Skip to main content
Log in

Cr-doped BiYO3 photocatalyst for degradation of oxytetracycline under visible light irradiation

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Chromium-doped BiYO3 powders were synthesized by the Pechini method at low temperature between 400 and 800 °C for 1 h. From the XRD results it was observed the coexistence between tetragonal and cubic phases for samples calcined at 400 °C for 1 h. Meanwhile, for samples calcined at 600 and 800 °C, a single cubic phase was observed. The powders consisted of agglomerates of nanocrystals as shown in the SEM and TEM images. The specific surface area was in the order of 3.01–7.74 m2 g−1, obtained from BET analysis. The band gap of BiYO3 and Cr-doped BiYO3 was < 2.21 eV which corroborates that these materials absorb light in the visible region of the electromagnetic spectrum. The photocatalytic decomposition of oxytetracycline was successfully achieved using Cr-doped BiYO3, where the best performance was obtained with BiY0.98Cr0.02O3 ceramic powders calcined at 800 °C for 1 h. For this composition the removal of oxytetracycline after 240 min of visible light irradiation was 100% of degradation and 75% of mineralization. The photocatalytic process was driven by the photo-holes, as a negligible production of ·OH radicals was observed in tests using scavengers. The photocatalytic activity of the BiY0.995Cr0.005O3 and BiY0.98Cr0.02O3 materials was corroborated under more realistic conditions, using tap water and trace concentration of the antibiotic. The high stability of the photocatalyst was observed through four consecutive reaction cycles. The results demonstrate that the Cr-doping has clearly improved the catalytic performance of BiYO3 for degradation of oxytetracycline under visible light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L. Coyne, R. Arief, C. Benigno, V.N. Giang, L.Q. Huong, S. Jeamsripong, W. Kalpravidh, J. McGrane, P. Padungtod, I. Patrick, L. Schoonman, E. Setyawan, A.H. Sukarno, J. Srisamran, P.T. Ngoc, J. Rushton, Characterizing antimicrobial use in the livestock sector in three south east Asian countries (Indonesia, Thailand, and Vietnam). Antibiotics 8(1), 33 (2019)

    Article  Google Scholar 

  2. N. Kemper, Veterinary antibiotics in the aquatic and terrestrial environment. Ecol. Indic. 8(1), 1–13 (2008)

    Article  CAS  Google Scholar 

  3. A.J. Baguer, J. Jensen, P.H. Krogh, Effects of the antibiotics oxytetracycline and tylosin on soil fauna. Chemosphere 40(7), 751–757 (2000)

    Article  CAS  Google Scholar 

  4. H. Dong, X. Yuan, W. Wang, Z. Qiang, Occurrence and removal of antibiotics in ecological and conventional wastewater treatment processes: A field study. J. Environ. Manag. 178, 11–19 (2016)

    Article  CAS  Google Scholar 

  5. A. Visca, J. Rauseo, F. Spataro, L. Patrolecco, P. Grenni, G. Massini, V.M. Miritana, A.B. Caracciolo, Antibiotics and antibiotic resistance genes in anaerobic digesters and predicted concentrations in agroecosystems. J. Environ. Manage. 301, 113891 (2022)

    Article  CAS  Google Scholar 

  6. S. Manzetti, R. Ghisi, The environmental release and fate of antibiotics. Mar. Pollut. Bull. 79(1–2), 7–15 (2014)

    Article  CAS  Google Scholar 

  7. X. Van Doorslaer, J. Dewulf, H. Van Langenhove, K. Demeestere, Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. Sci. Total Environ. 500–501, 250–269 (2014)

    Article  Google Scholar 

  8. A.J. Watkinson, E.J. Murby, S.D. Costanzo, Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Res. 41(18), 4164–4176 (2007)

    Article  CAS  Google Scholar 

  9. A. Fiaz, D. Zhu, J. Sun, Environmental fate of tetracycline antibiotics : degradation pathway mechanisms, challenges, and perspectives. Environ. Sci. Eur. 33, 64 (2021)

    Article  CAS  Google Scholar 

  10. R. Anjali, S. Shanthakumar, Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes. J. Environ. Manag. 246, 51–62 (2019)

    Article  CAS  Google Scholar 

  11. A.N. Soon, B.H. Hameed, Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination 269, 1–16 (2011)

    Article  CAS  Google Scholar 

  12. S. Li, J. Hu, Photolytic and photocatalytic degradation of tetracycline: Effect of humic acid on degradation kinetics and mechanisms. J. Hazard. Mater. 318, 134–144 (2016)

    Article  CAS  Google Scholar 

  13. L. Hu, P.M. Flanders, P.L. Miller, T.J. Strathmann, Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis. Water Res. 41(12), 2612–2626 (2007)

    Article  CAS  Google Scholar 

  14. D. Li, W. Shi, Recent developments in visible-light photocatalytic degradation of antibiotics. Chin. J. Catal. 37(6), 792–799 (2016)

    Article  CAS  Google Scholar 

  15. M.N. Abellán, B. Bayarri, J. Giménez, J. Costa, Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl. Catal. B Environ. 74(3–4), 233–241 (2007)

    Article  Google Scholar 

  16. E. Michalova, P. Novotna, J. Schlegelova, Tetracyclines in veterinary medicine and bacterial resistance to them. Vet. Med.-Czech 49(3), 79–100 (2004)

    Article  CAS  Google Scholar 

  17. L.M. Pereira, G. Luca, N.L.M. Abichabki, J.C.V. Brochi, L. Baroni, P.G. Abreu-Filho, Atovaquone, chloroquine, primaquine, quinine and tetracycline: Antiproliferative effects of relevant antimalarials on Neospora caninum. Braz J Vet Parasitol. 30(1), e022120 (2021)

    Article  CAS  Google Scholar 

  18. S. Schwarz, C. Kehrenberg, T.R. Walsh, Use of antimicrobial agents in veterinary medicine and food animal production. Int. J. Antimicrob. Ag. 17(6), 431–437 (2001)

    Article  CAS  Google Scholar 

  19. S.A. Mcewen, P.J. Fedorka-cray, Antimicrobial use and resistance in animals. Clin. Infect. Dis. 34(s3), s93–s106 (2002)

    Article  CAS  Google Scholar 

  20. S. Li, W. Shi, W. Liu, H. Li, W. Zhang, J. Hu, Y. Ke, W. Sun, J. Ni, A duodecennial national synthesis of antibiotics in China’s major rivers and seas (2005–2016). Sci. Total Environ. 615, 906–917 (2018)

    Article  CAS  Google Scholar 

  21. L. Lu, J. Liu, Z. Li, Z. Liu, J. Guo, Y. Xiao, J. Yang, Occurrence and distribution of tetracycline antibiotics and resistance genes in longshore sediments of the three gorges reservoir, China. Front. Microbiol. 9, 1–12 (2018)

    Article  Google Scholar 

  22. J. Jiang, Y. Jia, Y. Wnag, R. Chong, L. Xu, X. Liu, Insight into efficient photocatalytic elimination of tetracycline over SrTiO3(La, Cr)under visible-light irradiation: The relationship of doping and performance. Appl. Surf. Sci. 486, 93–101 (2019)

    Article  CAS  Google Scholar 

  23. Z. Xue, T. Wang, B. Chen, T. Malkoske, S. Yu, Y. Tang, Degradation of tetracycline with BiFeO3 prepared by a simple hydrothermal method. Materials 8(9), 6360–6378 (2015)

    Article  CAS  Google Scholar 

  24. M. Wu, D. Xu, B. Luo, H. Shen, C. Wang, W. Shi, Synthesis of BiYO3 nanorods with visible-light photocatalytic activity for the degradation of tetracycline. Mater. Lett. 161, 45–48 (2015)

    Article  CAS  Google Scholar 

  25. N. Belhouchet, B. Hamdi, H. Chenchouni, Y. Bessekhouad, Photocatalytic degradation of tetracycline antibiotic using new calcite/titania nanocomposites. J. Photochem. Photobiol. A Chem. 372, 196–205 (2019)

    Article  CAS  Google Scholar 

  26. G. Wu, P. Li, D. Xu, B. Luo, Y. Hong, W. Shi, C. Liu, Hydrothermal synthesis and visible-light-driven photocatalytic degradation for tetracycline of Mn-doped SrTiO3 nanocubes. Appl. Surf. Sci. 333, 39–47 (2015)

    Article  CAS  Google Scholar 

  27. M. Ahmadi, H.R. Motlagh, N. Jaafarzadeh, A. Mostoufi, R. Saeedi, G. Barzegar, S. Jorfi, Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite. J. Environ. Manage. 186, 55–63 (2017)

    Article  CAS  Google Scholar 

  28. T.O. Ajiboye, O.A. Oyewo, D.C. Onwudiwe, The performance of bismuth-based compounds in photocatalytic applications. Surf. Interfaces 23, 100927 (2021)

    Article  CAS  Google Scholar 

  29. Q. Han, Advances in preparation methods of bismuth-based photocatalysts. Chem. Eng. J. 414, 127877 (2021)

    Article  CAS  Google Scholar 

  30. Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo, Photophysical properties and pbotocatalytic activities of bismuth molybdates under visible light irradiation. J. Phys. Chem. B 110(36), 17790–17797 (2006)

    Article  CAS  Google Scholar 

  31. M. Batool, M.F. Nazar, A. Awan, M.B. Tahir, A. Rahdar, A.E. Shalan, S. Lanceros-Mendez, M.N. Zafar, Bismuth-based heterojunction nanocomposites for photocatalysis and heavy metal detection applications. Nano-Struct. Nano-Objects 27, 100762 (2021)

    Article  CAS  Google Scholar 

  32. G.A. Kallawar, D.P. Barai, B.A. Bhanvase, Bismuth titanate based photocatalysts for degradation of persistent organic compounds in wastewater: A comprehensive review on synthesis methods, performance as photocatalyst and challenges. J. Clean. Prod. 318, 128563 (2021)

    Article  CAS  Google Scholar 

  33. X. Meng, Z. Zhang, Bismuth-based photocatalytic semiconductors: Introduction, challenges and possible approaches. J. Mol. Catal. A Chem. 423, 533–549 (2016)

    Article  CAS  Google Scholar 

  34. V. Subhiksha, S. Kokilavani, S. Sudheer Khan, Recent advances in degradation of organic pollutant in aqueous solutions using bismuth based photocatalysts: A review. Chemosphere 290, 133228 (2022)

    Article  CAS  Google Scholar 

  35. T. Takei, R. Haramoto, Q. Dong, N. Kumada, Y. Yonesaki, N. Kinomura, T. Mano, S. Nishimoto, Y. Kameshima, M. Miyake, Photocatalytic activities of various pentavalent bismuthates under visible light irradiation. J. Solid State Chem. 184(8), 2017–2022 (2011)

    Article  CAS  Google Scholar 

  36. L. Ye, Y. Deng, L. Wang, H. Xie, F. Su, Bismuth-based photocatalysts for solar photocatalytic carbon dioxide conversion. Chemsuschem 12, 3671–3701 (2019)

    Article  CAS  Google Scholar 

  37. Z. Qin, Z. Liu, Y. Liu, K. Yang, Synthesis of BiYO3 for degradation of organic compounds under visible-light irradiation. Catal. Commun. 10(12), 1604–1608 (2009)

    Article  CAS  Google Scholar 

  38. D. Hou, F. Tang, B. Ma, M. Deng, X. Qiao, D.S. Li, Exploring improvement of photocatalytic and catalytic performance in Nd-doped BiYO3 nanotube systems. Inorg. Chem. Commun. 106, 151–157 (2019)

    Article  CAS  Google Scholar 

  39. H. Wongli, C.M. Goodwin, T.P. Beebe Jr., S. Wongnawa, U. Sirimahachai, AgI-BiYO3 photocatalyst: Synthesis, characterization, and its photocatalytic degradation of dye. Mater. Chem. Phys. 202, 120–126 (2017)

    Article  CAS  Google Scholar 

  40. T. Su, H. Tian, Z. Qin, H. Ji, Preparation and characterization of Cu modified BiYO3 for carbon dioxide reduction to formic acid. Appl. Catal. B. 202, 364–373 (2017)

    Article  CAS  Google Scholar 

  41. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009)

    Article  CAS  Google Scholar 

  42. Y. Zhang, S. Deng, M. Pan, M. Lai, X. Kan, Y. Ding, Y. Zhao, J. Kohler, Preparation and characterization of a possible topological insulator BiYO3: Experiment versus theory. Phys. Chem. Chem. Phys. 18, 8205–8211 (2016)

    Article  CAS  Google Scholar 

  43. S.K. Blower, C. Greaves, The structure of β-Bi2O3 from powder neutron diffraction data. Acta Crystallogr. Sect. C Cryst. Struct. Commun. C44, 587–589 (1988)

    Article  CAS  Google Scholar 

  44. Y. Wang, Y. Li, Metastable γ-Bi2O3 tetrahedra: Phase-transition dominated by polyethylene glycol, photoluminescence and implications for internal structure by etch. J. Colloid Interface Sci. 454, 238–244 (2015)

    Article  CAS  Google Scholar 

  45. V. Fruth, A. Ianculescu, D. Berger, S. Preda, G. Voicu, E. Tenea, M. Popa, Synthesis, structure and properties of doped Bi2O3. J. Eur. Ceram. Soc. 26(14), 3011–3016 (2006)

    Article  CAS  Google Scholar 

  46. J.A.H. Dreyer, S. Pokhrel, J. Birkenstock, M.G. Hevia, M. Schowalter, A. Rosenauer, A. Urakawa, W.Y. Teoh, L. Madler, Decrease of the required dopant concentration for δ-Bi2O3 crystal stabilization through thermal quenching during single-step flame spray pyrolysis. CrystEngComm 18, 2046–2056 (2016)

    Article  CAS  Google Scholar 

  47. S. Thakur, K. Singh, O.P. Pandey, Sr doped BiMO3 (M = Mn, Fe, Y) perovskites: Structure correlated thermal and electrical properties. Mater. Chem. Phys. 187, 96–103 (2017)

    Article  CAS  Google Scholar 

  48. A. Ianculescu, A. Brǎileanu, G. Voicu, Synthesis, microstructure and dielectric properties of antimony-doped strontium titanate ceramics. J. Eur. Ceram. Soc. 27(2–3), 1123–1127 (2007)

    Article  CAS  Google Scholar 

  49. H. Gao, W. Liu, La and/or Y doped TiO2: Facile synthesis and enhanced photocatalysis. Adv. Mater. Res. 463–464, 290–294 (2012)

    Google Scholar 

  50. P. Bouras, E. Stathatos, P. Lianos, Pure versus metal-ion-doped nanocrystalline titania for photocatalysis. Appl. Catal. B Environ. 73(1–2), 51–59 (2007)

    Article  CAS  Google Scholar 

  51. D.L. Hernández-Arellano, J.C. Durán-Álvarez, R. Zanella, R. López-Juárez, Effect of heat treatment on the structure and photocatalytic properties of BiYO3 and BiY0.995Ni0.005O3 ceramic powders. Ceram. Int. 46, 20291–20298 (2020)

    Article  Google Scholar 

  52. F. Bhadala, L. Suthar, P. Kumari, M. Roy, Rietveld refinement, morphological, vibrational, Raman, optical and electrical properties of Ca/Mn co-doped BiFeO3. Mater. Chem. Phys. 247, 122719 (2020)

    Article  CAS  Google Scholar 

  53. A. Puhan, B. Bushan, S. Satpathy, S.S. Meena, A.K. Nayak, D. Rout, Facile single phase synthesis of Sr, Co co-doped BiFeO3 nanoparticles for boosting photocatalytic and magnetic properties. Appl. Surf. Sci. 493, 593–604 (2019)

    Article  CAS  Google Scholar 

  54. S. Kumar, G. Srivastava, G. Almutairi, F. Ahmed, N.M. Shaalan, S. Dalela, R. Kumar, A.P. Kumar, P.A. Alvi, K.H. Chae, H.H. Hammud, K. Kumari, Electronic structure and electrochemical properties of La-doped BiFeO3 nanoparticles. J. Electron Spectros. Relat. Phenomena 253, 147138 (2021)

    Article  CAS  Google Scholar 

  55. P. Shen, J.C. Lofaro, W.R. Woerner, M.G. White, D. Su, A. Orlov, Photocatalytic activity of hydrogen evolution over Rh doped SrTiO3 prepared by polymerizable complex method. Chem. Eng. J. 223, 200–208 (2013)

    Article  CAS  Google Scholar 

  56. E.R. Leite, J.A. Varela, E. Longo, C.A. Paskocimas, Influence of polymerization on the synthesis of SrTiO3: part II. Particle and agglomerate morphologies. Ceram. Int. 21, 153–158 (1995)

    Article  CAS  Google Scholar 

  57. J. Shi, L. Guo, ABO3-based photocatalysts for water splitting. Prog. Nat. Sci. Mater. Int. 22(6), 592–615 (2012)

    Article  Google Scholar 

  58. V.H. Nguyen, H.H. Do, T.V. Nguyen, P. Singh, P. Raizada, A. Sharma, S.S. Sana, A.N. Grace, M. Shokouhimehr, S.H. Ahn, C. Xia, S.Y. Kim, Q.V. Le, Perovskite oxide-based photocatalysts for solar-driven hydrogen production: Progress and perspectives. Sol. Energy 211, 584–599 (2020)

    Article  CAS  Google Scholar 

  59. L.G. Devi, B.G. Anitha, Effective band gap engineering by the incorporation of Ce, N and S dopant ions into the SrTiO3 lattice: exploration of photocatalytic activity under UV/solar light. J. Sol-Gel Sci. Technol. 94, 50–66 (2020)

    Article  CAS  Google Scholar 

  60. P. Makuła, M. Pacia, W. Macyk, How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. J. Phys. Chem. Lett. 9(23), 6814–6817 (2018)

    Article  Google Scholar 

  61. V.R. Kumar, P.R.S. Wariar, V.S. Prasad, J. Koshy, Development, characterization and photocatalytic activities of BiYO3 nanoparticles under visible light irradiation. AIP Conf. Proc. 1391, 603–605 (2011)

    Article  CAS  Google Scholar 

  62. J.M. Herrmann, Photocatalysis fundamentals revisited to avoid several misconceptions. Appl. Catal. B Environ. 99(3–4), 461–468 (2010)

    Article  CAS  Google Scholar 

  63. B. Ohtani, Photocatalysis A to Z-What we know and what we do not know in a scientific sense. J. Photochem. Photobiol. C Photochem. Rev. 11(4), 157–178 (2010)

    Article  CAS  Google Scholar 

  64. J. Jeong, W. Song, W.J. Cooper, J. Jung, J. Greaves, Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes. Chemosphere 78, 533–540 (2010)

    Article  CAS  Google Scholar 

  65. J.C. Durán-Álvarez, C. Martínez-Avelar, E. González-Cervantes, R.A. Gutiérrez-Márquez, M. Rodríguez-Varela, A.S. Varela, F. Castillón, R. Zanella, Degradation and mineralization of oxytetracycline in pure and tap water under visible light irradiation using bismuth oxyiodides and the effect of depositing Au nanoparticles. J. Photochem. Photobiol. A Chem. 388, 112163 (2020)

    Article  Google Scholar 

  66. L. Gao, B. Zhou, F. Wang, R. Yuan, H. Chen, X. Han, Effect of dissolved organic matters and inorganic ions on TiO2 photocatalysis of diclofenac: mechanistic study and degradation pathways. Environ. Sci. Pollut. R. 27, 2044–2053 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Diana L. Hernández-Arellano thanks to Consejo Nacional de Ciencia y Tecnologia (CONACyT) for providing master science scholarship (number 75064). R. López-Juárez thanks to Dirección General de Asuntos del Personal Académico (DGAPA-UNAM) for the financial support under project PAPIIT-IN101518. The authors acknowledge to Neftalí Razo-Pérez and Orlando Hernández-Cristobal (ENES-Morelia) for technical assistance and SEM images, respectively.

Funding

This study was supported by DGAPA-UNAM under Project number PAPIIT-IN101518.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diana L. Hernández-Arellano or Rigoberto López-Juárez.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Arellano, D.L., Durán-Álvarez, J.C., Cortés-Lagunes, S. et al. Cr-doped BiYO3 photocatalyst for degradation of oxytetracycline under visible light irradiation. J. Korean Ceram. Soc. 60, 113–126 (2023). https://doi.org/10.1007/s43207-022-00249-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00249-2

Keyword

Navigation