Skip to main content

Advertisement

Log in

Hydrocarbon generative potential and thermal maturity of newly discovered coal seams from Bapung Coalfield, Meghalaya, India: Rock-Eval pyrolysis and organic petrographic analysis

  • Research
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

The present study systematically investigates a newly discovered coal seam in Bapung Coalfield, Meghalaya, on eighteen samples to determine the origin of organic matter, thermal maturity, hydrocarbon richness, and petroleum generation potential(GP). The data obtained from the geochemical study show that the samples contain a significant quantity of organic matter, and free hydrocarbon value suggests excellent source rock potential. Similarly, the hydrocarbon richness value ranges from 68.10 to 588.63, demonstrating an emphatic possibility for oil and gas generation in all studied samples. Tmax and Ro% data of studied sediments indicate that most of the analysed samples are thermally immature, and some of them attain maturity (oil window) for petroleum generation but is not able to produce hydrocarbon at the commercial level. The pseudo Van Krevelen (HI Vs OI) and TOC Vs released hydrocarbon yield diagrams show that organic matter is mainly Type II and II–III kerogens, thus can be contemplated as a fair oil source and gas/oil source rock. Excellent positive correlations were found between oil yield (R2 = 0.99) and vitrinite (R2 = 0.98) with conversion (%), signifying its suitability for liquid hydrocarbon generation in future. Overall the results indicate that the formation (source rock) can generate hydrocarbon and may produce oil and gas through gasification and liquefaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ahmed, M., Volk, H., George, S. C., Faiz, M., & Stalker, L. (2009). Generation and expulsion of oils from Permian coals of the Sydney Basin Australia. Organic Geochemistry, 40(7), 810–831. https://doi.org/10.1016/j.orggeochem.2009.04.003

    Article  Google Scholar 

  • Akanksha, Singh, A. K., Mohanty, D., Jena, H. M., & Panwar, D. S. (2020). Prospective evaluation of hydrocarbon generation potential of Umarsar lignite. India. Energy Sources Part A, 42(6), 664–675. https://doi.org/10.1080/15567036.2019.1588430

    Article  Google Scholar 

  • Al-Matary, A. M., Hakimi, M. H., Al Sofi, S., Al-Nehmi, Y. A., Al-Haj, M. A., Al-Hmdani, Y. A., & Al-Sarhi, A. A. (2018). Preliminary source rock evaluation and hydrocarbon generation potential of the early Cretaceous subsurface shales from Shabwah sub-basin in the Sabatayn Basin, Western Yemen. Journal of African Earth Sciences, 142, 12–21.

    Article  Google Scholar 

  • Banik, P., Phukan, S., & Das, M. (2021). Hydrocarbon source potential of coal-bearing Tikak-Parbat formation of Barail Group in a part of the belt of Schuppen, India. Journal of the Geological Society of India, 97, 767–771.

    Article  Google Scholar 

  • Bannerjee, M., Mendhe, V. A., Kamble, A. D., Varma, A. K., Singh, B. D., & Kumar, S. (2022). Facets of coalbed methane reservoir in East Bokaro Basin, India. Journal of Petroleum Science and Engineering, 208, 109255.

    Article  Google Scholar 

  • Behar, F., Beaumont, V., & Penteado, H. D. B. (2001). Rock-Eval 6 technology: Performances and developments. Oil Gas Science Technology, 56(2), 111–134.

    Article  Google Scholar 

  • Bhattacharyya, S. (2021). Greenfield energies from underground coal gasification and liquefaction of solid fossil fuels—basics and future potentiality in India. Macromolecular characterization of hydrocarbons for sustainable future (pp. 185–210). Springer.

    Chapter  Google Scholar 

  • Bordenave, M. L. (1993). Applied petroleum geochemistry.

  • Boreham, C. J., Blevin, J. E., Radlinski, A. P., & Trigg, K. R. (2003). Coal as a source of oil and gas: a case study from the Bass Basin, Australia. The APPEA Journal, 43(1), 117–148. https://doi.org/10.1071/AJ02006

    Article  Google Scholar 

  • Boruah, A., Verma, S., Rasheed, A., Siddharth Gairola, G., & Gogoi, A. (2022). Macro-seepage based potential new hydrocarbon prospects in Assam-Arakan Basin India. Scientific Reports, 12(1), 2273.

    Article  Google Scholar 

  • Cudmore, J. F. (1977). Evaluation of coals for conversion to liquid hydrocarbons (pp. 146–158). International Coal Borehole Evaluation, The Australasian Institute of Mining and Metallurgy.

    Google Scholar 

  • Das, P. R., Mendhe, V. A., Kamble, A. D., Sharma, P., Shukla, P., & Varma, A. K. (2021). Petrographic and geochemical controls on methane genesis, pore fractal attributes, and sorption of lower Gondwana coal of Jharia Basin India. ACS Omega, 7(1), 299–324.

    Article  Google Scholar 

  • Dembicki, H., Jr. (2009). Three common source rock evaluation errors made by geologists during prospect or play appraisals. AAPG Bulletin, 93(3), 341–356.

    Article  Google Scholar 

  • Durand, B., & Paratte, M. (1983). Oil potential of coals: A geochemical approach. Geological Society, London, Special Publications, 12(1), 255–265. https://doi.org/10.1144/GSL.SP.1983.012.01.26

    Article  Google Scholar 

  • El Nady, M. M., Ramadan, F. S., Hammad, M. M., & Lotfy, N. M. (2015). Evaluation of organic matters, hydrocarbon potential and thermal maturity of source rocks based on geochemical and statistical methods: Case study of source rocks in Ras Gharib oilfield, central Gulf of Suez, Egypt. Egyptian Journal of Petroleum, 24(2), 203–211.

    Article  Google Scholar 

  • Espitalie, J., Deroo, G., & Marquis, F. (1985). Rock-Eval pyrolysis and its applications (part two). French Petroleum Institute, 40(6), 755–784. https://doi.org/10.2516/ogst:1985045

    Article  Google Scholar 

  • Espitalie, J., Laporte, J. L., Madec, M., Marquis, F., Leplat, P., Paulet, J., & Boutefeu, A. (1977). Rapid method for source rock characterization and for determination of their petroleum potential and degree of evolution. Revue De L’institut Francais Du Petrole, 32(1), 23–42.

    Google Scholar 

  • Fleet Andrew, J., & Scott Andrew, C. (1994). Coal and coal-bearing strata as oil-prone source rocks: An overview. Geological Society, London, Special Publications, 77(1), 1–8. https://doi.org/10.1144/GSL.SP.1994.077.01.01

    Article  Google Scholar 

  • Geological Survey of India. (2017). Inventory of geological resource of Indian coal as on 1st April 2017. Geological Survey of India.

    Google Scholar 

  • Ghosh, K. K., Das, K., Bhattacharyya, S., & Ramteke, C. P. (2022). Characterization of shale gas reservoir of Lower Gondwana litho-assemblage at Mohuda sub-basin, Jharia Coalfield, Jharkhand, India. Journal of Natural Gas Science and Engineering, 97, 104316.

    Article  Google Scholar 

  • Given, P. H., Cronauer, D. C., Spackman, W., Lovell, H. L., Davis, A., & Biswas, B. (1975). Dependence of coal liquefaction behaviour on coal characteristics. 2. Role of petrographic composition. Fuel, 54(1), 40–49.

    Article  Google Scholar 

  • Gogoi, K., Dutta, M. N., & Das, P. K. (2008). Source rock potential for hydrocarbon generation of Makum coals, Upper Assam, India. Current Science, 95, 233–239.

    Google Scholar 

  • GSI. (2013). Limestone deposit of Litang Valley, Jaintia Hills district, Meghalaya. In: Issue 63 of Bulletins of the Geological Survey of India. Series A. Economic geology (631–105). Director General, Geological Survey of India

  • Guyot, R. E. (1978). Influence of coal characteristics on the yields and properties of hydrogenation products.

  • Hadad, Y. T., & Abdullah, W. H. (2015). Hydrocarbon source rock generative potential of the Sudanese Red Sea Basin. Marine and Petroleum Geology, 65, 269–289.

    Article  Google Scholar 

  • Hakimi, M. H., Abdullah, W. H., Alqudah, M., Makeen, Y. M., Mustapha, K. A., & Hatem, B. A. (2018). Pyrolysis analyses and bulk kinetic models of the Late Cretaceous oil shales in Jordan and their implications for early mature sulphur-rich oil generation potential. Marine Petroleum Geology, 91, 764–775.

    Article  Google Scholar 

  • Hazra, B., Dutta, S., & Kumar, S. (2017). TOC calculation of organic matter rich sediments using Rock-Eval pyrolysis: Critical consideration and insights. International Journal of Coal Geology, 169, 106–115.

    Article  Google Scholar 

  • Hazra, B., Karacan, C. Ö., Tiwari, D. M., Singh, P. K., & Singh, A. K. (2019). Insights from Rock-Eval analysis on the influence of sample weight on hydrocarbon generation from Lower Permian organic matter rich rocks, West Bokaro basin, India. Marine Petroleum Geology, 106, 160–170.

    Article  Google Scholar 

  • Hazra, B., Singh, D. P., Crosdale, P. J., Singh, V., Singh, P. K., Gangopadhyay, M., & Chakraborty, P. (2021). Critical insights from Rock-Eval analysis of vitrains. International Journal of Coal Geology, 238, 103717.

    Article  Google Scholar 

  • Hazra, B., Varma, A. K., Bandopadhyay, A. K., Chakravarty, S., Buragohain, J., Samad, S. K., & Prasad, A. K. (2016). FTIR, XRF, XRD and SEM characteristics of Permian shales, India. Journal of Natural Gas Science Engineering, 32, 239–255.

    Article  Google Scholar 

  • Hedberg, H. D. (1968). Significance of high-wax oils with respect to genesis of petroleum1. AAPG Bulletin, 52(5), 736–750. https://doi.org/10.1306/5D25C45B-16C1-11D7-8645000102C1865D

    Article  Google Scholar 

  • Hendrix, M. S., Brassell, S. C., Carroll, A. R., & Graham, S. A. (1995). Sedimentology, organic geochemistry, and petroleum potential of Jurassic Coal Measures: Tarim, Junggar, and Turpan Basins, Northwest China1. AAPG Bulletin, 79(7), 929–958. https://doi.org/10.1306/8D2B2187-171E-11D7-8645000102C1865D

    Article  Google Scholar 

  • Hunt, J. M. (1991). Generation of gas and oil from coal and other terrestrial organic matter. Organic Geochemistry, 17(6), 673–680. https://doi.org/10.1016/0146-6380(91)90011-8

    Article  Google Scholar 

  • Hunt, J. (1996). Petroleum geochemistry and geology (2nd ed.). WH Freeman & Company.

    Google Scholar 

  • India, G. S. O. (2009). Geology and mineral resources of Meghalaya. Miscellaneous publication no 30 part IV (2nd ed., pp. 6–8). India GSO.

    Google Scholar 

  • International Committee for Coal. (1998). The new vitrinite classification (ICCP System 1994). Fuel, 77(5), 349–358.

    Article  Google Scholar 

  • International Committee for Coal. (2001). The new inertinite classification (ICCP System 1994). Fuel, 80(4), 459–471.

    Article  Google Scholar 

  • Islam, M. R. (2014). Unconventional gas reservoirs: Evaluation, appraisal, and development. Elsevier.

    Google Scholar 

  • Jarvie, D. M. (2012). Shale resource systems for oil and gas: Part 2—Shale-oil resource systems (pp. 89–119). AAPG Special Volumes.

    Google Scholar 

  • Jarvie, D. M., Claxton, B. L., Henk, F., & Breyer, J. T. (2001). Oil and shale gas from the Barnett Shale, Fort Worth Basin, Texas: AAPG Annual Meeting. Program, 10, A100.

    Google Scholar 

  • Jarvie, D. M., Hill, R. J., Ruble, T. E., & Pollastro, R. M. (2007). Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4), 475–499.

    Article  Google Scholar 

  • Jin, J., & Shi, S. (1997). The development and prospective application of coal direct liquefaction for Chinese coals.

  • Kala, S., Devaraju, J., De, S., & Rasheed, M. A. (2022). Multiproxy geochemical characterization of Kommugudem Formation, Krishna Godavari Basin, India: Implication on hydrocarbon potential and shale brittleness. Geological Journal, 57(4), 1373–1390.

    Article  Google Scholar 

  • Kumar, H., Mishra, S., Mishra, M. K., & Parida, A. (2015). Petrographical characteristics of bituminous coal from Jharia Coalfield India: It’s implication on coal bed methane potentiality. Procedia Earth and Planetary Science, 11, 38–48.

    Article  Google Scholar 

  • Kumar, J., Mendhe, V. A., Kamble, A. D., Bannerjee, M., Mishra, S., Singh, B. D., & Singh, H. (2018). Coalbed methane reservoir characteristics of coal seams of south Karanpura Coalfield, Jharkhand India. International Journal of Coal Geology, 196, 185–200.

    Article  Google Scholar 

  • Kumar, S., Ojha, K., Bastia, R., Garg, K., Das, S., & Mohanty, D. (2017). Evaluation of Eocene source rock for potential shale oil and gas generation in north Cambay Basin, India. Marine and Petroleum Geology, 88, 141–154.

    Article  Google Scholar 

  • Lafargue, E., Marquis, F., & Pillot, D. (1998). Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Revue De L’institut Français Du Pétrole, 53(4), 421–437. https://doi.org/10.2516/ogst:1998036

    Article  Google Scholar 

  • Lewan, M. D. (1998). Sulphur-radical control on petroleum formation rates. Nature, 391(6663), 164–166.

    Article  Google Scholar 

  • Lewan, M. D., & Ruble, T. E. (2002). Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis. Organic Geochemistry, 33(12), 1457–1475.

    Article  Google Scholar 

  • Li, S., Shao, L., Liu, J., Qin, L., Kang, S., Eriksson, K. A., & Liu, J. (2022). Oil generation model of the liptinite-rich coals: Palaeogene in the Xihu Sag, East China Sea Shelf Basin. Journal of Petroleum Science Engineering, 209, 109844.

    Article  Google Scholar 

  • Ma, Y. Z., & Holditch, S. (2015). Unconventional oil and gas resources handbook: Evaluation and development. Gulf Professional Publishing.

    Google Scholar 

  • Macgregor Duncan, S. (1994). Coal-bearing strata as source rocks. A global overview. Geological Society, London, Special Publications, 77(1), 107–116. https://doi.org/10.1144/GSL.SP.1994.077.01.06

    Article  Google Scholar 

  • Misra, B. K. (1992). Optical properties of some Tertiary coals from northeastern India: Their depositional environment and hydrocarbon potential. International Journal of Coal Geology, 20(1–2), 115–144.

    Article  Google Scholar 

  • Misra, S., Das, S. K., Varma, A. K., Mani, D., Kalpana, M. S., Ekblad, A., & Biswas, S. (2020). Multi-proxy approach on the hydrocarbon generation perspective of Barjora Basin. India. Marine and Petroleum Geology, 112, 104108.

    Article  Google Scholar 

  • Misra, S., Varma, A. K., Hazra, B., Biswas, S., & Samad, S. K. (2019). The influence of the thermal aureole asymmetry on hydrocarbon generative potential of coal beds: Insights from Raniganj Basin, West Bengal, India. International Journal of Coal Geology, 206, 91–105.

    Article  Google Scholar 

  • Nath, M., & Kumar, A. (2022). A study of geochemical and petrographic characteristics of Eocene coal from Bapung Coalfield, East Jaintia Hills, Meghalaya, North East India. Arabian Journal of Geosciences, 15(8), 1–11.

    Article  Google Scholar 

  • Nath, M., Kumar, A., & Singh, A. K. (2022). Assessment of hydrocarbon generative potential of Late Paleocene coals from East Khasi Hills, Meghalaya, North-East India. Petroleum Science Technology. https://doi.org/10.1080/10916466.2022.2039185

    Article  Google Scholar 

  • Nath, M., Panwar, D. S., Chaurasia, R. C., Akanksha, Kaur, J., & Kohli, D. (2023). New insight into geochemical characterization of Paleogene coals from Jarain coalfield, Meghalaya, N-E India: Hydrocarbon potential and organic petrographic analysis. Geoenergy Science and Engineering, 226, 211790. https://doi.org/10.1016/j.geoen.2023.211790

    Article  Google Scholar 

  • Noble, R. A., Wu, C. H., & Atkinson, C. D. (1991). Petroleum generation and migration from Talang Akar coals and shales offshore N.W. Java, Indonesia. Organic Geochemistry, 17(3), 363–374. https://doi.org/10.1016/0146-6380(91)90100-X

    Article  Google Scholar 

  • Ogala, J. E. (2011). Hydrocarbon potential of the Upper Cretaceous coal and shale units in the Anambra Basin. Southeastern Nigeria. Petroleum and Coal, 53(1), 35–44.

    Google Scholar 

  • Ojha, K., Karmakar, B., Mandal, A., & Pathak, A. K. (2011). Coal bed methane in India: Difficulties and prospects. International Journal of Chemical Engineering and Applications, 2(4), 256.

    Article  Google Scholar 

  • Osli, L. N., Shalaby, M. R., & Islam, M. (2019). Hydrocarbon generation modeling and source rock characterization of the Cretaceous-Paleocene Taratu Formation, Great South Basin, New Zealand. Journal of Petroleum Exploration ProductionTechnology, 9(1), 125–139.

    Article  Google Scholar 

  • Osli, L. N., Shalaby, M. R., & Islam, M. (2021). Source rock characteristics and hydrocarbon generation potential in Brunei-Muara district, Brunei Darussalam: A comparative case study from selected Miocene-Quaternary formations. Journal of Petroleum Exploration Production, 11(4), 1679–1703.

    Article  Google Scholar 

  • Pandey, B., Pathak, D. B., Mathur, N., Jaitly, A. K., Singh, A. K., & Singh, P. K. (2018). A preliminary evaluation on the prospects of hydrocarbon potential in the carbonaceous shales of Spiti and Chikkim formations, Tethys Himalaya, India. Journal of the Geological Society of India, 92(4), 427–434.

    Article  Google Scholar 

  • Panwar, D. S., Chaurasia, R. C., Akansha, S., & Jena, S. S. (2021b). Hydrocarbon generation and gasification study of Valia lignite, Gujrat India. Energy Sources, Part A433A: Recovery, Utilization, and Environmental Effects+A465. https://doi.org/10.1080/15567036.2021.1931567

    Article  Google Scholar 

  • Panwar, D., Chaurasia, R. C., Saxena, V., & Singh, A. (2021a). Geochemical investigation of hydrocarbon generation potential of coal from Raniganj Basin, India. Journal of Petroleum Exploration Production Technology, 11(10), 3627–3636. https://doi.org/10.1007/s13202-021-01281-4

    Article  Google Scholar 

  • Panwar, D. S., Chaurasia, R. C., Saxena, V. K., & Singh, A. K. (2022). Modeling and Forecasting of coal bed methane reservoir from Raniganj Coalfield, India. Methane, 1(4), 229–242.

    Article  Google Scholar 

  • Panwar, D. S., Saxena, V. K., Chaurasia, R. C., & Singh, A. K. (2017b). Prospective evaluation of coal bed methane in Raniganj coal field, India. Energy Sources, Part A433A: Recovery, Utilization, and Environmental Effects+A465, 39(9), 946–954. https://doi.org/10.1080/15567036.2017.1279242

    Article  Google Scholar 

  • Panwar, D., Saxena, V., Rani, A., Singh, A., & Kumar, V. (2017a). Source rock evaluation of the Gondwana coals in Raniganj Coalfield, India. Energy Sources, Part A433A: Recovery, Utilization, and Environmental Effects+A465, 39(13), 1395–1402.

    Article  Google Scholar 

  • Panwar, D. S., Suman, S., Singh, A. K., Saxena, V. K., & Chaurasia, R. C. (2020). Assessment of hydrocarbon generation potential of bituminous coal from Raniganj Basin, India. Energy Sources, Part A433A: Recovery, Utilization, and Environmental Effects+A465, 42(7), 824–834. https://doi.org/10.1080/15567036.2019.1588427

    Article  Google Scholar 

  • Peters, K. E., & Cassa, M. R. (1994). Applied source rock geochemistry: Chapter 5: Part II. Essential elements. AAPG Special Volumes.

    Google Scholar 

  • Peters, K. E., Walters, C. C., & Moldowan, J. M. (2005). The biomarker guide: Biomarkers and isotopes in the environment and human history. Cambridge University Press.

    Google Scholar 

  • Petersen, H. I. (2006). The petroleum generation potential and effective oil window of humic coals related to coal composition and age. International Journal of Coal Geology, 67(4), 221–248.

    Article  Google Scholar 

  • Powell, T. G., & Boreham, C. J. (1994). Terrestrially sourced oils: Where do they exist and what are our limits of knowledge? A geochemical perspective. Geological Society, London, Special Publications, 77(1), 11–29. https://doi.org/10.1144/GSL.SP.1994.077.01.02

    Article  Google Scholar 

  • Rajak, P., Singh, V., Kumar, A., Singh, V., Rai, A., Rai, S., & Mathur, N. (2021). Study of hydrocarbon source potential of Kapurdi lignites of Barmer Basin, Rajasthan, Western India. Journal of the Geological Society of India, 97(8), 836–842.

    Article  Google Scholar 

  • Shah, S. B. A. (2021). Lockhart formation provides source rocks for Potwar basin. Oil and Gas Journal, 119(8), 28–34.

    Google Scholar 

  • Shah, S. B. A., & Abdullah, W. H. (2017). Structural interpretation and hydrocarbon potential of Balkassar oil field, eastern Potwar, Pakistan, using seismic 2D data and petrophysical analysis. Journal of the Geological Society of India, 90(3), 323–328.

    Article  Google Scholar 

  • Shah, S. B. A., Abdullah, W. H., & Shuib, M. K. B. (2019). Petrophysical properties evaluation of Balkassar oilfield, Potwar Plateau, Pakistan: Implication for reservoir characterization. Himalayan Geology, 40(1), 50–57.

    Google Scholar 

  • Shalaby, M. R., Mahlstedt, N., Osli, L. N., & Islam, M. A. (2021). Phase kinetics for assessing the compositional evolution of petroleum generated from the early to Late Miocene source rock, Belait Formation, Brunei-Muara district, Brunei Darussalam. Journal of Petroleum Science Engineering, 206, 108965.

    Article  Google Scholar 

  • Sharma, A., Phukan, S., Saikia, B. K., & Baruah, B. P. (2018). Geochemical evaluation of the hydrocarbon prospects of carbonaceous shale and coal of Barail Group, Upper Assam Basin. International Journal of Oil, Gas and Coal Technology, 19(3), 263–282.

    Article  Google Scholar 

  • Sharma, A., Saikia, B. K., Phukan, S., & Baruah, B. P. (2016). Petrographical and thermo-chemical investigation of some North East Indian high sulphur coals. Journal of the Geological Society of India, 88(5), 609–619.

    Article  Google Scholar 

  • Singh, A. K., Hajra, P. N., Singh, A. K., & Hajra, P. N. (2018). Coalbed methane in India: its relevance and current status. Coalbed methane in India: opportunities, issues and challenges for recovery and utilization (pp. 1–19). Springer.

    Chapter  Google Scholar 

  • Singh, A. K., & Kumar, A. (2017). Liquefaction behavior of Eocene lignites of Nagaur Basin, Rajasthan, India: A petrochemical approach. Energy Sources, Part A433A: Recovery, Utilization, and Environmental Effects+A465, 39(15), 1686–1693.

    Google Scholar 

  • Singh, M. P., & Singh, A. K. (2001). Source rock characteristics and maturation of Palaeogene coals, Northeast India. Journal of the Geological Society of India, 57, 353–368.

    Google Scholar 

  • Singh, P. K. (2012). Petrological and geochemical considerations to predict oil potential of Rajpardi and Vastan lignite deposits of Gujarat, Western India. Journal of the Geological Society of India, 80(6), 759–770.

    Article  Google Scholar 

  • Singh, P. K. (2022). Applicative coal petrology for industries: New paradigms. Journal of the Geological Society of India, 98(9), 1229–1236.

    Article  Google Scholar 

  • Singh, P. K., Rajak, P. K., Singh, V. K., Singh, M. P., Naik, A. S., & Raju, S. V. (2016). Studies on thermal maturity and hydrocarbon potential of lignites of Bikaner-Nagaur basin. Rajasthan. Energy Exploration and Exploitation, 34(1), 140–157.

    Article  Google Scholar 

  • Singh, P. K., Singh, M. P., Singh, A. K., Arora, M., & Naik, A. S. (2013). The prediction of the liquefaction behavior of the East Kalimantan coals of Indonesia: An appraisal through petrography of selected coal samples. Energy Sources, Part A433A: Recovery, Utilization, and Environmental Effects+A465, 35(18), 1728–1740.

    Article  Google Scholar 

  • Singh, P. K., Singh, M. P., Singh, A. K., & Naik, A. (2012). Petrographic and geochemical characterization of coals from Tiru valley, Nagaland, NE India. Energy Exploration Exploitation, 30(2), 171–191.

    Article  Google Scholar 

  • Singh, P. K., Singh, V. K., Rajak, P. K., & Mathur, N. (2017). A study on assessment of hydrocarbon potential of the lignite deposits of Saurashtra basin, Gujarat (Western India). International Journal of Coal Science and Technology, 4(4), 310–321.

    Article  Google Scholar 

  • Singh, Y. R., Singh, K. A., Devi, N. R., Arnold, T. E., & Abbott, M. B. (2021). Hydrocarbon source rock potential and paleoecological studies of the Surma sediments of Manipur region, India: Insights from palynology and organic geochemistry. Journal of Asian Earth Sciences, 6, 100072.

    Google Scholar 

  • Suárez-Ruiz, I., & Crelling, J. C. (2008). Applied coal petrology: The role of petrology in coal utilization. Academic Press.

    Google Scholar 

  • Thakur, P., Schatzel, S., Aminian, K., Rodvelt, G., Mosser, M., & D’Amico, J. (2020). Coal bed methane: Theory and applications. Elsevier.

    Google Scholar 

  • Varma, A. K., Biswas, S., Patil, D. J., Mani, D., Misra, S., & Hazra, B. (2019). Significance of lithotypes for hydrocarbon generation and storage. Fuel, 235, 396–405. https://doi.org/10.1016/j.fuel.2018.07.111.

    Article  Google Scholar 

  • Vinci Technologies. (2003). Rock-Eval 6 operator manual. Vinci Technologies.

    Google Scholar 

  • Welte, D., & Tissot, P. (1984). Petroleum formation and occurrence. Springer.

    Google Scholar 

  • Wilkins, R. W. T., & George, S. C. (2002). Coal as a source rock for oil: A review. International Journal of Coal Geology, 50(1–4), 317–361.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the GM, KDM Institute of Petroleum Exploration, ONGC, Dehradun, for extending laboratory facilities for analytical works.

Author information

Authors and Affiliations

Authors

Contributions

MN: Conceptualization of work, Field data collection, analysis of results and drafting the original manuscript. DSP: Conceptualization of work, Analysis and interpretation of results and drafting the original manuscript, revision of drafted manuscript, Overall support. RCC: Conceptualization of work, Analysis and interpretation of results and drafting the original manuscript, revision of drafted manuscript, Overall support. A: Analysis of results (Petrographic and Rock-Eval).

Corresponding author

Correspondence to Deepak Singh Panwar.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Communicated by H. Chaves

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, M., Panwar, D.S., Chaurasia, R.C. et al. Hydrocarbon generative potential and thermal maturity of newly discovered coal seams from Bapung Coalfield, Meghalaya, India: Rock-Eval pyrolysis and organic petrographic analysis. J. Sediment. Environ. 8, 297–309 (2023). https://doi.org/10.1007/s43217-023-00135-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-023-00135-9

Keywords

Navigation