Skip to main content
Log in

ZnO-Based Quantum Dots for Biosensing, Cancer Imaging and Therapy: An Overview

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

Cancer is the second leading cause of death globally. The earlier detection via targeted and sustained imaging for cancer diagnosis can significantly improve the situation. Tremendous efforts are currently underway to utilize unique properties of semiconducting nanocrystals or quantum dots (QDs) in biological imaging. Particularly, ZnO-based QDs are attractive because they are envisaged to enhance the penetration depth of light into the endogenous substance in view of being water dispersible. Besides, they offer numerous tunable features in terms of their optical behavior thereby leading to incredible scope in the areas like bio-imaging. Because of its high biocompatibility or poor cytotoxicity, ZnO QDs have slowly acquired a respectable place in bio-sensing, bio-imaging, and medication administration. Modified ZnO QDs via multiple approaches, such as doping, encapsulation, core–shell formation, surface functionalization and conjugation with polymer or other compounds, are suggested to be an effective carrier of drug at the target cells. Beginning from technological challenges, this overview presents recent developments on optical tuning and utilization of ZnO QDs for cancer imaging and their therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. WHO report on cancer: setting priorities, investing wisely and providing care for all, ISBN 978-92-4-000130-5 (2020)

  2. J.V. Frangioni, New technologies for human cancer imaging. J. Clin. Oncol. 26(24), 4012 (2008)

    Google Scholar 

  3. M. Carofiglio, S. Barui, V. Cauda, M. Laurenti, Doped zinc oxide nanoparticles: synthesis, characterization and potential use in nanomedicine. Appl. Sci. 10, 5194 (2020)

    CAS  Google Scholar 

  4. E.M.C. Hillman, Optical brain imaging in vivo: techniques and applications from animal to man. J. Biomed. Opt 12(5), 051402 (2007)

    Google Scholar 

  5. G.D. Luker, K.E. Luker, Optical imaging: current applications and future directions. J. Nucl. Med 49(1), 1–4 (2008)

    Google Scholar 

  6. W.W. Wu, A.D. Li, Optically switchable nanoparticles for biological imaging. Nanomedicine 2(4), 523 (2007)

    CAS  Google Scholar 

  7. W.B. Tan, Y. Zhang, Surface modification of gold and quantum dot nanoparticles with chitosan for bioapplications. J. Biomed. Mater. Res. 75A, 56 (2005)

    CAS  Google Scholar 

  8. X.H. Zhong, Y.Y. Feng, W. Knoll, M.Y. Han, Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width. J. Am. Chem. Soc. 125, 13559 (2003)

    CAS  Google Scholar 

  9. R.E. Bailey, S.M. Nie, Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 125, 7100 (2003)

    CAS  Google Scholar 

  10. M.A. Hines, G.D. Scholes, Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 15, 1844 (2003)

    CAS  Google Scholar 

  11. S. Kim, B. Fisher, H.J. Eisler, M. Bawendi, Type-II quantum dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) heterostructures. J. Am. Chem. Soc. 125, 11466 (2003)

    CAS  Google Scholar 

  12. L.H. Qu, X.G. Peng, Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 124, 2049 (2002)

    CAS  Google Scholar 

  13. J. Pietryga, R. Schaller, D. Werder, M. Stewart, V. Kilmov, J. Jollingsworth, Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. J. Am. Chem. Soc. 126, 4879 (2004)

    Google Scholar 

  14. R. Weissleder, A clearer vision for in vivo imaging. Nat. Biotechnol 19, 316 (2001)

    CAS  Google Scholar 

  15. W.B. Tan, Y. Zhang, Surface modification of gold and quantum dot nanoparticles with chitosan for bioapplications. J. Biomed. Mater. Res. 75A, 56–62 (2005)

    CAS  Google Scholar 

  16. V. Dmitri, Talapin, ivo mekis, stephan götzinger, andreas kornowski, oliver benson, and horst weller, CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core−shell−shell nanocrystals. J. Phys. Chem. B 108(49), 18826–18831 (2004)

    Google Scholar 

  17. A. Eychmuller, A.L. Rogach, Chemistry and pho- tophysics of thiol-stabilized II-VI semiconductor nano- crystals. Pure Appl. Chem. 72, 179–188 (2000)

    CAS  Google Scholar 

  18. D. Gerion, F. Pinaud, S.C. Williams, W.J. Parak, D. Zanchet, S. Weiss, A.P. Alivasatos, Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 105(37), 8861–8871 (2001)

    CAS  Google Scholar 

  19. G.P. Mitchell, C.A. Mirkin, R.L. Letsinger, Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 121(35), 8122–8123 (1999)

    CAS  Google Scholar 

  20. J. Aldana, Y.A. Wang, X. Peng, Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 123(36), 8844–8850 (2001)

    CAS  Google Scholar 

  21. Y. Zhang, M. Li, X. Gao et al., Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol 12, 137 (2019). https://doi.org/10.1186/s13045-019-0833-3

    Article  Google Scholar 

  22. T. Song, Y. Qu, Z. Ren, S. Yu, M. Sun, X. Yu, X. Yu, Synthesis and characterization of polyvinylpyrrolidone-modified ZnO quantum dots and their in vitro photodynamic tumor suppressive action. Int. J. Mol. Sci. 22, 8106 (2021). https://doi.org/10.3390/ijms22158106

    Article  CAS  Google Scholar 

  23. Wu. Peng, X.-P. Yan, Doped quantum dots for chemo/biosensing and bioimaging. Chem. Soc. Rev. 42, 5489–5521 (2013)

    Google Scholar 

  24. R.M.N. Flora, S. Palani, J. Sharmila et al., Green synthesis and optimization of zinc oxide quantum dots using the Box-Behnken design, with anticancer activity against the MCF-7 cell line. Appl. Phys. A 128, 359 (2022). https://doi.org/10.1007/s00339-022-05466-4

    Article  CAS  Google Scholar 

  25. K.P. Misra, R.K. Shukla, A. Srivastava, A. Srivastava, Appl. Phys. Lett. 95(3), 031901 (2009)

    Google Scholar 

  26. S. Chattopadhyay, K.P. Misra, A. Agarwala, A. Shahee, S. Jain, N. Halder, A. Rao, P.D. Babu, M. Saran, A.K. Mukhopadhyay, Ceram. Int. 45, 23341 (2019)

    CAS  Google Scholar 

  27. A. Kumawat, S. Chattopadhyay, K.P. Misra, N. Halder, S.K. Jain, B.L. Choudhary, Solid State Sci. 108, 106379 (2020)

    CAS  Google Scholar 

  28. K.P. Misra, A. Kumawat, A. Shahee, S. Chattopadhyay, Mater. Technol. (2020). https://doi.org/10.1080/10667857.2020.1776028

    Article  Google Scholar 

  29. K.P. Misra, S. Jain, A. Agarwala, S. Chattopadhyay, N. Halder, Semiconductors 54(3), 311–316 (2020)

    CAS  Google Scholar 

  30. A. Tripathi, K.P. Misra, R.K. Shukla, J. Lumin. 149, 361–368 (2014)

    CAS  Google Scholar 

  31. Z. Jia, R.D.K. Misra, Mater. Technol. Adv. Perform. Mater. (2013). https://doi.org/10.1179/1753555713Y/061

    Article  Google Scholar 

  32. D. Liu, W. Wu, Y. Qiu, Surface functionalization of ZnO nanotetrapods with photoactive and electroactive organic monolayers. Langmuir 24(9), 5052–5059 (2008)

    CAS  Google Scholar 

  33. O. Taratula, E. Galoppini, D. Wang, Binding studies of molecular linkers to ZnO and MgZnO nanotip films. J. Phys. Chem. B 110(13), 6506–6515 (2006)

    CAS  Google Scholar 

  34. N. Pradhan, X.G. Peng, Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry. J. Am. Chem. Soc. 129(11), 3339–3347 (2007)

    CAS  Google Scholar 

  35. S. Sudhagar, S. Sathya, K. Pandian et al., Targeting and sensing cancer cells with ZnO nanoprobes in vitro. Biotechnol Lett 33, 1891–1896 (2011). https://doi.org/10.1007/s10529-011-0641-5

    Article  CAS  Google Scholar 

  36. K.M. Abu-Salah, M.M. Zourob, F. Mouffouk, S.A. Alrokayan, M.A. Alaamery, A.A. Ansari, DNA-based nanobiosensors as an emerging platform for detection of disease. Sensors 15, 14539–14568 (2015). https://doi.org/10.3390/s150614539

    Article  CAS  Google Scholar 

  37. A. Sharma, A. Agrawal, S. Kumar, K.K.A.K.A.A. Awasthi, Zinc oxide nanostructures–based biosensors, nanostructured zinc oxide: synthesis properties and applications metal oxides (Elsevier, Amsterdam, 2021), pp.655–695

    Google Scholar 

  38. M. Ali, I. Shah, S.W. Kim, M. Sajid, J.H. Lim, K.H. Choi, Quantitative detection of uric acid through ZnO quantum dots based highly sensitive electrochemical biosensor. Sens. Actu. A: Phys. 283, 282–290 (2018)

    CAS  Google Scholar 

  39. U.D. Kamaci, M. Kamaci, Selective and sensitive ZnO quantum dots based fluorescent biosensor for detection of cysteine. J. Fluoresc. 31, 401–414 (2021). https://doi.org/10.1007/s10895-020-02671-3

    Article  CAS  Google Scholar 

  40. A. Devadoss, P. Sudhagar, C. Terashima, K. Nakata, A. Fujishima, Photoelectrochemical biosensors: new insights into promising photoelectrodes and signal amplification strategies. J. Photochem. Photobiol. C: Photochem. Rev. 24, 43–63 (2015)

    CAS  Google Scholar 

  41. Y. Li, W. Wang, H. Gong, Xu. Jianhui, Yu. Zhichao, Q. Wei, D. Tang, Graphene-coated copper-doped ZnO quantum dots for sensitive photoelectrochemical bioanalysis of thrombin triggered by DNA nanoflowers. J. Mater. Chem. B 9, 6818–6824 (2021)

    CAS  Google Scholar 

  42. S. Anjum, M. Hashim, S.A. Malik, M. Khan, J.M. Lorenzo, B.H. Abbasi, C. Hano, Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers 13, 4570 (2021). https://doi.org/10.3390/cancers13184570

    Article  CAS  Google Scholar 

  43. J. Wang, Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron. 21, 1887–1892 (2006)

    CAS  Google Scholar 

  44. B.V. Chikkaveeraiah, A.A. Bhirde, N.Y. Morgan, H.S. Eden, X. Chen, Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6, 6546–6561 (2012)

    CAS  Google Scholar 

  45. Y. Mita, Y. Aoyagi, M. Yanagi, T. Suda, Y. Suzuki, H. Asakura, The usefulness of determining des–carboxy prothrombin by sensitive enzyme immunoassay in the early diagnosis of patients with hepatocellular carcinoma. Cancer: Interdiscip. Int. J. Am. Cancer Soc. 82, 1643–1648 (1998)

    CAS  Google Scholar 

  46. H. Chen, Z. Zhen, T. Todd, P.K. Chu, J. Xie, Nanoparticles for improving cancer diagnosis. Mater. Sci. Eng. R. Rep. 74, 35–69 (2013)

    Google Scholar 

  47. V. Thiagarajan, S. Madhurantakam, S. Sethuraman, J.B.B. Rayappan, U.M. Krishnan, Nano interfaced biosensor for detection of choline in triple negative breast cancer cells. J. Coll. Interf. Sci. 462, 334–340 (2016)

    CAS  Google Scholar 

  48. M.D. Scanlon, U. Salaj-Kosla, S. Belochapkine, D. MacAodha, D. Leech, Y. Ding, E. Magner, Characterization of nanoporous gold electrodes for bioelectrochemical applications. Langmuir 28, 2251–2261 (2012)

    CAS  Google Scholar 

  49. P.R. Solanki, A. Kaushik, V.V. Agrawal, B.D. Malhotra, Nanostructured metal oxide-based biosensors. NPG Asia Mater. 3, 17–24 (2011)

    Google Scholar 

  50. H. Jiang, H. Wang, X. Wang, Facile and mild preparation of fluorescent ZnO nanosheets and their bioimaging applications. Appl. Surf. Sci. 257, 6991–6995 (2011)

    CAS  Google Scholar 

  51. S. Li, Q. Mou, P.H.M. Leung, Synthesis of photoluminescent ZnO quantum dots and its application in bioimaging. Nanosci. Nanotechnol. Lett. 9(10), 1514–1519 (2017)

    Google Scholar 

  52. Y.L. Wu, C.S. Lim, S. Fu, A.I.Y. Tok, H.M. Lau, F.Y.C. Boey, X.T. Zeng, Surface modifications of ZnO quantum dots for bio-imaging. Nanotechnology 18, 215604 (2007)

    Google Scholar 

  53. T. Song et al., Synthesis and characterization of polyvinylpyrrolidone-modified ZnO quantum dots and their in vitro photodynamic tumor suppressive action. Int. J. Mol. Sci. 22(15), 8106 (2021). https://doi.org/10.3390/ijms22158106

    Article  CAS  Google Scholar 

  54. X. Chen, Q. Wang, X.J. Wang et al., Synthesis and performance of ZnO quantum dots water-based fluorescent ink for anti-counterfeiting applications. Sci Rep 11, 5841 (2021). https://doi.org/10.1038/s41598-021-85468-z

    Article  CAS  Google Scholar 

  55. L.A. Chiavacci et al., ZnO based quantum dots for magnetic resonance and fluorescence imaging, in World congress on recent advances in nanotechnology. (Repositório Institucional UNESP, 2019)

    Google Scholar 

  56. Y.Y. Ma et al., Folic acid functionalized ZnO quantum dots for targeted cancer cell imaging. Nanotechnology 26, 305702 (2015). https://doi.org/10.1088/0957-4484/26/30/305702

    Article  CAS  Google Scholar 

  57. H.M. Xiong, Y. Xu, Q.G. Ren, Y.Y. Xia, Stable aqueous ZnO@Polymer core−shell nanoparticles with tunable photoluminescence and their application in cell imaging. J. Am. Chem. Soc. 130, 7522–7523 (2008)

    CAS  Google Scholar 

  58. H.M. Xiong, D.G. Shchukin, H. Mçhwald, Y. Xu, Y.Y. Xia, Sonochemical synthesis of highly luminescent zinc oxide nanoparticles doped with magnesium(II). Angew. Chem. 121, 2765–2769 (2009)

    Google Scholar 

  59. Z.Y. Pan, J. Liang, Z.Z. Zheng, H.H. Wang, H.M. Xiong, The application of ZnO luminescent nanoparticles in labeling mice. Contrast Media Mol. Imaging 6, 328–330 (2011)

    CAS  Google Scholar 

  60. F. Muhammad et al., Acid degradable ZnO quantum dots as a platform for targeted delivery of an anticancer drug. J. Mater. Chem. 21, 13406–13412 (2011). https://doi.org/10.1039/C1JM12119G

    Article  CAS  Google Scholar 

  61. Y. Yang, Z. Song, W. Wu, A. Xu, S. Lv, S. Ji, ZnO quantum dots induced oxidative stress and apoptosis in HeLa and HEK-293T cell lines. Front. Pharmacol. 11, 131 (2020). https://doi.org/10.3389/fphar.2020.00131

    Article  CAS  Google Scholar 

  62. X. Cai et al., pH-sensitive ZnO quantum dots-doxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl. Mater. Interf. 8(34), 22442–22450 (2016)

    CAS  Google Scholar 

  63. A. Kumawat, K.P. Misra, S. Chattopadhyay, Band gap engineering and relationship with luminescence in rare-earth elements doped ZnO: an overview. Mater. Technol. (2022). https://doi.org/10.1080/10667857.2022.2082351

    Article  Google Scholar 

  64. D.X. Ye, Y.Y. Ma, W. Zhao, H.M. Cao, J.L. Kong, H.M. Xiong, H. Möhwald, ZnO-based nanoplatforms for labeling and treatment of mouse tumors without detectable toxic side effects. ACS Nano. 10(4), 4294–4300 (2016)

    CAS  Google Scholar 

  65. Y. Wang, L. He, B. Yu, Y. Chen, Y. Shen, H. Cong, ZnO quantum dots modified by pH-activated charge-reversal polymer for tumor targeted drug delivery. Polymers 10, 1272 (2018). https://doi.org/10.3390/polym10111272

    Article  CAS  Google Scholar 

  66. Q. Yuan, S. Hein, R.D.K. Misra, New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: synthesis, characterization and in vitro drug delivery response. Acta Biomater. 6, 2732–2739 (2010)

    CAS  Google Scholar 

  67. W. Shanshan, X. Huang, D. Xuezhong, pH- and redox-triggered synergistic controlled release of a ZnO-gated hollow mesoporous silica drug delivery system. J. Mater. Chem. B 3, 1426–1432 (2015)

    Google Scholar 

  68. C. Xie, Y. Zhan, P. Wang, B. Zhang, Y. Zhang, Novel surface modification of ZnO QDs for paclitaxel-targeted drug delivery for lung cancer treatment. Dose-Res Int. J. 18(2), 1–7 (2020). https://doi.org/10.1177/1559325820926739

    Article  CAS  Google Scholar 

  69. Z.Y. Zhang, Y.D. Xu, Y.Y. Ma, L.L. Qiu, Y. Wang, J.L. Kong, H.M. Xiong, Biodegradable ZnO@polymer core-shell nanocarriers: pH-triggered release of doxorubicin in vitro. Angew. Chem. Int. Ed. 52, 4127–4131 (2013)

    CAS  Google Scholar 

  70. T. Chen, T. Zhao, D. Wei, Y. Wei, Y. Li, H. Zhang, Core–shell nanocarriers with ZnO quantum dots-conjugated Au nanoparticle for tumor-targeted drug delivery. Carbohyd. Polym. 92, 1124–1132 (2013)

    CAS  Google Scholar 

Download references

Funding

No funding was received for the overview article presented here.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kamakhya Prakash Misra or R. D. K. Misra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, K.P., Misra, R.D.K. ZnO-Based Quantum Dots for Biosensing, Cancer Imaging and Therapy: An Overview. Biomedical Materials & Devices 1, 99–107 (2023). https://doi.org/10.1007/s44174-022-00033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44174-022-00033-0

Keywords

Navigation