Skip to main content
Log in

Forced and free vibrational analysis of viscoelastic nanotubes conveying fluid subjected to moving load in hygro-thermo-magnetic environments with surface effects

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Forced and free vibrational analyses of viscoelastic nanotubes containing fluid under a moving load in complex environments incorporating surface effects are conducted based on the nonlocal strain gradient theory and the Rayleigh beam model. To model the internal nanoflow, the slip boundary condition is employed. Adopting the Galerkin discretization approach, the reduced-order dynamic model of the system is acquired. Analytical and numerical methods are exploited to determine the dynamic response of the system. The impacts of geometry, scale parameter ratio, Knudsen number, fluid velocity, rotary inertia parameter, viscoelastic parameter, surface residual stress, surface elastic modulus, and hygro-thermo-magnetic environments on the dynamic magnification factor, critical moving load speed, cancellation, and maximum free vibration of the system are evaluated. The results indicate that the effects of the viscoelastic parameter on the dynamic behavior of the system differ significantly from those of other parameters. It is indicated that the dynamic magnification factor and critical moving load speed are enhanced by increasing the surface residual stress and the surface elastic modulus. The model and results of the current investigation can serve as a comprehensive benchmark for the optimum design of nanoflow sensors and targeted drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Esbati AH, Irani S. Probabilistic mechanical properties and reliability of carbon nanotubes. Arch Civ Mech Eng. 2018;18:532–45.

    Article  Google Scholar 

  2. Yu D, Wang R. An optimal investigation of convective fluid flow suspended by carbon nanotubes and thermal radiation impact. Mathematics. 2022;10:1542. https://doi.org/10.3390/math10091542.

    Article  Google Scholar 

  3. Soleimani I, Beni YT. Vibration analysis of nanotubes based on two-node size-dependent axisymmetric shell element. Arch Civ Mech Eng. 2018;18:1345–58.

    Article  Google Scholar 

  4. Rouhi S, Shahnazari A, Ansari R. Vibrational analysis of armchair phosphorene nanotubes by a DFT-based finite element model. Arch Civ Mech Eng. 2018;18:611–21.

    Article  Google Scholar 

  5. Elaikh TE, Abed NM, Ebrahimi-Mamaghani A. Free vibration and flutter stability of interconnected double graded micro pipes system conveying fluid. In: IOP conference series: materials science and engineering; 2020, p. 022128.

  6. Borjalilou V, Asghari M, Bagheri E. Small-scale thermoelastic damping in micro-beams utilizing the modified couple stress theory and the dual-phase-lag heat conduction model. J Therm Stresses. 2019;42:801–14.

    Article  Google Scholar 

  7. Li M, Cai Y, Fan R, Wang H, Borjalilou V. Generalized thermoelasticity model for thermoelastic damping in asymmetric vibrations of nonlocal tubular shells. Thin-Walled Struct. 2022;174: 109142.

    Article  Google Scholar 

  8. Borjalilou V, Asghari M, Taati E. Thermoelastic damping in nonlocal nanobeams considering dual-phase-lagging effect. J Vib Control. 2020;26:1042–53.

    Article  MathSciNet  Google Scholar 

  9. Xiao C, Zhang G, Hu P, Yu Y, Mo Y, Borjalilou V. Size-dependent generalized thermoelasticity model for thermoelastic damping in circular nanoplates. Waves Random Complex Media. 2021. https://doi.org/10.1080/17455030.2021.1968538.

    Article  Google Scholar 

  10. Borjalilou V, Taati E, Ahmadian MT. Bending, buckling and free vibration of nonlocal FG-carbon nanotube-reinforced composite nanobeams: Exact solutions. SN Appl Sci. 2019;1:1–15.

    Article  CAS  Google Scholar 

  11. Li M, Cai Y, Bao L, Fan R, Zhang H, Wang H, et al. Analytical and parametric analysis of thermoelastic damping in circular cylindrical nanoshells by capturing small-scale effect on both structure and heat conduction. Arch Civ Mech Eng. 2022;22:1–16.

    Article  Google Scholar 

  12. Sarparast H, Mamaghani A, Safarpour M, Ouakad HM, Dimitri R, Tornabene F. Nonlocal study of the vibration and stability response of small-scale axially moving supported beams on viscoelastic-Pasternak foundation in a hygro-thermal environment. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6859.

    Article  Google Scholar 

  13. Ghayesh MH, Farokhi H, Farajpour A. Chaos in fluid-conveying NSGT nanotubes with geometric imperfections. Appl Math Model. 2019;74:708–30.

    Article  MathSciNet  Google Scholar 

  14. Farajpour A, Ghayesh MH, Farokhi H. Large-amplitude coupled scale-dependent behaviour of geometrically imperfect NSGT nanotubes. Int J Mech Sci. 2019;150:510–25.

    Article  Google Scholar 

  15. Zheng F, Lu Y, Ebrahimi-Mamaghani A. Dynamical stability of embedded spinning axially graded micro and nanotubes conveying fluid. Waves Random Complex Media. 2020;32:1–39. https://doi.org/10.1080/17455030.2020.1821935.

    Article  MathSciNet  Google Scholar 

  16. Sarparast H, Alibeigloo A, Kesari SS, Esfahani S. Size-dependent dynamical analysis of spinning nanotubes conveying magnetic nanoflow considering surface and environmental effects. Appl Math Model. 2022. https://doi.org/10.1016/j.apm.2022.03.017.

    Article  MathSciNet  Google Scholar 

  17. Sun L, Wang G, Zhang C, Jin Q, Song Y. On the rheological properties of multi-walled carbon nano-polyvinylpyrrolidone/silicon-based shear thickening fluid. Nanotechnol Rev. 2021;10:1339–48. https://doi.org/10.1515/ntrev-2021-0087.

    Article  CAS  Google Scholar 

  18. Ghayesh MH. Dynamics of functionally graded viscoelastic microbeams. Int J Eng Sci. 2018;124:115–31.

    Article  MathSciNet  Google Scholar 

  19. Ghayesh MH. Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams. Compos Struct. 2019;225: 110974.

    Article  Google Scholar 

  20. Ghayesh MH. Viscoelastic dynamics of axially FG microbeams. Int J Eng Sci. 2019;135:75–85.

    Article  MathSciNet  Google Scholar 

  21. Amiri A, Masoumi A, Talebitooti R. Flutter and bifurcation instability analysis of fluid-conveying micro-pipes sandwiched by magnetostrictive smart layers under thermal and magnetic field. Int J Mech Mater Des. 2020;16:569–88.

    Article  Google Scholar 

  22. Jena SK, Chakraverty S, Malikan M, Mohammad-Sedighi H. Hygro-magnetic vibration of the single-walled carbon nanotube with nonlinear temperature distribution based on a modified beam theory and nonlocal strain gradient model. Int J Appl Mech. 2020;12:2050054.

    Article  Google Scholar 

  23. Rahimi Z. Vibration analysis of curved nanotube conveying fluid and nanoparticle considering surface and non-local effects. Waves Random Complex Media. 2021. https://doi.org/10.1080/17455030.2021.1939459.

    Article  Google Scholar 

  24. Yue X, Yue X, Borjalilou V. Generalized thermoelasticity model of nonlocal strain gradient Timoshenko nanobeams. Arch Civ Mech Eng. 2021;21:1–20.

    Article  Google Scholar 

  25. Weng W, Lu Y, Borjalilou V. Size-dependent thermoelastic vibrations of Timoshenko nanobeams by taking into account dual-phase-lagging effect. Eur Phys J Plus. 2021;136:1–26.

    Article  Google Scholar 

  26. Ghayesh M, Farokhi H, Zhang Y, Gholipour A. Nonlinear coupled moving-load excited dynamics of beam-mass structures. Arch Civ Mech Eng. 2020;20:1–11.

    Article  Google Scholar 

  27. Lu N, Wang H, Wang K, Liu Y. Maximum probabilistic and dynamic traffic load effects on short-to-medium span bridges. Comput Model Eng Sci. 2021;127:345–60. https://doi.org/10.32604/cmes.2021.013792.

    Article  Google Scholar 

  28. Luo Y, Zheng H, Zhang H, Liu Y. Fatigue reliability evaluation of aging prestressed concrete bridge accounting for stochastic traffic loading and resistance degradation. Adv Struct Eng. 2021;24:3021–9. https://doi.org/10.1177/13694332211017995

    Article  Google Scholar 

  29. Sarparast H, Ebrahimi-Mamaghani A. Vibrations of laminated deep curved beams under moving loads. Compos Struct. 2019;226: 111262.

    Article  Google Scholar 

  30. Hosseini M, Maryam AZB, Bahaadini R. Forced vibrations of fluid-conveyed double piezoelectric functionally graded micropipes subjected to moving load. Microfluid Nanofluid. 2017;21:1–16.

    Article  CAS  Google Scholar 

  31. Yoon H-I, Son I-S. Dynamic behavior of cracked simply supported pipe conveying fluid with moving mass. J Sound Vib. 2006;292:941–53.

    Article  ADS  Google Scholar 

  32. Vakili Tahami F, Biglari H, Raminnea M. Optimum design of FGX-CNT-reinforced Reddy pipes conveying fluid subjected to moving load. J Appl Comput Mech. 2016;2:243–53.

    Google Scholar 

  33. Ghayesh MH. Asymmetric viscoelastic nonlinear vibrations of imperfect AFG beams. Appl Acoust. 2019;154:121–8.

    Article  Google Scholar 

  34. Ghayesh MH. Nonlinear dynamic response of a simply-supported Kelvin-Voigt viscoelastic beam, additionally supported by a nonlinear spring. Nonlinear Anal Real World Appl. 2012;13:1319–33.

    Article  MathSciNet  Google Scholar 

  35. Borjalilou V, Asghari M. Mathematical Modeling of Anisotropic Hyperelastic Cylindrical Thick Shells by Incorporating Thickness Deformation and Compressibility with Application to Arterial Walls. In: International Journal of Structural Stability and Dynamics; 2022, p. 2250141.

  36. Ebrahimi-Mamaghani AE, Khadem S, Bab S. Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear energy sink. Nonlinear Dyn. 2016;86:1761–95.

    Article  Google Scholar 

  37. Ebrahimi-Mamaghani A, Sotudeh-Gharebagh R, Zarghami R, Mostoufi N. Dynamics of two-phase flow in vertical pipes. J Fluids Struct. 2019;87:150–73.

    Article  Google Scholar 

  38. Ebrahimi-Mamaghani A, Mostoufi N, Sotudeh-Gharebagh R, Zarghami R. Vibrational analysis of pipes based on the drift-flux two-phase flow model. Ocean Eng. 2022;249: 110917.

    Article  Google Scholar 

  39. Zhou Z-X, Koochakianfard O. Dynamics of spinning functionally graded Rayleigh tubes subjected to axial and follower forces in varying environmental conditions. Eur Phys J Plus. 2022;137:1–35.

    Article  Google Scholar 

  40. Gao F, Yu D, Sheng Q. Analytical treatment of unsteady fluid flow of nonhomogeneous nanofluids among two infinite parallel surfaces: collocation method-based study. Mathematics. 2022;10:1556. https://doi.org/10.3390/math10091556.

    Article  Google Scholar 

  41. Wang L. Vibration analysis of fluid-conveying nanotubes with consideration of surface effects. Phys E. 2010;43:437–9.

    Article  CAS  Google Scholar 

  42. Zhang H, Liu Y, Deng Y. Temperature gradient modeling of a steel box-girder suspension bridge using Copulas probabilistic method and field monitoring. Adv Struct Eng. 2021;24:947–61. https://doi.org/10.1177/1369433220971779.

    Article  Google Scholar 

  43. Xiao G, Chen B, Li S, Zhuo X. Fatigue life analysis of aero-engine blades for abrasive belt grinding considering residual stress. Eng Fail Anal. 2022;131: 105846.

    Article  Google Scholar 

  44. Cheng H, Liu L, Sun L. Bridging the gap between laboratory and field moduli of asphalt layer for pavement design and assessment: A comprehensive loading frequency-based approach. Front Struct Civ Eng. 2022. https://doi.org/10.1007/s11709-022-0811-7.

    Article  Google Scholar 

  45. Xiao X, Bu G, Ou Z, Li Z. Nonlinear in-plane instability of the confined FGP arches with nanocomposites reinforcement under radially-directed uniform pressure. Eng Struct. 2022;252: 113670. https://doi.org/10.1016/j.engstruct.2021.113670.

    Article  Google Scholar 

  46. Li L, Hu Y. Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory. Comput Mater Sci. 2016;112:282–8.

    Article  CAS  Google Scholar 

  47. Kumar CS, Sujatha C, Shankar K. Vibration of simply supported beams under a single moving load: A detailed study of cancellation phenomenon. Int J Mech Sci. 2015;99:40–7.

    Article  Google Scholar 

  48. Museros Romero P, Moliner E. Comments on Vibration of simply supported beams under a single moving load: A detailed study of cancellation phenomenon by CP Sudheesh Kumar, C. Sujatha, K. Shankar [Int. J. Mech. Sci. 99 (2015) 40 47. Int J Mech Sci. 2017;128:709–13.

    Article  Google Scholar 

  49. Ebrahimi-Mamaghani A, Sarparast H, Rezaei M. On the vibrations of axially graded Rayleigh beams under a moving load. Appl Math Model. 2020;84:554–70.

    Article  MathSciNet  Google Scholar 

  50. Wang L. Vibration and instability analysis of tubular nano-and micro-beams conveying fluid using nonlocal elastic theory. Phys E. 2009;41:1835–40.

    Article  CAS  Google Scholar 

  51. Bahaadini R, Hosseini M, Jamali B. Flutter and divergence instability of supported piezoelectric nanotubes conveying fluid. Phys B. 2018;529:57–65.

    Article  ADS  CAS  Google Scholar 

  52. Xia H, Zhang N, Guo W. Analysis of resonance mechanism and conditions of train–bridge system. J Sound Vib. 2006;297:810–22.

    Article  ADS  Google Scholar 

  53. Ebrahimi-Mamaghani A, Mirtalebi SH, Ahmadian M-T. Magneto-mechanical stability of axially functionally graded supported nanotubes. Mater Res Express. 2020;6:1250c5.

    Article  Google Scholar 

  54. Gao N, Zhang Z, Deng J, Guo X, Cheng B, Hou H. Acoustic metamaterials for noise reduction: a review. Adv Mater Technol 2022;2100698. https://doi.org/10.1002/admt.202100698.

Download references

Funding

Iran National Science Foundation (INSF) is acknowledged for the postdoctoral fellowship granted to Dr. Hoda Sarparast (INSF-Grant No. 99029761).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akbar Alibeigloo or Vahid Borjalilou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarparast, H., Alibeigloo, A., Borjalilou, V. et al. Forced and free vibrational analysis of viscoelastic nanotubes conveying fluid subjected to moving load in hygro-thermo-magnetic environments with surface effects. Archiv.Civ.Mech.Eng 22, 172 (2022). https://doi.org/10.1007/s43452-022-00489-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00489-3

Keywords

Navigation