Skip to main content
Log in

Effect of surface nanosizing on the wear and corrosion resistance of β-type titanium alloy TB11

  • Research Paper
  • Published:
Proceedings of the Indian National Science Academy Aims and scope Submit manuscript

Abstract

In response to the problem that the service life of titanium alloy TB11 decreases mainly due to wear and corrosion occurring on the surface when it is in human service, surface nanocrystallization is proposed to enhance the wear and corrosion resistance of TB11. Firstly, the surface layer of TB11 was nanocrystallized by repeated mechanical hammering, and the microstructure, hardness, wear and corrosion results of the samples with different hammering times were compared. It was found that after hammering 30 min, the grain size of TB11 surface layer reached 32.21 nm and stabilized. On the basis of this, the samples hammered for 30 min were annealed at different temperatures, and the wear and corrosion of the samples with different treatments were analyzed. The results showed that the refinement of surface grain size and the formation of uniform and dense passivation layer after hammering 30 min + annealing 650 °C treatment had the best effect on the improvement of TB11 wear resistance and corrosion resistance. Therefore, hammering 30 min + annealing 650 °C annealing treatment can strengthen the surface layer of TB11 and make it have stronger wear resistance and corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data are available upon request from the corresponding author.

References

  • Ao, N., Liu, D., Xu, X., Zhang, X., Liu, D.: Gradient nanostructure evolution and phase transformation of α phase in Ti-6Al-4V alloy induced by ultrasonic surface rolling process. Mater. Sci. Eng. A 742, 820–834 (2019)

    Article  CAS  Google Scholar 

  • Arshad, M.A., Maaroufi, A.: Relationship between Johnson–Mehl–Avrami and Šesták-Berggren models in the kinetics of crystallization in amorphous materials. J. Non-Cryst. Solids 413, 53–58 (2015)

    Article  CAS  Google Scholar 

  • Bae, J.W., Asghari-Rad, P., Amanov, A., Kim, H.S.: Gradient-structured ferrous medium-entropy alloys with enhanced strength-ductility synergy by ultrasonic nanocrystalline surface modification. Mater. Sci. Eng. A 826, 141966 (2021)

    Article  CAS  Google Scholar 

  • Bagherifard, S., Fernandez-Pariente, I., Ghelichi, R., Guagliano, M.: Fatigue behavior of notched steel specimens with nanocrystallized surface obtained by severe shot peening. Mater. Des. 45, 497–503 (2013)

    Article  CAS  Google Scholar 

  • Çallıoğlu, S., Acar, P.: Design of β-Titanium microstructures for implant materials. Biomed. Sci. 110, 110715 (2020)

    Google Scholar 

  • Chang, H., Zhou, L., Zhang, T.: Review of solid phase transformation in titanium alloys. Rare Metal Mater. Eng. 36(9), 1505–1510 (2007)

    CAS  Google Scholar 

  • Dai, J., Li, S., Zhang, H.: Microstructure and wear properties of self-lubricating TiB2–TiCxNy ceramic coatings on Ti–6Al–4V alloy fabricated by laser surface alloying. Surf. Coat. Technol. 369, 269–279 (2019)

    Article  CAS  Google Scholar 

  • Fojt, J., Filip, V., Joska, L.: On the increasing of adhesive strength of nanotube layers on beta titanium alloys for medical applications. Appl. Surf. Sci. 355, 52–58 (2015)

    Article  CAS  Google Scholar 

  • Gao, C., Li, C., Wang, C., Qin, Y., Wang, Z., Yang, F., Liu, H., Chang, F., Wang, J.: Advances in the induction of osteogenesis by zinc surface modification based on titanium alloy substrates for medical implants. J. Alloys Compd. 726, 1072–1084 (2017)

    Article  CAS  Google Scholar 

  • Geetha, M., Singh, A.K., Asokamani, R., Gogia, A.K.: Ti based biomaterials, the ultimate choice for orthopaedic implants: a review. Prog. Mater Sci. 54(3), 397–425 (2009)

    Article  CAS  Google Scholar 

  • He, Y., Li, G., Hwang, K.-H., Boluk, Y., Claesson, P.M.: Nano-scale mechanical and wear properties of a corrosion protective coating reinforced by cellulose nanocrystals: Initiation of coating degradation. Appl. Surf. Sci. 537, 147789 (2021)

    Article  CAS  Google Scholar 

  • Jiang, J., Shen, Y., Feng, X.: Microstructures evolution, formation mechanisms and properties of Sicp Al composite coatings on Ti–6Al–4V substrate via mechanical alloying method. Surf. Interfaces 19, 100487 (2020)

    Article  CAS  Google Scholar 

  • Khun, N.W., Tan, A.W.Y., Bi, K.J.W., Liu, E.: Effects of working gas on wear and corrosion resistances of cold sprayed Ti–6Al–4V coatings. Surf. Coat. Technol. 302, 1–12 (2016)

    Article  CAS  Google Scholar 

  • Lei, W., Yong, Y., Yaming, W., Ying, J.: Effect of nanocrystalline surface and iron-containing layer obtained by SMAT on tribological properties of 2024 Al alloy. Rare Metal Mater. Eng. 44(6), 1320–1325 (2015)

    Article  Google Scholar 

  • Li, X., Ma, W.: Molecular dynamics simulation and theoretical modeling of free surface effect on nanocrack initiation induced by grain boundary sliding in nanocrystalline materials. Mater. Lett. 304, 130647 (2021)

    Article  CAS  Google Scholar 

  • Li, Q., Lu, H., Li, D.Y.: Effect of recovery treatment on the wear resistance of surface hammered AZ31 Mg alloy. Wear 426, 981–988 (2019)

    Article  Google Scholar 

  • Li, Y., Lian, Y., Li, J., He, T., Zou, Y.: Effect of supersonic fine particle bombardment on the surface integrity and wear performance of DZ2 axle steel. Surf. Coat. Technol. 435, 128250 (2022)

    Article  CAS  Google Scholar 

  • Liu, F., Yang, C.L., Yang, G.C., Li, J.S.: Deviations from the classical Johnson–Mehl–Avrami kinetics. J. Alloy. Compd. 460(1–2), 326–330 (2008)

    CAS  Google Scholar 

  • Liu, Y., Jin, B., Li, D.J., Zeng, X.Q., Lu, J.: Wear behavior of nanocrystalline structured magnesium alloy induced by surface mechanical attrition treatment. Surf. Coat. Technol. 261, 219–226 (2015)

    Article  CAS  Google Scholar 

  • Liu, J., Suslov, S., Vellore, A., Ren, Z., Amanov, A., Pyun, Y.S., Ye, C.: Surface nanocrystallization by ultrasonic nano-crystal surface modification and its effect on gas nitriding of Ti6Al4V alloy. Mater. Sci. Eng. A 736, 335–343 (2018)

    Article  CAS  Google Scholar 

  • Liu, J., Yang, Q., Yin, J., Yang, H.: Effects of alloying elements and annealing treatment on the microstructure and mechanical properties of Nb–Ta–Ti alloys fabricated by partial diffusion for biomedical applications. Mater. Sci. Eng. C 110, 110542 (2020)

    Article  CAS  Google Scholar 

  • Liu, X., Nakatani, M., Gao, H., Sharma, B., Pan, H., Fu, Z., Zhu, X.: Effect of stacking fault energy on deformation mechanisms in Cu and Cu–30% Zn alloy with gradient structure obtained by SMAT. J. Alloy. Compd. 865, 158863 (2021)

    Article  CAS  Google Scholar 

  • Ma, G.Z., Xu, B.S., Wang, H.D., Si, H.J., Yang, D.X.: Effect of surface nanocrystallization on the tribological properties of 1Cr18Ni9Ti stainless steel. Mater. Lett. 65(9), 1268–1271 (2011)

    Article  CAS  Google Scholar 

  • Manam, N.S., Harun, W.S.W., Shri, D.N.A., Ghani, S.A.C., Kurniawan, T., Ismail, M.H., Ibrahim, M.H.I.: Study of corrosion in biocompatible metals for implants: a review. J. Alloy. Compd. 701, 698–715 (2017)

    Article  CAS  Google Scholar 

  • Mao, X.Y., Li, D.Y., Fang, F., Tan, R.S., Jiang, J.Q.: Application of a simple surface nanocrystallization process to a Cu–30Ni alloy for enhanced resistances to wear and corrosive wear. Wear 271(9–10), 1224–1230 (2011)

    Article  CAS  Google Scholar 

  • Nouri, M., Li, D.Y.: Maximizing the benefit of aluminizing to AZ31 alloy by surface nanocrystallization for elevated resistance to wear and corrosive wear. Tribol. Int. 111, 211–219 (2017)

    Article  CAS  Google Scholar 

  • Oh, J., Park, H.D., Gwak, M., Lee, J., Son, S., Amanov, A., Kim, J.G.: Mechanical property enhancement in gradient structured aluminum alloy by ultrasonic nanocrystalline surface modification. Mater. Sci. Eng. A 812, 141101 (2021)

    Article  CAS  Google Scholar 

  • Olugbade, T.O., Lu, J.: Literature review on the mechanical properties of materials after surface mechanical attrition treatment (SMAT). Nano Mater. Sci. 2(1), 3–31 (2020)

    Article  Google Scholar 

  • Park, J.W., Kim, Y.J., Park, C.H., Lee, D.H., Ko, Y.G., Jang, J.H., Lee, C.S.: Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography. Acta Biomater. 5(8), 3272–3280 (2009)

    Article  CAS  Google Scholar 

  • Peral, L.B., Quintero, A., Vielma, A.T., Barbés, M.F., Fernández-Pariente, I.: TEM evaluation of steel nanocrystalline surfaces obtained by severe shot peening. Surf. Coat. Technol. 418, 127238 (2021)

    Article  CAS  Google Scholar 

  • Sabirov, I., Murashkin, M.Y., Valiev, R.Z.: Nanostructured aluminium alloys produced by severe plastic deformation: new horizons in development. Mater. Sci. Eng. A 560, 1–24 (2013)

    Article  CAS  Google Scholar 

  • Singh, S.C.E., Prakash, C.: Effect of cryogenic treatment on the microstructure, mechanical properties and finish ability of β-TNTZ alloy for orthopedic applications. Mater. Lett. 278, 128461 (2020)

    Article  CAS  Google Scholar 

  • Singh Sidhu, H.S.S., Abdel-Hady Gepreel, M.: A review on alloy design, biological response, and strengthening of β-titanium alloys as biomaterials. Indian Inst. Technol. 121, 111661 (2021)

    Google Scholar 

  • Sun, H.F., Chao, H.Y., Wang, E.D.: Microstructure stability of cold drawn AZ31 magnesium alloy during annealing process. Trans. Nonferrous Metals Soc. China 21, s215–s221 (2011)

    Article  Google Scholar 

  • Verestiuc, M.-C.S.L., Baltatu, M.S., Butnaru, M., Solcan, C., Sandu, A.V., Voiculescu, I., Geanta, V., Vizureanu, P.: New Ti–Mo–Si materials for bone prosthesis applications. J. Mech. Behav. Biomed. Mater. 113, 104198 (2021)

    Article  CAS  Google Scholar 

  • Weissitsch, L., Wurster, S., Paulischin, A., Stückler, M., Pippan, R., Bachmaier, A.: Nanocrystalline FeCr alloys synthesised by severe plastic deformation: a potential material for exchange bias and enhanced magnetostriction. J. Magn. Magn. Mater. 534, 168017 (2021)

    Article  CAS  Google Scholar 

  • Wu, X.L., Tao, N.R., Hong, Y.S., Xu, B., Lu, J., Lu, K.: Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of AL-alloy subjected to USSP. Acta Mater. 50(8), 2075–2084 (2002)

    Article  CAS  Google Scholar 

  • Ye, C., Suslov, S., Fei, X., Cheng, G.J.: Bimodal nanocrystallization of NiTi shape memory alloy by laser shock peening and post-deformation annealing. Acta Mater. 59(19), 7219–7227 (2011)

    Article  CAS  Google Scholar 

  • Yin, J., Cai, H., Cheng, X., Zhang, H., Zhang, X., Xu, Z.: Enhanced mechanical properties due to nanocrystallization by isothermal annealing in Al85Ni9Er6 glassy alloy. J. Alloy. Compd. 695, 3048–3053 (2017)

    Article  CAS  Google Scholar 

  • Zarschler, K., Rocks, L., Licciardello, N., Boselli, L., Polo, E., Garcia, K.P., Dawson, K.A.: Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications. Nanomed. Nanotechnol. Biol. Med. 12(6), 1663–1701 (2016)

    Article  CAS  Google Scholar 

  • Zhigang, C., Jie, Y., Shuili, G., Ziwen, C., Shikun, Z., Haiying, X.: Self-nanocrystallization of Ti–6Al–4V alloy surface induced by laser shock processing. Rare Metal Mater. Eng. 43(5), 1056–1060 (2014)

    Article  Google Scholar 

  • Zhou, L., Long, C., He, W., Tian, L., Jia, W.: Improvement of high-temperature fatigue performance in the nickel-based alloy by LSP-induced surface nanocrystallization. J. Alloy. Compd. 744, 156–164 (2018)

    Article  CAS  Google Scholar 

  • Zhou, T., Xiong, Y., Chen, Z.G., Zha, X.Q., Lu, Y., He, T.T., Cao, W.: Effect of surface nano-crystallization induced by supersonic fine particles bombarding on microstructure and mechanical properties of 300M steel. Surf. Coat. Technol. 421, 127381 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, L.S., T.J. and F.T.; Formal analysis, L.S. and F.T.; Investigation, L.S., T.J. and; Methodology, L.S.; Resources, F.T.; Supervision, F.T.; Validation, L.S. and T.J.; Writing—original draft, L.S. and T.J.; Writing—review & editing, T.J. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Fuquan Tu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Tu, F. & Jiang, T. Effect of surface nanosizing on the wear and corrosion resistance of β-type titanium alloy TB11. Proc.Indian Natl. Sci. Acad. 89, 201–212 (2023). https://doi.org/10.1007/s43538-022-00135-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43538-022-00135-9

Keywords

Navigation