Skip to main content
Log in

Defect chemistry of p-type perovskite oxide La0.2Sr0.8FeO3-δ: a combined experimental and computational study

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

In this study, the mass and charge transport properties of La0.2Sr0.8FeO3-δ have been investigated by deploying defect chemical analysis. From the thermo-gravimetric analysis and DC 4-probe method, oxygen non-stoichiometry (δ) and total electrical conductivity (σ) were examined as functions of temperature (750 < T/°C < 900) and partial pressure of oxygen (10–20 < Po2 /atm < 0.21). The standard enthalpy and entropy changes of reactions and the defect concentrations were calculated from the defect chemical relation. Relative partial molar quantities of mixing of component oxygen were also calculated from both Gibbs–Helmholtz relation and the statistical thermodynamic model. The semiconductor-like conducting behavior due to the localized electrons/holes was observed as with the variation of δ. Electron/hole mobility and oxygen ion partial conductivity were also quantitatively extracted based on the defect structure. Furthermore, first-principles density functional theory (DFT) calculations predict oxidation in Po2 regime Po2 > 10–15–10–12 atm (750–900 °C) can release extra holes and eventually increase electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.S. Yoo, Y. Namgung, A. Bhardwaj, S.J. Song, A facile combustion synthesis route for performance enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) as a robust cathode material for IT-SOFC. J. Korean Ceram. Soc. 56, 497–505 (2019). https://doi.org/10.4191/kcers.2019.56.5.05

    Article  CAS  Google Scholar 

  2. T. Ishihara, Nanomaterials for advanced electrode of low temperature solid oxide fuel cells (SOFCs). J. Korean Ceram. Soc. 53, 469–477 (2016). https://doi.org/10.4191/kcers.2016.53.5.469

    Article  CAS  Google Scholar 

  3. E. Deronzier, T. Chartier, P.M. Geffroy, Symmetric and asymmetric membranes based on La0.5Sr0.5Fe0.7Ga0.3O3-δ perovskite with high oxygen semipermeation flux performances and identification of the rate-determining step of oxygen transport. J. Eur. Ceram. Soc. 41, 6596–6605 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.05.060

    Article  CAS  Google Scholar 

  4. D.K. Lim, H.N. Im, B. Singh, C.J. Park, S.J. Song, Electrochemical hydrogen charge and discharge properties of La 0.1Sr0.9Co1-yFeyO 3-δ (y = 0, 0.2, 1) electrodes in alkaline electrolyte solution. Electrochim. Acta. 102, 393–399 (2013). https://doi.org/10.1016/j.electacta.2013.03.196

    Article  CAS  Google Scholar 

  5. P.M. Bulemo, I.D. Kim, Recent advances in ABO3 perovskites: their gas-sensing performance as resistive-type gas sensors. J. Korean Ceram. Soc. 57, 24–39 (2020). https://doi.org/10.1007/s43207-019-00003-1

    Article  CAS  Google Scholar 

  6. J. Mizusaki, M. Yoshihiro, S. Yamauchi, K. Fueki, Nonstoichiometry and defect structure of the perovskite-type oxides La1-xSrxFeO3-°. J. Solid State Chem. 58, 257–266 (1985). https://doi.org/10.1016/0022-4596(85)90243-9

    Article  CAS  Google Scholar 

  7. H. Bae, I.H. Kim, B. Singh, A. Bhardwaj, S.J. Song, Defect chemistry of highly defective La0.1Sr0.9Co0.8Fe0.2O3−δ by considering oxygen interstitials: Effect of hole degeneracy. Solid State Ionics 347, 3 (2020). https://doi.org/10.1016/j.ssi.2020.115251

    Article  CAS  Google Scholar 

  8. K.J. Lee, J.H. Chung, M.J. Lee, H.J. Hwang, Chromium poisoning of neodymium nickelate (Nd2NiO4) cathodes for solid oxide fuel cells. J. Korean Ceram. Soc. 56, 160–166 (2019). https://doi.org/10.4191/kcers.2019.56.2.07

    Article  CAS  Google Scholar 

  9. S. Jiang, J. Sunarso, W. Zhou, J. Shen, R. Ran, Z. Shao, Cobalt-free SrNbxFe1−xO3−δ (x = 0.05, 0.1 and 0.2) perovskite cathodes for intermediate temperature solid oxide fuel cells. J. Power Sources. 298, 209–216 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.063

    Article  CAS  Google Scholar 

  10. M. Li, M. Zheng, B. Hu, Y. Zhang, C. Xia, Improving electrochemical performance of lanthanum strontium ferrite by decorating instead of doping cobaltite. Electrochim. Acta. 230, 196–203 (2017). https://doi.org/10.1016/j.electacta.2017.02.014

    Article  CAS  Google Scholar 

  11. Y. Lu, H. Zhao, K. Li, X. Du, Y. Ma, X. Chang, N. Chen, K. Zheng, K. Świerczek, Effective calcium doping at the B-site of BaFeO3-: δ perovskite: towards low-cost and high-performance oxygen permeation membranes. J. Mater. Chem. A. 5, 7999–8009 (2017). https://doi.org/10.1039/c7ta00907k

    Article  CAS  Google Scholar 

  12. J.S. Yoon, Y.J. Choe, H.J. Hwang, Fabrication of LaySr1-yFexTi1-xO 3-based nanocomposite solid oxide fuel cell anodes by infiltration. J. Korean Ceram. Soc. 51, 224–230 (2014). https://doi.org/10.4191/kcers.2014.51.3.224

    Article  CAS  Google Scholar 

  13. V.V. Kharton, A.V. Kovalevsky, M.V. Patrakeev, E.V. Tsipis, A.P. Viskup, V.A. Kolotygin, A.A. Yaremchenko, A.L. Shaula, E.A. Kiselev, J.C. Waerenborgh, Oxygen Nonstoichiometry, mixed conductivity, and mössbauer spectra of Ln 0.5 A 0.5 FeO 3−δ (Ln = La−Sm, A = Sr, Ba): effects of cation size. Chem. Mater. 20, 6457–6467 (2008). https://doi.org/10.1021/cm801569j

    Article  CAS  Google Scholar 

  14. H. Wang, C. Tablet, A. Feldhoff, J. Caro, A cobalt-free oxygen-permeable membrane based on the perovskite-type oxide Ba0.5Sr0.5Zn0.2Fe0.8O3-δ. Adv. Mater. 17, 1785–1788 (2005). https://doi.org/10.1002/adma.200401608

    Article  CAS  Google Scholar 

  15. B. Bulfin, L. Buttsworth, A. Lidor, A. Steinfeld, High-purity nitrogen production from air by pressure swing adsorption combined with SrFeO3 redox chemical looping. Chem. Eng. J. 421, 127734 (2021). https://doi.org/10.1016/j.cej.2020.127734

    Article  CAS  Google Scholar 

  16. Y. Zheng, E.J. Marek, S.A. Scott, H2 production from a plasma-assisted chemical looping system from the partial oxidation of CH4 at mild temperatures. Chem. Eng. J. 379, 122197 (2020). https://doi.org/10.1016/j.cej.2019.122197

    Article  CAS  Google Scholar 

  17. E.J. Marek, García-Calvo Conde, Effect of catalyst preparation and storage on chemical looping epoxidation of ethylene. Chem. Eng. J. 417, 127981 (2021). https://doi.org/10.1016/j.cej.2020.127981

    Article  CAS  Google Scholar 

  18. V. Celorrio, K. Bradley, O.J. Weber, S.R. Hall, D.J. Fermín, Photoelectrochemical properties of LaFeO3 nanoparticles. ChemElectroChem 1, 1667–1671 (2014). https://doi.org/10.1002/celc.201402192

    Article  CAS  Google Scholar 

  19. J.D. Nicholas, Hoghlights from the 2013 national science foundation solid oxide fuel cell promise, progress, and priorities (SOFC-PPP) workshop. Electrochem. Soc. Interface. 22(2013), 49–54 (2013). https://doi.org/10.1149/2.F04134if

    Article  CAS  Google Scholar 

  20. F.S. Baumann, J. Fleig, G. Cristiani, B. Stuhlhofer, H.-U. Habermeier, J. Maier, Quantitative comparison of mixed conducting SOFC cathode materials by means of thin film model electrodes. J. Electrochem. Soc. 154, B931 (2007). https://doi.org/10.1149/1.2752974

    Article  CAS  Google Scholar 

  21. G. Dong, H. Fan, H. Tian, J. Fang, Q. Li, Gas-sensing and electrical properties of perovskite structure p-type barium-substituted bismuth ferrite. RSC Adv. 5, 29618–29623 (2015). https://doi.org/10.1039/c5ra01869b

    Article  Google Scholar 

  22. H. Lu, J. Tong, Z. Deng, Y. Cong, W. Yang, Crystal structure, oxygen permeability and stability of Ba 0.5Sr0.5Co0.8Fe0.1M 0.1O3-δ (M = Fe, Cr, Mn, Zr) oxygen-permeable membranes. Mater. Res. Bull. 41, 683–689 (2006). https://doi.org/10.1016/j.materresbull.2005.10.017

    Article  CAS  Google Scholar 

  23. J. Hombo, Y. Matsumoto, T. Kawano, Electrical conductivities of SrFeO3−δ and BaFeO3−δ perovskites. J. Solid State Chem. 84, 138–143 (1990). https://doi.org/10.1016/0022-4596(90)90192-Z

    Article  CAS  Google Scholar 

  24. V.V. Vashuk, L.V. Kokhanovskii, I.I. Yushkevich, Electrical conductivity and oxygen nonstoichiometry of SrCo0.25Fe0.75O3. Inorg. Mater. 36, 1239–1245 (2000)

    Article  Google Scholar 

  25. T. Das, J.D. Nicholas, Y. Qi, Long-range charge transfer and oxygen vacancy interactions in strontium ferrite. J. Mater. Chem. A. 5, 4493–4506 (2017). https://doi.org/10.1039/c6ta10357j

    Article  CAS  Google Scholar 

  26. Y. Takeda, K. Kanno, T. Takada, O. Yamamoto, M. Takano, N. Nakayama, Y. Bando, Phase relation in the oxygen nonstoichiometric system, SrFeOx (2.5 ≤ x ≤ 3.0). J. Solid State Chem. 63, 237–249 (1986). https://doi.org/10.1016/0022-4596(86)90174-X

    Article  CAS  Google Scholar 

  27. J.P. Hodges, S. Short, J.D. Jorgensen, X. Xiong, B. Dabrowski, S.M. Mini, C.W. Kimball, Evolution of oxygen-vacancy ordered crystal structures in the perovskite series Sr(n)Fe(n)O(3n–1) (n = 2, 4, 8, and ∞), and the relationship to electronic and magnetic properties. J. Solid State Chem. 151, 190–209 (2000). https://doi.org/10.1006/jssc.1999.8640

    Article  CAS  Google Scholar 

  28. T. Das, J.D. Nicholas, Y. Qi, Composition, crystallography, and oxygen vacancy ordering impacts on the oxygen ion conductivity of lanthanum strontium ferrite. Phys. Chem. Chem. Phys. 22, 9723–9733 (2020). https://doi.org/10.1039/d0cp00206b

    Article  CAS  Google Scholar 

  29. T. Das, J.D. Nicholas, Y. Qi, Polaron size and shape effects on oxygen vacancy interactions in lanthanum strontium ferrite. J. Mater. Chem. A. 5, 25031–25043 (2017). https://doi.org/10.1039/c7ta06948k

    Article  CAS  Google Scholar 

  30. M.B. Choi, S.Y. Jeon, H.N. Im, S.J. Song, Thermodynamic quantities and oxygen nonstoichiometry of undoped BaTiO 3-δ by thermogravimetric analysis. J. Alloys Compd. 513, 487–494 (2012). https://doi.org/10.1016/j.jallcom.2011.10.096

    Article  CAS  Google Scholar 

  31. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B. 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  32. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter Mater. Phys. 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  33. S. Dudarev, G. Botton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B Condens. Matter Mater. Phys. 57, 1505–1509 (1998). https://doi.org/10.1103/PhysRevB.57.1505

    Article  CAS  Google Scholar 

  34. Z. Yang, Z. Huang, L. Ye, X. Xie, Influence of parameters u and j in the lsda+u method on electronic structure of the perovskites (formula presented). Phys Rev. B Condens. Matter Mater. Phys. 60, 15674–15682 (1999). https://doi.org/10.1103/PhysRevB.60.15674

    Article  CAS  Google Scholar 

  35. I.R. Shein, K.I. Shein, V.L. Kozhevnikov, A.L. Ivanovskiǐ, Band structure and the magnetic and elastic properties of SrFeO3 and LaFeO3 perovskites. Phys. Solid State. 47, 2082–2088 (2005). https://doi.org/10.1134/1.2131149

    Article  CAS  Google Scholar 

  36. A.M. Ritzmann, A.B. Muñoz-García, M. Pavone, J.A. Keith, E.A. Carter, Ab Initio DFT+U analysis of oxygen vacancy formation and migration in La1-xSrxFeO3-δ (x = 0, 0.25, 0.50). Chem. Mater. 25, 3011–3019 (2013). https://doi.org/10.1021/cm401052w

    Article  CAS  Google Scholar 

  37. M. Kuhn, S. Hashimoto, K. Sato, K. Yashiro, J. Mizusaki, Oxygen nonstoichiometry, thermo-chemical stability and lattice expansion of La0.6Sr0.4FeO3-δ. Solid State Ionics 195, 7–15 (2011). https://doi.org/10.1016/j.ssi.2011.05.013

    Article  CAS  Google Scholar 

  38. Ø.F. Lohne, T.N. Phung, T. Grande, H.J.M. Bouwmeester, P.V. Hendriksen, M. Søgaard, K. Wiik, Oxygen non-stoichiometry and electrical conductivity of La 02 Sr 0.8 Fe 0.8 B 0.2 O 3 − δ, B = Fe, Ti, Ta. J. Electrochem. Soc. 161, F176–F184 (2014). https://doi.org/10.1149/2.001403jes

    Article  CAS  Google Scholar 

  39. O.V. Merkulov, R.R. Samigullin, A.A. Markov, I.A. Leonidov, M.V. Patrakeev, Defect chemistry and high-temperature transport in SrFe1−xSnxO3–δ. J. Solid State Chem. 243, 190–197 (2016). https://doi.org/10.1016/j.jssc.2016.08.023

    Article  CAS  Google Scholar 

  40. J. Yoo, C.Y. Yoo, J.H. Yu, A.J. Jacobson, Determination of oxygen nonstoichiometry in SrFeO3−δ by solid-state coulometric titration. J. Am. Ceram. Soc. 100, 2690–2699 (2017). https://doi.org/10.1111/jace.14755

    Article  CAS  Google Scholar 

  41. H. Bae, B. Singh, I.-H. Kim, H.-N. Im, S.-J. Song, Thermodynamic quantities and defect chemical properties of La 0.8 Sr 0.2 FeO 3-δ. J. Electrochem. Soc. 165, F641–F651 (2018). https://doi.org/10.1149/2.0771809jes

    Article  CAS  Google Scholar 

  42. H. Bae, J. Hong, B. Singh, A.K. Srivastava, J.H. Joo, S.-J. Song, Investigations on defect equilibrium, thermodynamic quantities, and transport properties of La 0.5 Sr 0.5 FeO 3-δ. J. Electrochem. Soc. 166, F180–F189 (2019). https://doi.org/10.1149/2.0311904jes

    Article  CAS  Google Scholar 

  43. H. Bae, B. Singh, L. Mathur, J.H. Joo, S.-J. Song, Defect structure, transport properties, and chemical expansion in Ba 095 La 005 FeO 3– δ. J. Electrochem. Soc. 168, 034511 (2021). https://doi.org/10.1149/1945-7111/abeaed

    Article  CAS  Google Scholar 

  44. H.I. Yoo, H. Schmalzried, H. Martin, J. Janek, Cross effect between electronic and ionic flows in semiconducting transition metal oxides. Zeitschrift Fur Phys Chemie. 168, 129–142 (1990). https://doi.org/10.1524/zpch.1990.168.Part_2.129

    Article  CAS  Google Scholar 

  45. H.I. Yoo, C.R. Song, D.K. Lee, BaTiO3-δ: Defect structure, electrical conductivity, chemical diffusivity, thermoelectric power, and oxygen nonstoichiometry. J. Electroceram. 8, 5–36 (2002). https://doi.org/10.1023/A:1015570717935

    Article  CAS  Google Scholar 

  46. H.-I. Yoo, Defect structure, nonstoichiometry and nonstoichiometry relaxation of complex oxides. J. Korean Ceram. Soc. 44, 2 (2007)

    Article  Google Scholar 

  47. J. Mizusaki, M. Okayasu, S. Yamauchi, K. Fuekio, Nonstoichiometry and phase relationship of the SFeO2.5-SrFeO3 system at high temperature. J. Solid State Chem. 99, 166–172 (1992)

    Article  CAS  Google Scholar 

  48. J. Yoo, C.Y. Park, A.J. Jacobson, Determination of the equilibrium oxygen non-stoichiometry and the electrical conductivity of La0.5Sr0.5FeO3-x. Solid State Ionics 175, 55–58 (2004). https://doi.org/10.1016/j.ssi.2004.09.026

    Article  CAS  Google Scholar 

  49. J. Cheng, A. Navrotsky, X.D. Zhou, H.U. Anderson, Thermochemistry of La 1-Sr xFeO 3-δ solid solutions (0.0 ≤ x ≤ 1.0, 0.0 ≤ δ ≤ 0.5). Chem. Mater. 17, 2197–2207 (2005). https://doi.org/10.1021/cm048613o

    Article  CAS  Google Scholar 

  50. J. Mizusaki, M. Yoshihiro, S. Yamauchi, K. Fueki, Thermodynamic quantities and defect equilibrium in the perovskite-type oxide solid solution La1-xSrxFeO3-δ. J. Solid State Chem. 67, 1–8 (1987). https://doi.org/10.1016/0022-4596(87)90331-8

    Article  CAS  Google Scholar 

  51. Y. Shin, K.Y. Doh, S.H. Kim, J.H. Lee, H. Bae, S.J. Song, D. Lee, Effect of oxygen vacancies on electrical conductivity of La0.5Sr0.5FeO3-: δ from first-principles calculations. J. Mater. Chem. A. 8, 4784–4789 (2020). https://doi.org/10.1039/c9ta12734h

    Article  CAS  Google Scholar 

  52. M.V. Patrakeev, J.A. Bahteeva, E.B. Mitberg, I.A. Leonidov, V.L. Kozhevnikov, K.R. Poeppelmeier, Electron/hole and ion transport in La1-xSrxFeO3-δ. J. Solid State Chem. 172, 219–231 (2003). https://doi.org/10.1016/S0022-4596(03)00040-9

    Article  CAS  Google Scholar 

  53. M.C. Kim, S. Park, H. Haneda, J. Tanaka, S. Shirasaki, High temperature electrical conductivity of La1-xSrxFeO3−δ (x>0.5). Solid State Ionics 40–41, 239–243 (1990)

    Google Scholar 

  54. M. Søgaard, P. Vang Hendriksen, M. Mogensen, Oxygen nonstoichiometry and transport properties of strontium substituted lanthanum ferrite. J. Solid State Chem. 180, 1489–1503 (2007). https://doi.org/10.1016/j.jssc.2007.02.012

    Article  CAS  Google Scholar 

  55. I. Wærnhus, T. Grande, K. Wiik, Surface exchange of oxygen in La1-xSrxFeO3-δ (x = 0, 0.1). Top. Catal. 54, 1009–1015 (2011). https://doi.org/10.1007/s11244-011-9712-z

    Article  CAS  Google Scholar 

  56. E.V. Tsipis, M.V. Patrakeev, V.V. Kharton, A.A. Yaremchenko, G.C. Mather, A.L. Shaula, I.A. Leonidov, V.L. Kozhevnikov, J.R. Frade, Transport properties and thermal expansion of Ti-substituted La 1-xSrxFeO3-δ (x = 0.5–0.7). Solid State Sci. 7, 355–365 (2005). https://doi.org/10.1016/j.solidstatesciences.2005.01.001

    Article  CAS  Google Scholar 

  57. J. Mizusaki, T. Sasamoto, W.R. Cannon, H.K. Bowen, Electronic conductivity, seebeck coefficient, and defect structure of LaFeO3. J. Am. Ceram. Soc. 65, 363–368 (1982). https://doi.org/10.1111/j.1151-2916.1982.tb10485.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF) grant funded by the Korea government (Ministry of Science and ICT) (NRF-2017M1A2A2044927) and Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20213030040110).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donghwa Lee or Sun-Ju Song.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 502 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, H., Shin, Y., Mathur, L. et al. Defect chemistry of p-type perovskite oxide La0.2Sr0.8FeO3-δ: a combined experimental and computational study. J. Korean Ceram. Soc. 59, 876–888 (2022). https://doi.org/10.1007/s43207-022-00237-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00237-6

Keywords

Navigation