Skip to main content

Advertisement

Log in

Theoretical approach to modeling the early nonadiabatic events of ESIPT originating from three-state conical intersection in quinophthalone

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We explore the excited-state intramolecular proton transfer process of quinophthalone theoretically. This molecule possesses three low-lying singlet excited states (\(\hbox {S}_1, \hbox {S}_2\) and \(\hbox {S}_3\)) in a narrow energy gap of less than the N–H stretching frequency. Dynamics simulations show nonadiabatic wavepacket transfer to \(\hbox {S}_2\) and \(\hbox {S}_3\) upon initiating the wavepacket on \(\hbox {S}_1\). Multiple accessible conical intersections that lie in the Franck–Condon region facilitate the nonadiabatic wavepacket transfer. Nuclear densities associated with the proton transfer promoting vibrations would start accumulating on \(\hbox {S}_2\) and \(\hbox {S}_3\) within a few tens of femtoseconds, validating the involvement of these vibrations in the nonadiabatic events that occur before the proton transfer process. Our findings emphasize the necessity of refined kinetic models for assigning the time constants of ultrafast transient spectroscopy measurements due to the simultaneous evolution of nonadiabatic events and proton transfer kinetics in quinophthalone.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. LeGourrirec, D., Kharlanov, V. A., Brown, R. G., & Rettig, W. (2000). Excited-state intramolecular proton transfer (esipt) in 2-(2\(^\prime\)-hydroxyphenyl)-oxazole and -thiazole. Journal of Photochemistry and Photobiology A, 130(2), 101–111. https://doi.org/10.1016/S1010-6030(99)00206-3.

    Article  Google Scholar 

  2. Doroshenko, A. O., Matsakov, A. Y., Nevskii, O. V., & Grygorovych, O. V. (2012). Excited state intramolecular proton transfer reaction revisited: S1 state or general reversibility? Journal of Photochemistry and Photobiology A, 250, 40–49. https://doi.org/10.1016/j.jphotochem.2012.09.010.

    Article  CAS  Google Scholar 

  3. Kenfack, C. A., Klymchenko, A. S., Duportail, G., Burger, A., & Mly, Y. (2012). Ab initio study of the solvent h-bonding effect on esipt reaction and electronic transitions of 3-hydroxychromone derivatives. Physical Chemistry Chemical Physics, 14, 8910–8918. https://doi.org/10.1039/C2CP40869D.

    Article  CAS  PubMed  Google Scholar 

  4. Chevalier, K., Grn, A., Stamm, A., Schmitt, Y., Gerhards, M., & Diller, R. (2013). Esipt and photodissociation of 3-hydroxychromone in solution: Photoinduced processes studied by static and time-resolved uv/vis, fluorescence, and ir spectroscopy. Journal of Physical Chemistry A, 117(44), 11233–11245. https://doi.org/10.1021/jp407252y.

    Article  CAS  PubMed  Google Scholar 

  5. Simkovitch, R., & Huppert, D. (2015). Excited-state intramolecular proton transfer of the natural product quercetin. Journal of Physical Chemistry B, 119(32), 10244–10251. https://doi.org/10.1021/acs.jpcb.5b04867.

    Article  CAS  PubMed  Google Scholar 

  6. Roohi, H., & Alizadeh, P. (2019). Fine-tuned dual fluorescence behavior of n-substituted aniline-imidazopyridine based switches: Mechanistic understanding, substituent and solvent effects. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 214, 407–428. https://doi.org/10.1016/j.saa.2019.02.075.

    Article  CAS  Google Scholar 

  7. Rastogi, A., Nag, P., & Vennapusa, S. R. (2021). Tracking the early nonadiabatic events of esipt process in 2-acetylindan-1,3-dione by quantum wavepacket dynamics. Journal of Photochemistry and Photobiology A, 418, 113415. https://doi.org/10.1016/j.jphotochem.2021.113415.

    Article  CAS  Google Scholar 

  8. Pandey, D., Nag, P., & Vennapusa, S. R. (2022). Comparative study of the multistate esipt in dihydroxyanthraquinones. Journal of Photochemistry and Photobiology A, 423, 113583. https://doi.org/10.1016/j.jphotochem.2021.113583.

    Article  CAS  Google Scholar 

  9. Chung, M.-W., Lin, T.-Y., Hsieh, C.-C., Tang, K.-C., Fu, H., Chou, P.-T., et al. (2010). Excited-state intramolecular proton transfer (esipt) fine tuned by quinoline-pyrazole isomerism: \(\pi\)-conjugation effect on esipt. Journal of Physical Chemistry A, 114(30), 7886–7891. https://doi.org/10.1021/jp1036102.

    Article  CAS  PubMed  Google Scholar 

  10. Tang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., et al. (2011). Fine tuning the energetics of excited-state intramolecular proton transfer (esipt): White light generation in a single esipt system. Journal of the American Chemical Society, 133(44), 17738–17745. https://doi.org/10.1021/ja2062693.

    Article  CAS  PubMed  Google Scholar 

  11. Jin, X., Liu, C., Wang, X., Huang, H., Zhang, X., & Zhu, H. (2015). A flavone-based esipt fluorescent sensor for detection of n2h4 in aqueous solution and gas state and its imaging in living cells. Sensors and Actuators B: Chemical, 216, 141–149. https://doi.org/10.1016/j.snb.2015.03.088.

    Article  CAS  Google Scholar 

  12. Stasyuk, A. J., Chen, Y.-T., Chen, C.-L., Wu, P.-J., & Chou, P.-T. (2016). A new class of n-h excited-state intramolecular proton transfer (esipt) molecules bearing localized zwitterionic tautomers. Physical Chemistry Chemical Physics, 18, 24428–24436. https://doi.org/10.1039/C6CP05236C.

    Article  CAS  PubMed  Google Scholar 

  13. Han, C., Song, B., Liang, X., Pan, H., & Dong, W. (2019). Design and application of a fluorescent probe based on esipt mechanism for the detection of cys with o-hydroxyacetophenone structure. Analytical Methods, 11, 2513–2517. https://doi.org/10.1039/C9AY00708C.

    Article  CAS  Google Scholar 

  14. Park, S., Kwon, O.-H., Lee, Y.-S., Jang, D.-J., & Park, S. Y. (2007). Imidazole-based excited-state intramolecular proton-transfer (esipt) materials: Observation of thermally activated delayed fluorescence (tdf). Journal of Physical Chemistry A, 111(39), 9649–9653. https://doi.org/10.1021/jp072212p.

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, J., Ji, S., Chen, Y., Guo, H., & Yang, P. (2012). Excited state intramolecular proton transfer (esipt): From principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials. Physical Chemistry Chemical Physics, 14, 8803–8817. https://doi.org/10.1039/C2CP23144A.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, M., Zhao, J., Cui, Y., Wang, Q., Dai, Y., Song, P., & Xia, L. (2015). Theoretical study on the excited-state intramolecular proton-transfer reaction of 10-hydroxybenzo[h]quinoline in methanol and cyclohexane. Journal of Luminescence, 161, 1–6. https://doi.org/10.1016/j.jlumin.2014.12.049.

    Article  CAS  Google Scholar 

  17. Yang, D., Yang, G., Jia, M., Song, X., & Zhang, Q. (2018). Comparing the substituent effects about esipt process for hbo derivatives. Computational and Theoretical Chemistry, 1131, 51–56. https://doi.org/10.1016/j.comptc.2018.03.016.

    Article  CAS  Google Scholar 

  18. Massue, J., Felouat, A., Vrit, P. M., Jacquemin, D., Cyprych, K., Durko, M., et al. (2018). An extended excited-state intramolecular proton transfer (esipt) emitter for random lasing applications. Physical Chemistry Chemical Physics, 20, 19958–19963. https://doi.org/10.1039/C8CP03814G.

    Article  CAS  PubMed  Google Scholar 

  19. Han, G. R., Hwang, D., Lee, S., Lee, J. W., Lim, E., Heo, J., & Kim, S. K. (2017). Shedding new light on an old molecule: quinophthalone displays uncommon n-to-o excited state intramolecular proton transfer (esipt) between photobases. Scientific Reports, 7, 3863–3871. https://doi.org/10.1038/s41598-017-04114-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Becke, A. D. (1993). Densityfunctional thermochemistry. iii. the role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913.

    Article  CAS  Google Scholar 

  21. Lee, C., Yang, W., & Parr, R. G. (1988). Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785. https://doi.org/10.1103/PhysRevB.37.785.

    Article  CAS  Google Scholar 

  22. Yanai, T., Tew, D. P., & Handy, N. C. (2004). A new hybrid exchange-correlation functional using the coulomb-attenuating method (cam-b3lyp). Chemical Physics Letters, 393(1–3), 51–57. https://doi.org/10.1016/j.cplett.2004.06.011.

    Article  CAS  Google Scholar 

  23. Schapiro, I., Sivalingam, K., & Neese, F. (2013). Assessment of \(n\)-electron valence state perturbation theory for vertical excitation energies. Journal of Chemical Theory and Computation, 9(8), 3567–3580. https://doi.org/10.1021/ct400136y.

    Article  CAS  PubMed  Google Scholar 

  24. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., & Fox, D. J. (2016). Gaussian 16 Revision C.01. Gaussian Inc. Wallingford CT

  25. Neese, F. (2012). The orca program system. Wiley Interdisciplinary Reviews Computational Molecular Science,2, 73–78. https://doi.org/10.1002/wcms.81. https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.81.

  26. Neese, F. (2018). Software update: The orca program system, version 4.0. Wiley Interdisciplinary Reviews Computational Molecular Science8, 1327 https://doi.org/10.1002/wcms.1327https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1327.

  27. Köppel, H., Domcke, W., & Cederbaum, L. S. (1984). Multimode molecular dynamics beyond the born-oppenheimer approximation. Advances in Chemical Physics57, 59–246. https://doi.org/10.1002/9780470142813.ch2https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470142813.ch2

  28. Meyer, H.-D., Manthe, U., & Cederbaum, L. S. (1990). The multi-configurational time-dependent hartree approach. Chemical Physics Letters, 165, 73–78. https://doi.org/10.1016/0009-2614(90)87014-I.

    Article  CAS  Google Scholar 

  29. Manthe, U., Meyer, H.-D., & Cederbaum, L. S. (1992). Wavepacket dynamics within the multiconfiguration hartree framework: General aspects and application to nocl. Journal of Chemical Physics, 97, 3199–3213. https://doi.org/10.1063/1.463007.

    Article  CAS  Google Scholar 

  30. Beck, M. H., Jäckle, A., Worth, G. A., & Meyer, H.-D. (2000). The multiconfiguration time-dependent hartree (mctdh) method: A highly efficient algorithm for propagating wavepackets. Physics Reports, 324, 1–105. https://doi.org/10.1016/S0370-1573(99)00047-2.

    Article  CAS  Google Scholar 

  31. Meyer, H.-D., Gatti, F., & Worth, G. A. (2009). Multidimensional Quantum Dynamics: MCTDH Theory and Applications. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  32. Vendrell, O., & Meyer, H.-D. (2011). Multilayer multiconfiguration time-dependent hartree method: Implementation and applications to a henonheiles hamiltonian and to pyrazine. Journal of Chemical Physics, 134(4), 044135. https://doi.org/10.1063/1.3535541.

    Article  CAS  PubMed  Google Scholar 

  33. Meng, Q., & Meyer, H.-D. (2013). A multilayer mctdh study on the full dimensional vibronic dynamics of naphthalene and anthracene cations. Journal of Chemical Physics, 138(1), 014313. https://doi.org/10.1063/1.4772779.

    Article  CAS  PubMed  Google Scholar 

  34. Meng, Q., & Meyer, H.-D. (2014). A full-dimensional multilayer multiconfiguration time-dependent hartree study on the ultraviolet absorption spectrum of formaldehyde oxide. Journal of Chemical Physics, 141(12), 124309. https://doi.org/10.1063/1.4896201.

    Article  CAS  PubMed  Google Scholar 

  35. Wang, H. (2015). Multilayer multiconfiguration time-dependent hartree theory. Journal of Physical Chemistry A, 119(29), 7951–7965. https://doi.org/10.1021/acs.jpca.5b03256.

    Article  CAS  PubMed  Google Scholar 

  36. Xie, Y., Zheng, J., & Lan, Z. (2015). Full-dimensional multilayer multiconfigurational time-dependent hartree study of electron transfer dynamics in the anthracene/c60 complex. Journal of Chemical Physics, 142(8), 084706. https://doi.org/10.1063/1.4909521.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, H., & Meyer, H.-D. (2018). On regularizing the ml-mctdh equations of motion. Journal of Chemical Physics, 149(4), 044119. https://doi.org/10.1063/1.5042776.

    Article  CAS  PubMed  Google Scholar 

  38. Worth, G. A., Beck, M. H., Jäckle, A., & Meyer, H.-D. (2007). The MCTDH Package, Version 8.5. Heidelberg: University of Heidelberg.

    Google Scholar 

  39. Worth, G. A., Meyer, H., & Cederbaum, L. S. (1996). The effect of a model environment on the s2 absorption spectrum of pyrazine: A wave packet study treating all 24 vibrational modes. Journal of Chemical Physics, 105(11), 4412–4426. https://doi.org/10.1063/1.472327.

    Article  CAS  Google Scholar 

  40. Hochstrasser, R. M. (2007). Two-dimensional spectroscopy at infrared and optical frequencies. Proceedings of the National Academy of Sciences of the United States of America104(36), 14190–14196 https://doi.org/10.1073/pnas.0704079104https://www.pnas.org/content/104/36/14190.full.pdf

  41. Oliver, T. A. A., Lewis, N. H. C., & Fleming, G. R. (2014). Correlating the motion of electrons and nuclei with two-dimensional electronic–vibrational spectroscopy. Proceedings of the National Academy of Sciences of the United States of America111, 10061–10066 https://doi.org/10.1073/pnas.1409207111https://www.pnas.org/content/111/28/10061.full.pdf

  42. Courtney, T. L., Fox, Z. W., Slenkamp, K. M., & Khalil, M. (2015). Two-dimensional vibrational-electronic spectroscopy. Journal of Chemical Physics, 143, 154201. https://doi.org/10.1063/1.4932983.

    Article  CAS  PubMed  Google Scholar 

  43. Lewis, N. H. C., & Fleming, G. R. (2016). Two-dimensional electronic-vibrational spectroscopy of chlorophyll a and b. Journal of Physical Chemistry Letters, 7, 831–837. https://doi.org/10.1021/acs.jpclett.6b00037.

    Article  CAS  PubMed  Google Scholar 

  44. Gaynor, J. D., Sandwisch, J., & Khalil, M. (2019). Vibronic coherence evolution in multidimensional ultrafast photochemical processes. Nature Communications, 10, 5621. https://doi.org/10.1038/s41467-019-13503-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu, E. C., Arsenault, E. A., Bhattacharyya, P., Lewis, N. H. C., & Fleming, G. R. (2019). Two-dimensional electronic vibrational spectroscopy and ultrafast excitonic and vibronic photosynthetic energy transfer. Faraday Discuss, 216, 116–132. https://doi.org/10.1039/C8FD00190A.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AB and DP acknowledge the Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) for the doctoral fellowship. PN thanks Ministry of Higher Education, Government of India, for the doctoral fellowship under the Prime Minister’s Research Fellows (PMRF) scheme. The authors acknowledge IISER TVM for computational facilities.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivaranjana Reddy Vennapusa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information

Details of ground-state harmonic vibrational frequencies, vibronic coupling parameters, geometries of various stationary points and MCTDH data. These can be obtained from http://warwick.ac.uk/chrisoates/. (pdf 1934KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bera, A., Nag, P., Pandey, D. et al. Theoretical approach to modeling the early nonadiabatic events of ESIPT originating from three-state conical intersection in quinophthalone. Photochem Photobiol Sci 21, 1287–1298 (2022). https://doi.org/10.1007/s43630-022-00220-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00220-4

Keywords

Navigation