the soft chemical method. Mater. Chem. Phys. 105, 293 (2007)

    Article  CAS  Google Scholar 

  5. X.G. Tang, R.K. Zheng, Y.P. Jiang, H.L.W. Chen, Dielectric properties of (100)-oriented Ba(Zr, Ti)O3(La0.7Ca0.3MnO3) heterostructure thin films prepared by pulsed laser deposition. J. Phys. D Appl. Phys. 39, 3394 (2006)

    Article  CAS  Google Scholar 

  6. H. Kishi, Y. Mizuno, H. Chazono, Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn. J. Appl. Phys. 42, 1 (2003)

    Article  CAS  Google Scholar 

  7. D.C. Sinclair, A.R. West, Effect of atmosphere on the PTCR properties of BaTiO3 ceramics. J. Mater. Sci. 29, 6061 (1994)

    Article  CAS  Google Scholar 

  8. A. Ianculescu, S. Guillemet-Fritsch, B. Durand, BaTiO3 thick films obtained by tape casting from powders prepared by the oxalate route. Process. Appl. Ceram. 3, 65 (2009)

    Article  CAS  Google Scholar 

  9. M.J. Pan, C.A. Randall, A brief introduction to ceramic capacitors. IEEE Electr. Insul. Mag. 26(3), 44 (2010)

    Article  CAS  Google Scholar 

  10. H.T. Langhammer, T. Muller, K.H. Felgner, H.P. Abicht, Crystal structure and related properties of manganese doped barium titanate ceramics. J. Am. Ceram. Soc. 83(3), 605 (2004)

    Article  Google Scholar 

  11. M. Xu, F. Wang, W. Tao, X. Chen, Y. Tang, W. Shi, Phase diagram and electric properties of the (Mn, K) modified Bi0.5Na0.5TiO3-BaTiO3 lead free ceramics. J. Mater. Sci. 46(13), 4675 (2011)

    Article  CAS  Google Scholar 

  12. Q. Sun, Q. Gu, K. Zhu, R. Jin, J. Liu, J. Wang, J. Qiu, Crystalline structure, defect chemistry and room temperature colossal permittivity of Nd-doped barium titanate. Sci. Rep. 7, 42274 (2017)

    Article  CAS  Google Scholar 

  13. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103(25), 257602 (2009)

    Article  Google Scholar 

  14. T. Zheng, J. Wu, D. Xiao, J. Zhu, Recent development in lead free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 98, 552 (2018)

    Article  CAS  Google Scholar 

  15. S. Jayanthi, T.R.N. Kutty, Dielectric properties of 3d transition metal substituted BaTiO3 ceramics containing the hexagonal phase formation. J. Mater. Sci. 19, 615 (2008)

    CAS  Google Scholar 

  16. A century of ferroelectricity. Nat. Mater. 19, 129 (2020) https://doi.org/10.1038/s41563-020-0611-1

  17. J. Xu, W. Menesklou, E.I. Tiffee, Processing and properties of BST thin films for tunable microwave devices. J. Eur. Ceram. Soc. 24, 1735 (2004)

    Article  CAS  Google Scholar 

  18. B.I. Lee, Chemical variations in barium titanate powders and dispersants. J. Electroceram. 3, 53 (1999)

    Article  CAS  Google Scholar 

  19. L. Wang, L. Liu, D. Xue, H. Kang, C. Liu, Wet routes of high purity BaTiO3 nano-powders. J. Alloy. Compd. 440, 78 (2007)

    Article  CAS  Google Scholar 

  20. G. Zhao, L. Chen, Y. Tang, L. He, B. Long, Z. Nie, H. Chen, Research on preparation of barium titanate nano powder by sol–gel. Mater. Sci. Forum 809, 136 (2015)

    Google Scholar 

  21. M.L. Moreira, G.P. Mambrini, D.P. Volanti, E.R. Leite, M.O. Orlandi, P.S. Pizani, V.R. Mastelaro, C.O.P. Santos, E. Longo, J.A. Varela, Hydrothermal microwave: a new route to obtain photoluminescent crystalline BaTiO3 nanoparticles. Chem. Mater. 20, 5381 (2008)

    Article  CAS  Google Scholar 

  22. M.H. Frey, D.A. Payne, Synthesis and processing of barium titanate ceramics from alkoxide solutions and monolithic gels. Chem. Mater. 7, 123 (1995)

    Article  CAS  Google Scholar 

  23. X. He, H.J. Lee, S.S. Ryu, Y.K. Choi, H. Ju, Effects of the processing parameters in the synthesis of BaTiO3 nanoparticle by using the co–precipitation method. J. Korean Phys. Soc. 65, 404 (2014)

    Article  CAS  Google Scholar 

  24. G.H. Margarita, G. Chadeyron, D. Boyer, A.G. Murillo, F.C. Romo, R. Mahiou, Hydrothermal synthesis and characterization of europium-doped barium titanate nanocrystallites. Nano-Micro. Lett. 5(1), 57 (2013)

    Article  Google Scholar 

  25. L.A. Xue, Y. Chen, R.J. Brook, The influence of ionic radii on the incorporation of trivalent dopants into BaTiO3. Mater. Sci. Eng. B 1(2), 193 (1988)

    Article  Google Scholar 

  26. D.Y. Lu, M. Toda, M. Sugano, High-permittivity double rare-earth-doped barium titanate ceramics with diffuse phase transition. J. Am. Ceram. Soc. 89(10), 3112 (2006)

    Article  CAS  Google Scholar 

  27. Y. Tsur, T.D. Dunbar, C.A. Randall, Crystal and defect chemistry of rare earth cations in BaTiO3. J. Electroceram. 7, 25 (2001)

    Article  CAS  Google Scholar 

  28. V. Paunovic, L. Zivkovic, L. Vracar, V. Mitic, M. Miljkovic, The effects of additive on microstructure and electrical properties of BaTiO3 ceramics. Serb. J. Electr. Eng. 1(3), 89 (2004)

    Article  Google Scholar 

  29. X. Jiang, H. Hao, Y. Yang, E. Zhou, S. Zhang, P. Wei, M. Cao, Z. Yao, H. Liu, Structure and enhanced dielectric temperature stability of BaTiO3-based ceramics by Ca ion B site-doping. J Materiomics 7(2), 295 (2021)

    Article  Google Scholar 

  30. N. Maso, H. Beltran, E. Cordoncillo, A.A. Flores, P. Escribano, D.C. Sinclair, A.R. West, J. Mater. Chem. 16, 3114 (2006)

    Article  CAS  Google Scholar 

  31. M.M.V. Petrovic, J.D. Bobic, T. Ramoska, J. Banys, B.D. Stojanovic, Electrical properties of lanthanum doped barium titanate ceramics. Mater. Charact. 62(10), 1000 (2011)

    Article  CAS  Google Scholar 

  32. M.C. Ferrarelli, C.C. Tan, D.C. Sinclair, Ferroelectric, electrical and structural properties of Dy and Sc co-doped BaTiO3. J. Mater. Chem. 21(17), 6292 (2011)

    Article  CAS  Google Scholar 

  33. Y. Yuan, S.R. Zhang, X.H. Zhou, B. Tang, Effects of Nb2O5 doping on the micro-structure and the dielectric temperature characteristics of barium titanate. J. Mater. Sci. 44(14), 3751 (2009)

    Article  CAS  Google Scholar 

  34. M. McQuarrie, F.W. Behnke, Structural and dielectric studies in the system (Ba, Ca) (Ti, Zr)O3. J. Am. Ceram. Soc. 37, 539 (1954)

    Article  CAS  Google Scholar 

  35. T. Maiti, R. Guo, A.S. Bhalla, Structure-property phase diagram of BaZrxTi1−xO3 system. J. Am. Ceram. Soc. 91(6), 1769 (2008)

    Article  CAS  Google Scholar 

  36. K.C. Patil, M.S. Hegde, T. Rattan, S.T. Aruna, Chemistry of Nanocrystalline Oxide Materials, Combustion, Synthesis, Properties and Applications (World Scientific Publishing, Singpore, 2008), pp. 42–58

    Book  Google Scholar 

  37. M. Cernea, M. Secu, R. Radu, P. Ganea, V.A. Surdu, R. Trusca, E.T. Vasile, E.C. Secu, Structural, electrical properties and photoluminescence analyses of the terbium doped barium titanate. J. Alloys Compd. 878, 160380 (2021)

    Article  CAS  Google Scholar 

  38. G.N. Bhargavi, T. Badapanda, A. Khare, M.S. Anwar, N. Brahme, Investigation of structural and conduction mechanism of europium modified BaZr0.05Ti0.95O3 ceramic prepared by solid-state reaction method. Appl. Phys. A. 127, 528 (2021)

    Article  Google Scholar 

  39. Y. Tian, Y. Gong, D. Meng, H. Deng, B. Kuang, Low-temperature sintering and electric properties of BCT–BZT and BCZT lead-free ceramics. J. Mater. Sci. Mater. Electron. 26, 3750 (2015)

    Article  CAS  Google Scholar 

  40. F. Cordero, F. Craciun, M. Dinescu, N. Scarisoreanu, C. Galassi, W. Schranz, V. Soprunyuk, Elastic response of (1–x)Ba(Ti0.8Zr0.2)O3–x(Ba0.7Ca0.3)TiO3 (x= 0.45–0.55) and the role of the intermediate orthorhombic phase in enhancing the piezoelectric coupling. Appl. Phys. Lett. 105, 232904 (2014)

    Article  Google Scholar 

  41. E.K. Al-Shakarchi, N.B. Mahmood, Three techniques used to produce BaTiO3 fine powder. J. Mod. Phys. 2(11), 1420 (2011)

    Article  Google Scholar 

  42. T. Hoshina, Size effect of barium titanate: fine particles and ceramics. J. Ceram. Soc. 121(1410), 156 (2013)

    Article  CAS  Google Scholar 

  43. D.W. Richerson, W.E. Lee, Modern Ceramic Engineering: Properties, Processing, and Use in Design, 4th edn. (Taylor & Francis Group, USA, 2018), pp. 374–418

    Book  Google Scholar 

  44. E. Chandrakala, J.P. Praveen, A. Kumar, A.R. James, D. Das, Strain-induced structural phase transition and its effect on piezoelectric properties of (BZT-BCT)-(CeO2) ceramics. J. Am. Ceram. Soc. 99(11), 3659 (2016)

    Article  CAS  Google Scholar 

  45. A.M.M. Farea, S. Kumar, K.M. Batoo, A. Yousef, C.G. Lee, Alimuddin, structure and electrical properties of Co0.5CdxFe2.5−xO4 ferrites. J. Alloys Compd. 464(1–2), 361 (2008)

    Article  CAS  Google Scholar 

  46. A.H.M. Yusoff, M.N. Salimi, M.F. Jamlos, Dependence of lattice strain of magnetite nanoparticles on precipitation temperature and pH of solution. J. Phys. Conf. Ser. 908, 01065 (2017)

    Article  Google Scholar 

  47. C.H. Perry, D.B. Hall, Temperature dependence of the Raman spectrum of BaTiO3. Phys. Rev. Lett. 15, 700 (1965)

    Article  CAS  Google Scholar 

  48. H. Hayashi, T. Nakamura, T. Ebina, In-situ Raman spectroscopy of BaTiO3 particles for tetragonal–cubic transformation. J. Phys. Chem. Solid. 74(7), 957 (2013)

    Article  CAS  Google Scholar 

  49. D.R. Arunkumar, S.A.U. Portia, K. Ramamoorthy, Design and fabrication of novel Tb doped BaTiO3 thin film with superior light-harvesting characteristics for dye sensitized solar cells. Surf. Interfaces 22, 100853 (2021)

    Article  CAS  Google Scholar 

  50. J. Gao, H. Shi, H. Dong, R. Zhang, D. Chen, Factors influencing formation of highly dispersed BaTiO3 nanospheres with uniform sizes in static hydrothermal synthesis. J. Nanopart. Res. 17, 286 (2015)

    Article  Google Scholar 

  51. M.M.V. Petrovic, J.D. Bobic, T. Ramoska, J. Banys, B.D. Stojanovic, Electrical properties of lanthanum doped barium titanate ceramics. Mater. Charact. 62, 1000 (2011)

    Article  CAS  Google Scholar 

  52. D. Sun, X. Jin, H. Liu, J. Zhu, Y. Zhu, Y. Zhu, Investigation on FTIR spectrum of barium titanate ceramics doped with alkali ions. Ferroelectrics 355, 145 (2007)

    Article  CAS  Google Scholar 

  53. A. Rached, M.A. Wederni, K. Khirouni, S. Alaya, R.J.M. Palma, J. Dhahri, Mater. Chem. Phys. 267, 124600 (2021)

    Article  CAS  Google Scholar 

  54. J. Xuegin, S. Dazhi, Z. Mingjun, Z. Yudan, Q. Juanjuan, Investigation on FTIR spectra of barium calcium titanate ceramics. J. Electroceram. 22, 285 (2008)

    Google Scholar 

  55. O. Harizanov, A. Harizanova, T. Ivanova, Formation and characterization of sol-gel barium titanate. Mater. Sci. Eng. B 106, 191 (2004)

    Article  Google Scholar 

  56. M. K. Trivedi, G. Nayak, S. Patil, R. M. Tallapragada, O. Latiyal, S. Jana (2015) Impact of biofield treatment on atomic and structural characteristics of barium titanate powder. Ind. Eng. Manage. 4(3)

  57. E.A. Disalvo, M.A. Frias, Water state and carbonyl distribution populations in confined regions of lipid bilayers observed by FTIR spectroscopy. Langmuir 29, 6969 (2013)

    Article  CAS  Google Scholar 

  58. N. Binhyeeniyi, P. Sukvisut, C. Thanachayanont, S. Muensit, Physical and electromechanical properties of barium zirconium titanate synthesized at low-sintering temperature. Mater. Lett. 64(3), 305 (2010)

    Article  Google Scholar 

  59. S.H. Wemple, Polarization fluctuations and the optical–absorption edge in BaTiO3. Phys. Rev. B 2, 2679 (1970)

    Article  Google Scholar 

  60. D.L. Wood, J. Tauc, Weak absorption tails in amorphous semiconductors. Phys. Rev. B 5, 3144 (1972)

    Article  Google Scholar 

  61. J. Tauc, R. Grigorovici, A. Vancu, Optical Properties and electronic structure of amorphous germanium. Phys. Stat. Solidi. 15, 627 (1966)

    Article  CAS  Google Scholar 

  62. A.J. Deotale, R.V. Nandedkar, Correlation between particle size, strain and band gap of iron oxide nanoparticles. Mater. Today Proc. 3, 2069 (2016)

    Article  Google Scholar 

  63. P. Dewangan, D.P. Bisen, N. Brahme, R.K. Tamrakar, S. Sharma, K. Upadhyay, Growth and synthesis of Sr3MgSi2O8: Dy3+ nanorod arrays by a solid-state reaction method. Opt. Quant. Electron. 50, 367 (2018)

    Article  Google Scholar 

  64. W. Zhou, H. Deng, L. Yu, P. Yang, J. Chu, Magnetism switching and band-gap narrowing in Ni-doped PbTiO3 thin films. J. Appl. Phys. 117, 194102 (2015)

    Article  Google Scholar 

  65. A.P.A. Quispe, R.H. Miwa, J.D.S. Guerra, Role of the rare-earth doping on the multiferroic properties of BaTiO3: first-principles calculation. Physica B 615, 413107 (2021)

    Article  Google Scholar 

  66. S.C. Jain, R.P. Mertens, R.J. Van Overstraeten, Bandgap narrowing and its effects on the properties of moderately and heavily doped germanium and silicon. Adv. Electron. Electron Phys. 82, 197 (1991)

    Article  CAS  Google Scholar 

  67. Z. Teng, J. Jiang, G. Chen, C. Ma, F. Zhang, The electronic structures and optical properties of B, C or N doped BaTiO3. AIP Adv. 8, 095216 (2018)

    Article  Google Scholar 

  68. H. Ihring, D. Hennings, Electrical transport properties of n-type BaTiO3. Phys. Rev. B 17, 4593 (1978)

    Article  Google Scholar 

  69. M.S. Zhang, J. Yu, W.C. Chen, Z. Yin, Optical and structural properties of pure and Ce-doped nanocrystals of barium titanate. Prog. Cryst. Growth Charact. Mater. 40, 33 (2000)

    Article  CAS  Google Scholar 

  70. J.H. Hwang, Y.H. Han, Electrical properties of cerium-doped BaTiO3. J. Am. Ceram. Soc. 84(8), 1750 (2001)

    Article  CAS  Google Scholar 

  71. X.C. Li, Q. Yang, Research on preparation of barium titanate nano powder by sol–gel. Mater. Sci. Forum 809, 136 (2015)

    Google Scholar 

  72. M. Prabu, I.B. ShameemBanu, S. Gobalakrishnan, M. Chavali, Electrical and ferroelectric properties of undoped and La-doped PZT (52/48) electroceramics synthesized by sol-gel method. J. Alloys Compd. 551, 200 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Central Laboratory for Instrumentation and Facilitation (CLIF), University of Kerala, Thiruvananthapuram, India and Sophisticated Test and Instrumentation Centre (STIC), Cochin University of Science and Technology, Kochi, India, for providing characterization facilities.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

BB, the corresponding author is responsible for the design of this study. JF has done the synthesis and analysis part of this work in connection with his research work. SKY helped in providing necessary synthesis facilities. MP helped us by providing research facilities in the Department of Nanotechnology, Noorul Islam Centre for Higher Education, Kumaracoil.

Corresponding author

Correspondence to B. Bindhu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez, J., Bindhu, B., Prabu, M. et al. Effects of hafnium on the structural, optical and ferroelectric properties of sol–gel synthesized barium titanate ceramics. J. Korean Ceram. Soc. 59, 240–251 (2022). https://doi.org/10.1007/s43207-021-00170-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00170-0

Keywords

Navigation