Skip to main content

Advertisement

Log in

Hybrid ceramics-based cancer theranostics

  • Review
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Cancer is a major threat to human lives. Early detection and precisely targeted therapy/therapies for cancer is the most effective way to reduce the difficulties (e.g., side effects, low survival rate, etc.) in treating cancer. To enable effective cancer detection and treatment, ceramic biomaterials have been intensively and extensively investigated owing to their good biocompatibility, high bioactivity, suitable biodegradability and other distinctive properties that are required for medical devices in oncology. Through hybridization with other materials and loading of imaging agents and therapeutic agents, nanobioceramics can form multifunctional nanodevices to simultaneously provide diagnostic and therapeutic functions for cancer patients, and these nanodevices are known as hybrid ceramics-based cancer theranostics. In this review, the recent developments of hybrid ceramics-based cancer theranostics, which include the key aspects such as their preparation, biological evaluation and applications, are summarized and discussed. The challenges and future perspectives for the clinical translation of hybrid ceramics-based cancer theranostics are also discussed. It is believed that the potential of hybrid ceramic nanoparticles as cancer theranostics is high and that the future of these theranostics is bright despite the difficulties along the way for their clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Mostafa, M. Bartneck, in Nanotechnology in Cancer Theranostics. Advances in Cancer Nanotheranostics for Experimental and Personalized Medicine (2020), p. 47

  2. H. Zhou, J. Ge, Q. Miao, R. Zhu, L. Wen, J. Zeng, M. Gao, Biodegradable inorganic nanoparticles for cancer theranostics: insights into the degradation behavior. Bioconjug. Chem. 31(2), 315–331 (2020)

    Article  CAS  Google Scholar 

  3. H.S. Muddana, T.T. Morgan, J.H. Adair, P.J. Butler, Photophysics of Cy3-encapsulated calcium phosphate nanoparticles. Nano Lett. 9(4), 1559–1566 (2009)

    Article  CAS  Google Scholar 

  4. K. Haedicke, D. Kozlova, S. Gräfe, U. Teichgräber, M. Epple, I. Hilger, Multifunctional calcium phosphate nanoparticles for combining near-infrared fluorescence imaging and photodynamic therapy. Acta Biomater. 14, 197–207 (2015)

    Article  CAS  Google Scholar 

  5. G. Li, Y. Chen, L. Zhang, M. Zhang, S. Li, L. Li, T. Wang, C. Wang, Facile approach to synthesize gold nanorod@ polyacrylic acid/calcium phosphate yolk–shell nanoparticles for dual-mode imaging and pH/NIR-responsive drug delivery. Nano-micro letters 10(1), 1–11 (2018)

    Article  CAS  Google Scholar 

  6. A. Adamiano, V.M. Wu, F. Carella, G. Lamura, F. Canepa, A. Tampieri, M. Iafisco, V. Uskoković, Magnetic calcium phosphates nanocomposites for the intracellular hyperthermia of cancers of bone and brain. Nanomedicine 14(10), 1267–1289 (2019)

    Article  CAS  Google Scholar 

  7. F.L. Graham, A.J. van der Eb, A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52(2), 456–467 (1973)

    Article  CAS  Google Scholar 

  8. D. Huang, B. He, P. Mi, Calcium phosphate nanocarriers for drug delivery to tumors: imaging, therapy and theranostics. Biomaterials science 7(10), 3942–3960 (2019)

    Article  CAS  Google Scholar 

  9. A. Tabaković, M. Kester, J.H. Adair, Calcium phosphate-based composite nanoparticles in bioimaging and therapeutic delivery applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 4(1), 96–112 (2012)

    Article  CAS  Google Scholar 

  10. Q. Liu, S. Huang, J.P. Matinlinna, Z. Chen, H. Pan, Insight into biological apatite: physiochemical properties and preparation approaches. BioMed Res. Int. 2013, 1–13 (2013)

    Google Scholar 

  11. E.I. Altınogˇlu, T.J. Russin, J.M. Kaiser, B.M. Barth, P.C. Eklund, M. Kester, J.H. Adair, Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano 2(10), 2075–2084 (2008)

    Article  CAS  Google Scholar 

  12. J. Schwiertz, A. Wiehe, S. Gräfe, B. Gitter, M. Epple, Calcium phosphate nanoparticles as efficient carriers for photodynamic therapy against cells and bacteria. Biomaterials 30(19), 3324–3331 (2009)

    Article  CAS  Google Scholar 

  13. R. Ramachandran, W. Paul, C.P. Sharma, Synthesis and characterization of PEGylated calcium phosphate nanoparticles for oral insulin delivery. J. Biomed. Mater. Res. Part B: Appl. Biomater. 88(1), 41–48 (2009)

    Article  CAS  Google Scholar 

  14. H. Kim, S. Mondal, S. Bharathiraja, P. Manivasagan, M.S. Moorthy, J. Oh, Optimized Zn-doped hydroxyapatite/doxorubicin bioceramics system for efficient drug delivery and tissue engineering application. Ceram. Int. 44(6), 6062–6071 (2018)

    Article  CAS  Google Scholar 

  15. Y. Han, S. Li, X. Cao, L. Yuan, Y. Wang, Y. Yin, T. Qiu, H. Dai, X. Wang, Different inhibitory effect and mechanism of hydroxyapatite nanoparticles on normal cells and cancer cells in vitro and in vivo. Sci. Rep. 4(1), 1–8 (2014)

    Article  Google Scholar 

  16. R. Meena, K.K. Kesari, M. Rani, R. Paulraj, Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7). J. Nanopart. Res. 14(2), 1–11 (2012)

    Article  CAS  Google Scholar 

  17. Q. Fu, M.N. Rahaman, N. Zhou, W. Huang, D. Wang, L. Zhang, H. Li, In vitro study on different cell response to spherical hydroxyapatite nanoparticles. J. Biomater. Appl. 23(1), 37–50 (2008)

    Article  CAS  Google Scholar 

  18. W. Tang, Y. Yuan, C. Liu, Y. Wu, X. Lu, J. Qian, Differential cytotoxicity and particle action of hydroxyapatite nanoparticles in human cancer cells. Nanomedicine 9(3), 397–412 (2014)

    Article  CAS  Google Scholar 

  19. Z. Shi, X. Huang, Y. Cai, R. Tang, D. Yang, Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater. 5(1), 338–345 (2009)

    Article  CAS  Google Scholar 

  20. A. Sobczak-Kupiec, D. Malina, R. Kijkowska, Z. Wzorek, Comparative study of hydroxyapatite prepared by the authors with selected commercially available ceramics. Dig. J. Nanomater. Biostruct. 7(1), 385–391 (2012)

    Google Scholar 

  21. J. Chou, T. Ito, D. Bishop, M. Otsuka, B. Ben-Nissan, B. Milthorpe, Controlled release of simvastatin from biomimetic β-TCP drug delivery system. PLoS ONE 8(1), e54676 (2013)

    Article  CAS  Google Scholar 

  22. A.I. Rezk, T.I. Hwang, J.Y. Kim, J.Y. Lee, C.H. Park, C.S. Kim, Functional composite nanofibers loaded with β-TCP and SIM as a control drug delivery system. Mater. Lett. 240, 25–29 (2019)

    Article  CAS  Google Scholar 

  23. L. Liu, H. Dai, Y. Wu, B. Li, J. Yi, C. Xu, X. Wu, In vitro and in vivo mechanism of hepatocellular carcinoma inhibition by β-TCP nanoparticles. Int. J. Nanomed. 14, 3491 (2019)

    Article  CAS  Google Scholar 

  24. L.-J. Li, L.-S. Zhang, Z.-J. Han, Z.-Y. He, H. Chen, Y.-M. Li, Chaperonin containing TCP-1 subunit 3 is critical for gastric cancer growth. Oncotarget 8(67), 111470 (2017)

    Article  Google Scholar 

  25. N. Sarkar, S. Bose, Liposome-encapsulated curcumin-loaded 3D printed scaffold for bone tissue engineering. ACS Appl. Mater. Interfaces. 11(19), 17184–17192 (2019)

    Article  CAS  Google Scholar 

  26. S. Murakami, T. Hosono, B. Jeyadevan, M. Kamitakahara, K. Ioku, Hydrothermal synthesis of magnetite/hydroxyapatite composite material for hyperthermia therapy for bone cancer. J. Ceram. Soc. Jpn. 116(1357), 950–954 (2008)

    Article  CAS  Google Scholar 

  27. J.R. Jones, D.S. Brauer, L. Hupa, D.C. Greenspan, Bioglass and bioactive glasses and their impact on healthcare. Int. J. Appl. Glas. Sci. 7(4), 423–434 (2016)

    Article  CAS  Google Scholar 

  28. S.A. Shah, M. Hashmi, A. Shamim, S. Alam, Study of an anisotropic ferrimagnetic bioactive glass ceramic for cancer treatment. Appl. Phys. A 100(1), 273–280 (2010)

    Article  CAS  Google Scholar 

  29. A. Yazdanpanah, F. Moztarzadeh, Synthesis and characterization of Barium-Iron containing magnetic bioactive glasses: the effect of magnetic component on structure and in vitro bioactivity. Colloids Surf., B 176, 27–37 (2019)

    Article  CAS  Google Scholar 

  30. S. Hooshmand, S. Mollazadeh, N. Akrami, M. Ghanad, A. El-Fiqi, F. Baino, S. Nazarnezhad, S. Kargozar, Mesoporous silica nanoparticles and mesoporous bioactive glasses for wound management: from skin regeneration to cancer therapy. Materials 14(12), 3337 (2021)

    Article  CAS  Google Scholar 

  31. A. Hadush Tesfay, Y.-J. Chou, C.-Y. Tan, F. Fufa Bakare, N.-T. Tsou, E.-W. Huang, S.-J. Shih, Control of dopant distribution in yttrium-doped bioactive glass for selective internal radiotherapy applications using spray pyrolysis. Materials 12(6), 986 (2019)

    Article  CAS  Google Scholar 

  32. H.-M. Lin, H.-Y. Lin, M.-H. Chan, Preparation, characterization, and in vitro evaluation of folate-modified mesoporous bioactive glass for targeted anticancer drug carriers. J. Mater. Chem. B 1(44), 6147–6156 (2013)

    Article  CAS  Google Scholar 

  33. Z. Amini, S.S. Rudsary, S.S. Shahraeini, B.F. Dizaji, P. Goleij, A. Bakhtiari, M. Irani, F. Sharifianjazi, Magnetic bioactive glasses/Cisplatin loaded-chitosan (CS)-grafted-poly (ε-caprolactone) nanofibers against bone cancer treatment. Carbohyd. Polym. 258, 117680 (2021)

    Article  CAS  Google Scholar 

  34. L. Polo, N. Gómez-Cerezo, E. Aznar, J.-L. Vivancos, F. Sancenón, D. Arcos, M. Vallet-Regí, R. Martínez-Máñez, Molecular gates in mesoporous bioactive glasses for the treatment of bone tumors and infection. Acta Biomater. 50, 114–126 (2017)

    Article  CAS  Google Scholar 

  35. T. Li, S. Shi, S. Goel, X. Shen, X. Xie, Z. Chen, H. Zhang, S. Li, X. Qin, H. Yang, Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta Biomater. 89, 1–13 (2019)

    Article  CAS  Google Scholar 

  36. M. Manzano, M. Vallet-Regí, Mesoporous silica nanoparticles for drug delivery. Adv. Func. Mater. 30(2), 1902634 (2020)

    Article  CAS  Google Scholar 

  37. S. Basu, B. Basu, Doped biphasic calcium phosphate: synthesis and structure. J. Asian Ceramic Soc. 7(3), 265–283 (2019)

    Article  Google Scholar 

  38. R. Meenambal, S. Kannan, Cosubstitution of lanthanides (Gd3+/Dy3+/Yb3+) in β-Ca3 (PO4) 2 for upconversion luminescence, CT/MRI multimodal imaging. ACS Biomater. Sci. Eng. 4(1), 47–56 (2018)

    Article  CAS  Google Scholar 

  39. F. Chen, P. Huang, Y.-J. Zhu, J. Wu, D.-X. Cui, Multifunctional Eu3+/Gd3+ dual-doped calcium phosphate vesicle-like nanospheres for sustained drug release and imaging. Biomaterials 33(27), 6447–6455 (2012)

    Article  CAS  Google Scholar 

  40. A. Farzin, S. Hassan, R. Emadi, S.A. Etesami, J. Ai, Comparative evaluation of magnetic hyperthermia performance and biocompatibility of magnetite and novel Fe-doped hardystonite nanoparticles for potential bone cancer therapy. Mater. Sci. Eng., C 98, 930–938 (2019)

    Article  CAS  Google Scholar 

  41. B. Srinivasan, E. Kolanthai, N. Eluppai Asthagiri Kumaraswamy, R.R. Jayapalan, D.S. Vavilapalli, L.H. Catalani, G.S. Ningombam, N.S. Khundrakpam, N.R. Singh, S.N. Kalkura, Thermally modified iron-inserted calcium phosphate for magnetic hyperthermia in an acceptable alternating magnetic field. J. Phys. Chem. B 123(26), 5506–5513 (2019)

    Article  CAS  Google Scholar 

  42. S.C. Veerla, J. Kim, H. Sohn, S.Y. Yang, Controlled nanoparticle synthesis of Ag/Fe co-doped hydroxyapatite system for cancer cell treatment. Mater. Sci. Eng., C 98, 311–323 (2019)

    Article  CAS  Google Scholar 

  43. J. Qiao, J. Zhao, Z. Xia, A review on the Eu2+ doped β-Ca3 (PO4) 2-type phosphors and the sites occupancy for photoluminescence tuning. Opt. Mater.: X 1, 100019 (2019)

    CAS  Google Scholar 

  44. L.-H. Fu, Y.-R. Hu, C. Qi, T. He, S. Jiang, C. Jiang, J. He, J. Qu, J. Lin, P. Huang, Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano 13(12), 13985–13994 (2019)

    Article  CAS  Google Scholar 

  45. Z. Lin, Y. Cao, J. Zou, F. Zhu, Y. Gao, X. Zheng, H. Wang, T. Zhang, T. Wu, Improved osteogenesis and angiogenesis of a novel copper ions doped calcium phosphate cement. Mater. Sci. Eng., C 114, 111032 (2020)

    Article  CAS  Google Scholar 

  46. Y. Zhang, Y. Liu, M. Li, S. Lu, J. Wang, The effect of iron incorporation on the in vitro bioactivity and drug release of mesoporous bioactive glasses. Ceram. Int. 39(6), 6591–6598 (2013)

    Article  CAS  Google Scholar 

  47. M. Miola, Y. Pakzad, S. Banijamali, S. Kargozar, C. Vitale-Brovarone, A. Yazdanpanah, O. Bretcanu, A. Ramedani, E. Vernè, M. Mozafari, Glass-ceramics for cancer treatment: so close, or yet so far? Acta Biomater. 83, 55–70 (2019)

    Article  CAS  Google Scholar 

  48. Q. Guan, M. Wang, Core-shell structured theranostics. Nano Life 11(04), 2141004 (2021)

    Article  CAS  Google Scholar 

  49. M. Ma, H. Chen, Y. Chen, X. Wang, F. Chen, X. Cui, J. Shi, Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging. Biomaterials 33(3), 989–998 (2012)

    Article  CAS  Google Scholar 

  50. S. Deepthi, J. Venkatesan, S.-K. Kim, J.D. Bumgardner, R. Jayakumar, An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 93, 1338–1353 (2016)

    Article  CAS  Google Scholar 

  51. A. Ahmad, N. Mubarak, F.T. Jannat, T. Ashfaq, C. Santulli, M. Rizwan, A. Najda, M. Bin-Jumah, M.M. Abdel-Daim, S. Hussain, A critical review on the synthesis of natural sodium alginate based composite materials: an innovative biological polymer for biomedical delivery applications. Processes 9(1), 137 (2021)

    Article  CAS  Google Scholar 

  52. H. Liu, T.J. Webster, Ceramic/polymer nanocomposites with tunable drug delivery capability at specific disease sites. J. Biomed. Mater. Res. Part A 93(3), 1180–1192 (2010)

    Google Scholar 

  53. B. Nie, H. Wang, C. Rao, Y. Zhang, H. Wang, X. Lian, X. Gao, B. Niu, W. Li, Preparation and characterization of sodium alginate/phosphate-stabilized amorphous calcium carbonate nanocarriers and their application in the release of curcumin. Nanotechnology (2021). https://doi.org/10.1088/1361-6528/ac05ea

    Article  Google Scholar 

  54. X. Hao, X. Hu, C. Zhang, S. Chen, Z. Li, X. Yang, H. Liu, G. Jia, D. Liu, K. Ge, Hybrid mesoporous silica-based drug carrier nanostructures with improved degradability by hydroxyapatite. ACS Nano 9(10), 9614–9625 (2015)

    Article  CAS  Google Scholar 

  55. Z. Song, Y. Liu, J. Shi, T. Ma, Z. Zhang, H. Ma, S. Cao, Hydroxyapatite/mesoporous silica coated gold nanorods with improved degradability as a multi-responsive drug delivery platform. Mater. Sci. Eng., C 83, 90–98 (2018)

    Article  CAS  Google Scholar 

  56. Y. Kang, W. Sun, S. Li, M. Li, J. Fan, J. Du, X.J. Liang, X. Peng, Oligo hyaluronan-coated silica/hydroxyapatite degradable nanoparticles for targeted cancer treatment. Adv. Sci. 6(13), 1900716 (2019)

    Article  CAS  Google Scholar 

  57. H.J. Lee, S.E. Kim, I.K. Kwon, C. Park, C. Kim, J. Yang, S.C. Lee, Spatially mineralized self-assembled polymeric nanocarriers with enhanced robustness and controlled drug-releasing property. Chem. Commun. 46(3), 377–379 (2010)

    Article  CAS  Google Scholar 

  58. H.P. Rim, K.H. Min, H.J. Lee, S.Y. Jeong, S.C. Lee, pH-tunable calcium phosphate covered mesoporous silica nanocontainers for intracellular controlled release of guest drugs. Angew. Chem. Int. Ed. 50(38), 8853–8857 (2011)

    Article  CAS  Google Scholar 

  59. S. Pina, J.M. Oliveira, R.L. Reis, Natural-based nanocomposites for bone tissue engineering and regenerative medicine: A review. Adv. Mater. 27(7), 1143–1169 (2015)

    Article  CAS  Google Scholar 

  60. R.J. Wiglusz, B. Pozniak, K. Zawisza, R. Pazik, An up-converting HAP@ β-TCP nanocomposite activated with Er 3+/Yb 3+ ion pairs for bio-related applications. RSC Adv. 5(35), 27610–27622 (2015)

    Article  CAS  Google Scholar 

  61. S.M. Avramescu, I. Fierascu, K. Akhtar, S.B. Khan, F. Ali, A. Asiri, Engineered Nanomaterials: Health and Safety. BoD–Books on Demand (2020)

  62. L. Wang, N.J. Long, L. Li, Y. Lu, M. Li, J. Cao, Y. Zhang, Q. Zhang, S. Xu, Z. Yang, Multi-functional bismuth-doped bioglasses: combining bioactivity and photothermal response for bone tumor treatment and tissue repair. Light Sci. Appl. 7(1), 1–13 (2018)

    Article  CAS  Google Scholar 

  63. X. Liu, Y. Zhang, Y. Wang, W. Zhu, G. Li, X. Ma, Y. Zhang, S. Chen, S. Tiwari, K. Shi, Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics 10(8), 3793 (2020)

    Article  CAS  Google Scholar 

  64. E.A. Périgo, G. Hemery, O. Sandre, D. Ortega, E. Garaio, F. Plazaola, F.J. Teran, Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2(4), 041302 (2015)

    Article  CAS  Google Scholar 

  65. U. Engelmann, E.M. Buhl, M. Baumann, T. Schmitz-Rode, I. Slabu, Agglomeration of magnetic nanoparticles and its effects on magnetic hyperthermia. Curr. Dir. Biomed. Eng. 3(2), 457–460 (2017)

    Article  Google Scholar 

  66. M. Ikenaga, K. Ohura, T. Yamamuro, Y. Kotoura, M. Oka, T. Kokubo, Localized hyperthermic treatment of experimental bone tumors with ferromagnetic ceramics. J. Orthop. Res. 11(6), 849–855 (1993)

    Article  CAS  Google Scholar 

  67. G. Li, S. Feng, D. Zhou, Magnetic bioactive glass ceramic in the system CaO–P 2 O 5–SiO 2–MgO–CaF 2–MnO 2–Fe 2 O 3 for hyperthermia treatment of bone tumor. J. Mater. Sci. - Mater. Med. 22(10), 2197–2206 (2011)

    Article  CAS  Google Scholar 

  68. S.S. Danewalia, K. Singh, Bioactive glasses and glass–ceramics for hyperthermia treatment of cancer: State-of-art, challenges and future perspectives. Mater. Today Bio 10, 100100 (2021)

    Article  CAS  Google Scholar 

  69. X. Yan, C. Yu, X. Zhou, J. Tang, D. Zhao, Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem. Int. Ed. 43(44), 5980–5984 (2004)

    Article  CAS  Google Scholar 

  70. H. Li, X. Wu, B. Yang, J. Li, L. Xu, H. Liu, S. Li, J. Xu, M. Yang, M. Wei, Evaluation of biomimetically synthesized mesoporous silica nanoparticles as drug carriers: Structure, wettability, degradation, biocompatibility and brain distribution. Mater. Sci. Eng., C 94, 453–464 (2019)

    Article  CAS  Google Scholar 

  71. Y. Chen, H. Chen, J. Shi, In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 25(23), 3144–3176 (2013)

    Article  CAS  Google Scholar 

  72. A. Watermann, J. Brieger, Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials 7(7), 189 (2017)

    Article  CAS  Google Scholar 

  73. A. Baeza, M. Vallet-Regí, Mesoporous silica nanoparticles as theranostic antitumoral nanomedicines. Pharmaceutics 12(10), 957 (2020)

    Article  CAS  Google Scholar 

  74. Z. Li, J.C. Barnes, A. Bosoy, J.F. Stoddart, J.I. Zink, Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 41(7), 2590–2605 (2012)

    Article  CAS  Google Scholar 

  75. C. Li, Y. Wang, Y. Du, M. Qian, H. Jiang, J. Wang, N. Murthy, R. Huang, Side effects-avoided theranostics achieved by biodegradable magnetic silica-sealed mesoporous polymer-drug with ultralow leakage. Biomaterials 186, 1–7 (2018)

    Article  CAS  Google Scholar 

  76. Y. Lu, L. Li, Z. Lin, M. Li, X. Hu, Y. Zhang, M. Peng, H. Xia, G. Han, Enhancing osteosarcoma killing and CT imaging using ultrahigh drug loading and NIR-responsive bismuth sulfide@ Mesoporous silica nanoparticles. Adv. Healthcare Mater. 7(19), 1800602 (2018)

    Article  CAS  Google Scholar 

  77. B. Ryplida, G. Lee, I. In, S.Y. Park, Zwitterionic carbon dot-encapsulating pH-responsive mesoporous silica nanoparticles for NIR light-triggered photothermal therapy through pH-controllable release. Biomater. Sci. 7(6), 2600–2610 (2019)

    Article  CAS  Google Scholar 

  78. W. Dong, J. Wen, Y. Li, C. Wang, S. Sun, D. Shang, Targeted antimicrobial peptide delivery in vivo to tumor with near infrared photoactivated mesoporous silica nanoparticles. Int. J. Pharm. 588, 119767 (2020)

    Article  CAS  Google Scholar 

  79. B.K. Poudel, Z.C. Soe, H.B. Ruttala, B. Gupta, T. Ramasamy, R.K. Thapa, M. Gautam, W. Ou, H.T. Nguyen, J.-H. Jeong, In situ fabrication of mesoporous silica-coated silver-gold hollow nanoshell for remotely controllable chemo-photothermal therapy via phase-change molecule as gatekeepers. Int. J. Pharm. 548(1), 92–103 (2018)

    Article  CAS  Google Scholar 

  80. J.H. Park, K.E. Sung, K.H. Kim, J.R. Kim, J. Kim, G.D. Moon, D.C. Hyun, Dual gate-keeping and reversible on-off switching drug release for anti-cancer therapy with pH-and NIR light-responsive mesoporous silica-coated gold nanorods. J. Ind. Eng. Chem. (2021). https://doi.org/10.1016/j.jiec.2021.10.031

    Article  Google Scholar 

  81. A. Samykutty, W.E. Grizzle, B.L. Fouts, M.W. McNally, P. Chuong, A. Thomas, A. Chiba, D. Otali, A. Woloszynska, N. Said, Optoacoustic imaging identifies ovarian cancer using a microenvironment targeted theranostic wormhole mesoporous silica nanoparticle. Biomaterials 182, 114–126 (2018)

    Article  CAS  Google Scholar 

  82. S. Niu, X. Zhang, G.R. Williams, J. Wu, F. Gao, Z. Fu, X. Chen, S. Lu, L.-M. Zhu, Hollow mesoporous silica nanoparticles gated by chitosan-copper sulfide composites as theranostic agents for the treatment of breast cancer. Acta Biomater. 126, 408–420 (2021)

    Article  CAS  Google Scholar 

  83. C. Xu, J. Nam, H. Hong, Y. Xu, J.J. Moon, Positron emission tomography-guided photodynamic therapy with biodegradable mesoporous silica nanoparticles for personalized cancer immunotherapy. ACS Nano 13(10), 12148–12161 (2019)

    Article  CAS  Google Scholar 

  84. J. Montoya Mira, L. Wu, S. Sabuncu, A. Sapre, F. Civitci, S. Ibsen, S. Esener, A. Yildirim, Gas-Stabilizing Sub-100 nm Mesoporous Silica Nanoparticles for Ultrasound Theranostics. ACS Omega 5(38), 24762–24772 (2020)

    Article  CAS  Google Scholar 

  85. Y.-J. Ho, C.-H. Wu, Q.-F. Jin, C.-Y. Lin, P.-H. Chiang, N. Wu, C.-H. Fan, C.-M. Yang, C.-K. Yeh, Superhydrophobic drug-loaded mesoporous silica nanoparticles capped with β-cyclodextrin for ultrasound image-guided combined antivascular and chemo-sonodynamic therapy. Biomaterials 232, 119723 (2020)

    Article  CAS  Google Scholar 

  86. W. Zhang, C.-C. Zhang, X.-Y. Wang, L. Li, Q.-Q. Chen, W.-W. Liu, Y. Cao, H.-T. Ran, Light-responsive core–shell nanoplatform for bimodal imaging-guided photothermal therapy-primed cancer immunotherapy. ACS Appl. Mater. Interfaces. 12(43), 48420–48431 (2020)

    Article  CAS  Google Scholar 

  87. X. Guo, M. Zhu, P. Yuan, T. Liu, R. Tian, Y. Bai, Y. Zhang, X. Chen, The facile formation of hierarchical mesoporous silica nanocarriers for tumor-selective multimodal theranostics. Biomater. Sci. 9(15), 5237–5246 (2021)

    Article  CAS  Google Scholar 

  88. D. Wang, H. Lin, G. Zhang, Y. Si, H. Yang, G. Bai, C. Yang, K. Zhong, D. Cai, Z. Wu, Effective pH-activated theranostic platform for synchronous magnetic resonance imaging diagnosis and chemotherapy. ACS Appl. Mater. Interfaces. 10(37), 31114–31123 (2018)

    Article  CAS  Google Scholar 

  89. Z. Wang, Z. Chang, M. Lu, D. Shao, J. Yue, D. Yang, X. Zheng, M. Li, K. He, M. Zhang, Shape-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma. Biomaterials 154, 147–157 (2018)

    Article  CAS  Google Scholar 

  90. K. He, J. Li, Y. Shen, Y. Yu, pH-Responsive polyelectrolyte coated gadolinium oxide-doped mesoporous silica nanoparticles (Gd 2 O 3@ MSNs) for synergistic drug delivery and magnetic resonance imaging enhancement. J. Mater. Chem. B 7(43), 6840–6854 (2019)

    Article  CAS  Google Scholar 

  91. R.K. Das, A. Pramanik, M. Majhi, S. Mohapatra, Magnetic mesoporous silica gated with doped carbon dot for site-specific drug delivery, fluorescence, and MR imaging. Langmuir 34(18), 5253–5262 (2018)

    Article  CAS  Google Scholar 

  92. J. Shen, H. Liu, C. Mu, J. Wolfram, W. Zhang, H.-C. Kim, G. Zhu, Z. Hu, L.-N. Ji, X. Liu, Multi-step encapsulation of chemotherapy and gene silencing agents in functionalized mesoporous silica nanoparticles. Nanoscale 9(16), 5329–5341 (2017)

    Article  CAS  Google Scholar 

  93. H. Yang, Y. Chen, Z. Chen, Y. Geng, X. Xie, X. Shen, T. Li, S. Li, C. Wu, Y. Liu, Chemo-photodynamic combined gene therapy and dual-modal cancer imaging achieved by pH-responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites. Biomater. Sci. 5(5), 1001–1013 (2017)

    Article  CAS  Google Scholar 

  94. Q. Sun, Q. You, J. Wang, L. Liu, Y. Wang, Y. Song, Y. Cheng, S. Wang, F. Tan, N. Li, Theranostic nanoplatform: triple-modal imaging-guided synergistic cancer therapy based on liposome-conjugated mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces. 10(2), 1963–1975 (2018)

    Article  CAS  Google Scholar 

  95. H. Guo, S. Yi, K. Feng, Y. Xia, X. Qu, F. Wan, L. Chen, C. Zhang, In situ formation of metal organic framework onto gold nanorods/mesoporous silica with functional integration for targeted theranostics. Chem. Eng. J. 403, 126432 (2021)

    Article  CAS  Google Scholar 

  96. Z.-M. Chang, Z. Wang, D. Shao, J. Yue, H. Xing, L. Li, M. Ge, M. Li, H. Yan, H. Hu, Shape engineering boosts magnetic mesoporous silica nanoparticle-based isolation and detection of circulating tumor cells. ACS Appl. Mater. Interfaces. 10(13), 10656–10663 (2018)

    Article  CAS  Google Scholar 

  97. J. Fan, S. Wang, W. Sun, S. Guo, Y. Kang, J. Du, X. Peng, Anticancer drug delivery systems based on inorganic nanocarriers with fluorescent tracers. AIChE J. 64(3), 835–859 (2018)

    Article  CAS  Google Scholar 

  98. R.K. Singh, T.-H. Kim, K.D. Patel, J.-J. Kim, H.-W. Kim, Development of biocompatible apatite nanorod-based drug-delivery system with in situ fluorescence imaging capacity. J. Mater. Chem. B 2(14), 2039–2050 (2014)

    Article  CAS  Google Scholar 

  99. R.K. Singh, T.H. Kim, K.D. Patel, C. Mahapatra, K. Dashnyam, M.S. Kang, H.W. Kim, Novel hybrid nanorod carriers of fluorescent hydroxyapatite shelled with mesoporous silica effective for drug delivery and cell imaging. J. Am. Ceram. Soc. 97(10), 3071–3076 (2014)

    Article  CAS  Google Scholar 

  100. H. Wang, S. Li, L. Zhang, X. Chen, T. Wang, M. Zhang, L. Li, C. Wang, Tunable fabrication of folic acid-Au@ poly (acrylic acid)/mesoporous calcium phosphate Janus nanoparticles for CT imaging and active-targeted chemotherapy of cancer cells. Nanoscale 9(38), 14322–14326 (2017)

    Article  CAS  Google Scholar 

  101. A. Ashokan, G.S. Gowd, V.H. Somasundaram, A. Bhupathi, R. Peethambaran, A. Unni, S. Palaniswamy, S.V. Nair, M. Koyakutty, Multifunctional calcium phosphate nano-contrast agent for combined nuclear, magnetic and near-infrared in vivo imaging. Biomaterials 34(29), 7143–7157 (2013)

    Article  CAS  Google Scholar 

  102. S. Mondal, P. Manivasagan, S. Bharathiraja, M. Santha Moorthy, V.T. Nguyen, H.H. Kim, S.Y. Nam, K.D. Lee, J. Oh, Hydroxyapatite coated iron oxide nanoparticles: a promising nanomaterial for magnetic hyperthermia cancer treatment. Nanomaterials 7(12), 426 (2017)

    Article  CAS  Google Scholar 

  103. T.P. Ribeiro, F.J. Monteiro, M.S. Laranjeira, Duality of iron (III) doped nano hydroxyapatite in triple negative breast cancer monitoring and as a drug-free therapeutic agent. Ceram. Int. 46(10), 16590–16597 (2020)

    Article  CAS  Google Scholar 

  104. M. Sneha, N.M. Sundaram, Preparation and characterization of an iron oxide-hydroxyapatite nanocomposite for potential bone cancer therapy. Int. J. Nanomed. 10(Suppl 1), 99 (2015)

    CAS  Google Scholar 

  105. Z. Tang, Y. Zhou, H. Sun, D. Li, S. Zhou, Biodegradable magnetic calcium phosphate nanoformulation for cancer therapy. Eur. J. Pharm. Biopharm. 87(1), 90–100 (2014)

    Article  CAS  Google Scholar 

  106. R. Khalifehzadeh, H. Arami, Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv. Coll. Interface. Sci. 279, 102157 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Q. Guan thanks The University of Hong Kong (HKU) for awarding her with a PhD scholarship for conducting research on developing new theranostics at HKU. Micrographs used in several figures in this article came from Q. Guan’s PhD research at HKU. The research on theranostics in M. Wang’s group was supported by grants from HKU and from the Research Grants Council (RGC) of Hong Kong, as well as by a donor in Hong Kong through her generous donation to support M. Wang’s research in biomaterials and tissue engineering. Assistance provided by members of M. Wang’s research group at HKU and by technical staff in HKU’s Electron Microscopy Unit and Department of Mechanical Engineering is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

QG and MW: research and design of the review; QG and BH: research and drafting of the manuscript; JH, HHL and MW: writing, reviewing and editing.

Corresponding author

Correspondence to Min Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Q., He, B., Huang, J. et al. Hybrid ceramics-based cancer theranostics. J. Korean Ceram. Soc. 59, 401–426 (2022). https://doi.org/10.1007/s43207-022-00217-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00217-w

Keywords

Navigation