Skip to main content

Advertisement

Log in

Magnetic Iron Oxide Nanoparticles as a Tool for the Advancement of Biomedical and Environmental Application: A Review

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

Recently, a number of studies have been devoted for the exploitation of magnetic nanoparticles with potential applications in medicine and environment. Among the oxide of magnetic nanoparticles, iron oxide has been emerged as essential tool in nanotechnology particularly, biotechnology. This is attributed to its exceptional properties such as size, shape, supermagnetism and biocompatibility. The iron oxide nanoparticle is less toxic and more biocompatible than other metal nanoparticles, making it an ideal substrate for biosensing, direct drug delivery, catalysis, (CT/MRI) dual-modality, photothermal therapy, and immunoassays applications. In this review, various synthetic methods of iron oxide nanoparticles have been discussed in detail. The potential applications of these iron oxide nanoparticles in the field of drug delivery, hyperthermia and MRI have also been reviewed in detail. These nanoparticles enhance the mechanical properties of a restorative material and improve the overall bonding between dentin and biomaterials, thus affecting the bond strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2017, Med Crave Group

Fig. 2

Copyright 2005, Wiley Online Library

Fig. 3

Copyright 2002, Royal Society of Chemistry

Fig. 4

Copyright 2009, Elsevier

Fig. 5
Fig. 6

Copyright 2008, Springer Nature

Fig. 7
Fig. 8
Fig. 9

Copyright 2016, Elsevier

Similar content being viewed by others

References

  1. S. Srivastava, Z. Usmani, A.G. Atanasov, V.K. Singh, N.P. Singh, A.M. Abdel-Azeem, R. Prasad, G. Gupta, M. Sharma, A. Bhargava, Biological nanofactories: using living forms for metal nanoparticle synthesis, mini-reviews. Med. Chem. 21, 245–265 (2021). https://doi.org/10.2174/1389557520999201116163012

    Article  CAS  Google Scholar 

  2. J. Dolai, K. Mandal, N.R. Jana, Nanoparticle size effects in biomedical applications. ACS Appl. Nano Mater. 4, 6471–6496 (2021). https://doi.org/10.1021/acsanm.1c00987

    Article  CAS  Google Scholar 

  3. F.N.M. Faudzi, A.A., Hamzah, nanoparticle in composite material, in Nanoparticles in Analytical and Medical Device. (Elsevier, Amsterdam, 2021), pp.71–82

    Chapter  Google Scholar 

  4. W. Wu, Q. He, C. Jiang, Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397 (2008). https://doi.org/10.1007/s11671-008-9174-9

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018). https://doi.org/10.3762/bjnano.9.98

    Article  PubMed  PubMed Central  Google Scholar 

  6. E.N. Ngouangna, M.A. Manan, J.O. Oseh, M.N.A.M. Norddin, A. Agi, A.O. Gbadamosi, Influence of (3–Aminopropyl) triethoxysilane on silica nanoparticle for enhanced oil recovery. J. Mol. Liq. 315, 113740 (2020). https://doi.org/10.1016/j.molliq.2020.113740

    Article  CAS  Google Scholar 

  7. J.M. Wilkinson, Nanotechnology applications in medicine. Med. Device Technol. 14, 29–31 (2003)

    CAS  PubMed  Google Scholar 

  8. P.G. Tratnyek, R.L. Johnson, Nanotechnologies for environmental cleanup. Nano Today 1, 44–48 (2006). https://doi.org/10.1016/S1748-0132(06)70048-2

    Article  Google Scholar 

  9. S.S. Davis, Biomédical applications of nanotechnology—implications for drug targeting and gene therapy. Trends Biotechnol. 15, 217–224 (1997). https://doi.org/10.1016/S0167-7799(97)01036-6

    Article  CAS  PubMed  Google Scholar 

  10. H.-C. Kim, S.-M. Park, W.D. Hinsberg, Block copolymer based nanostructures: materials, processes, and applications to electronics. Chem. Rev. 110, 146–177 (2010). https://doi.org/10.1021/cr900159v

    Article  CAS  PubMed  Google Scholar 

  11. D.K. Kim, Y. Zhang, W. Voit, K.V. Rao, M. Muhammed, Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J. Magn. Magn. Mater. 225, 30–36 (2001). https://doi.org/10.1016/S0304-8853(00)01224-5

    Article  CAS  ADS  Google Scholar 

  12. K. Nanthagopal, B. Ashok, A. Tamilarasu, A. Johny, A. Mohan, Influence on the effect of zinc oxide and titanium dioxide nanoparticles as an additive with Calophyllum inophyllum methyl ester in a CI engine. Energy Convers. Manag. 146, 8–19 (2017). https://doi.org/10.1016/j.enconman.2017.05.021

    Article  CAS  Google Scholar 

  13. B. Ashok, K. Nanthagopal, A. Mohan, A. Johny, A. Tamilarasu, Comparative analysis on the effect of zinc oxide and ethanox as additives with biodiesel in CI engine. Energy 140, 352–364 (2017). https://doi.org/10.1016/j.energy.2017.09.021

    Article  CAS  Google Scholar 

  14. K. Nanthagopal, R.S. Kishna, A.E. Atabani, A.H. Al-Muhtaseb, G. Kumar, B. Ashok, A compressive review on the effects of alcohols and nanoparticles as an oxygenated enhancer in compression ignition engine. Energy Convers. Manag. 203, 112244 (2020). https://doi.org/10.1016/j.enconman.2019.112244

    Article  CAS  Google Scholar 

  15. B. Ashok, K. Nanthagopal, R. Subbarao, A. Johny, A. Mohan, A. Tamilarasu, Experimental studies on the effect of metal oxide and antioxidant additives with Calophyllum Inophyllum Methyl ester in compression ignition engine. J. Clean. Prod. 166, 474–484 (2017). https://doi.org/10.1016/j.jclepro.2017.08.050

    Article  CAS  Google Scholar 

  16. B. Ashok, K. Nanthagopal, A.K. Jeevanantham, P. Bhowmick, D. Malhotra, P. Agarwal, An assessment of Calophyllum inophyllum biodiesel fuelled diesel engine characteristics using novel antioxidant additives. Energy Convers. Manag. 148, 935–943 (2017). https://doi.org/10.1016/j.enconman.2017.06.049

    Article  CAS  Google Scholar 

  17. R.M. Patil, N.D. Thorat, P.B. Shete, P.A. Bedge, S. Gavde, M.G. Joshi, S.A.M. Tofail, R.A. Bohara, Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochem. Biophys. Rep. 13, 63–72 (2018). https://doi.org/10.1016/j.bbrep.2017.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  18. J. Li, Y. Hu, J. Yang, P. Wei, W. Sun, M. Shen, G. Zhang, X. Shi, Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials 38, 10–21 (2015). https://doi.org/10.1016/j.biomaterials.2014.10.065

    Article  CAS  PubMed  ADS  Google Scholar 

  19. S. Karamipour, M.S. Sadjadi, N. Farhadyar, Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@Au core–shell for targeted drug delivery application. Spectrochim Acta Part A 148, 146–155 (2015). https://doi.org/10.1016/j.saa.2015.03.078

    Article  CAS  ADS  Google Scholar 

  20. J. Li, L. Zheng, H. Cai, W. Sun, M. Shen, G. Zhang, X. Shi, Facile one-pot synthesis of Fe 3 O 4 @Au composite nanoparticles for dual-mode MR/CT imaging applications. ACS Appl. Mater. Interfaces 5, 10357–10366 (2013). https://doi.org/10.1021/am4034526

    Article  CAS  PubMed  Google Scholar 

  21. Y. Xin, X. Fu-bing, L. Hong-wei, W. Feng, C. Di-zhao, W. Zhao-yang, A novel H2O2 biosensor based on Fe3O4–Au magnetic nanoparticles coated horseradish peroxidase and graphene sheets–Nafion film modified screen-printed carbon electrode. Electrochim. Acta. 109, 750–755 (2013). https://doi.org/10.1016/j.electacta.2013.08.011

    Article  CAS  Google Scholar 

  22. F. Lin, R. Doong, Bifunctional Au−Fe 3 O 4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J. Phys. Chem. C 115, 6591–6598 (2011). https://doi.org/10.1021/jp110956k

    Article  CAS  Google Scholar 

  23. N. Gan, Jin, Li, Zheng, Fe3O4/Au magnetic nanoparticle amplification strategies for ultrasensitive electrochemical immunoassay of alfa-fetoprotein. Int. J. Nanomed. (2011). https://doi.org/10.2147/IJN.S26212

    Article  Google Scholar 

  24. S.O. Aisida, P.A. Akpa, I. Ahmad, T. Zhao, M. Maaza, F.I. Ezema, Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications. Eur. Polym. J. 122, 109371 (2020). https://doi.org/10.1016/j.eurpolymj.2019.109371

    Article  CAS  Google Scholar 

  25. B.I. Kharisov, H.V. Rasika Dias, O.V. Kharissova, V. Manuel Jiménez-Pérez, B. Olvera Pérez, B. Muñoz Flores, Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Adv. 2, 9325 (2012). https://doi.org/10.1039/c2ra20812a

    Article  CAS  ADS  Google Scholar 

  26. F. Yakasai, M.Z. Jaafar, S. Bandyopadhyay, A. Agi, M.A. Sidek, Application of iron oxide nanoparticles in oil recovery—a critical review of the properties, formulation, recent advances and prospects. J. Pet. Sci. Eng. 208, 109438 (2022). https://doi.org/10.1016/j.petrol.2021.109438

    Article  CAS  Google Scholar 

  27. I. Fatimah, G. Fadillah, S.P. Yudha, Synthesis of iron-based magnetic nanocomposites: a review. Arab. J. Chem. 14, 103301 (2021). https://doi.org/10.1016/j.arabjc.2021.103301

    Article  CAS  Google Scholar 

  28. S. Chandra, S. Mehta, S. Nigam, D. Bahadur, Dendritic magnetite nanocarriers for drug delivery applications. New J. Chem. 34, 648 (2010). https://doi.org/10.1039/b9nj00609e

    Article  CAS  Google Scholar 

  29. R. Ladj, A. Bitar, M. Eissa, Y. Mugnier, R. Le Dantec, H. Fessi, A. Elaissari, Individual inorganic nanoparticles: preparation, functionalization and in vitro biomedical diagnostic applications. J. Mater. Chem. B 1, 1381 (2013). https://doi.org/10.1039/c2tb00301e

    Article  CAS  PubMed  Google Scholar 

  30. V.F. Cardoso, A. Francesko, C. Ribeiro, M. Bañobre-López, P. Martins, S. Lanceros-Mendez, Advances in magnetic nanoparticles for biomedical applications. Adv. Healthc. Mater. 7, 1700845 (2018). https://doi.org/10.1002/adhm.201700845

    Article  CAS  Google Scholar 

  31. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008). https://doi.org/10.1021/cr068445e

    Article  CAS  PubMed  Google Scholar 

  32. L.M. Rossi, A.D. Quach, Z. Rosenzweig, Glucose oxidase? magnetite nanoparticle bioconjugate for glucose sensing. Anal. Bioanal. Chem. 380, 606–613 (2004). https://doi.org/10.1007/s00216-004-2770-3

    Article  CAS  PubMed  Google Scholar 

  33. P. Tartaj, M.A.P. Morales, S. Veintemillas-Verdaguer, T. Gonz lez-Carre, C.J. Serna, The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D 36, 182–197 (2003). https://doi.org/10.1088/0022-3727/36/13/202

    Article  Google Scholar 

  34. Bacteria That Synthesize Nano-sized Compasses to Navigate Using Earth’s Geomagnetic Field | Learn Science at Scitable, (n.d.). https://www.nature.com/scitable/knowledge/library/bacteria-that-synthesize-nano-sized-compasses-to-15669190/ (Accessed Dec 26, 2021).

  35. R.A. Revia, M. Zhang, Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater. Today (Kidlington) 19, 157–168 (2016). https://doi.org/10.1016/J.MATTOD.2015.08.022

    Article  CAS  PubMed  Google Scholar 

  36. E.A. Kuchma, P.V. Zolotukhin, A.A. Belanova, M.A. Soldatov, T.A. Lastovina, S.P. Kubrin, A.V. Nikolsky, L.I. Mirmikova, A.V. Soldatov, Low toxic maghemite nanoparticles for theranostic applications. Int. J. Nanomed. 12, 6365–6371 (2017). https://doi.org/10.2147/IJN.S140368

    Article  CAS  Google Scholar 

  37. E. Amstad, M. Textor, E. Reimhult, Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale 3, 2819–2843 (2011). https://doi.org/10.1039/C1NR10173K

    Article  CAS  PubMed  ADS  Google Scholar 

  38. K. Hanini, J. Kacem, H. Gavard, S. Ammar. Abdelmelek, Ferrite nanoparticles for cancer hyperthermia therapy, in Handbook of Nanomaterials for Industrial Applications. (Elsevier, Amsterdam, 2018), pp.638–661. https://doi.org/10.1016/B978-0-12-813351-4.00036-5

    Chapter  Google Scholar 

  39. D. Ling, N. Lee, T. Hyeon, Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc. Chem. Res. 48, 1276–1285 (2015). https://doi.org/10.1021/ACS.ACCOUNTS.5B00038

    Article  CAS  PubMed  Google Scholar 

  40. A.S. Teja, P.Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55, 22–45 (2009). https://doi.org/10.1016/J.PCRYSGROW.2008.08.003

    Article  CAS  Google Scholar 

  41. C. Justin, S.A. Philip, A.V. Samrot, Synthesis and characterization of superparamagnetic iron-oxide nanoparticles (SPIONs) and utilization of SPIONs in X-ray imaging. Appl. Nanosci. 7, 463–475 (2017). https://doi.org/10.1007/S13204-017-0583-X/FIGURES/12

    Article  CAS  ADS  Google Scholar 

  42. A.V. Samrot, C.S. Sahithya, J. Selvarani A, S.K. Purayil, P. Ponnaiah, A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles. Curr. Res. Green Sustain. Chem. 4, 100042 (2021). https://doi.org/10.1016/j.crgsc.2020.100042

    Article  CAS  Google Scholar 

  43. M.A. Dheyab, A.A. Aziz, M.S. Jameel, O.A. Noqta, B. Mehrdel, Synthesis and coating methods of biocompatible iron oxide/gold nanoparticle and nanocomposite for biomedical applications, Chinese. J. Phys. 64, 305–325 (2020). https://doi.org/10.1016/J.CJPH.2019.11.014

    Article  CAS  Google Scholar 

  44. C. Blanco-Andujar, D. Ortega, Q.A. Pankhurst, N.T.K. Thanh, Elucidating the morphological and structural evolution of iron oxide nanoparticles formed by sodium carbonate in aqueous medium. J. Mater. Chem. 22, 12498–12506 (2012). https://doi.org/10.1039/C2JM31295F

    Article  CAS  Google Scholar 

  45. W.M. Daoush, Co-precipitation and magnetic properties of magnetite nanoparticles for potential biomedical applications. J. Nanomed. Res. (2017). https://doi.org/10.15406/JNMR.2017.05.00118

    Article  Google Scholar 

  46. H.K. Can, S. Kavlak, S. ParviziKhosroshahi, A. Güner, Preparation, characterization and dynamical mechanical properties of dextran-coated iron oxide nanoparticles (DIONPs). Artif. Cells Nanomed. Biotechnol. 46, 421–431 (2017). https://doi.org/10.1080/21691401.2017.1315428

    Article  CAS  PubMed  Google Scholar 

  47. B.K. Sodipo, A.A. Aziz, Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica. J. Magn. Magn. Mater. 416, 275–291 (2016). https://doi.org/10.1016/J.JMMM.2016.05.019

    Article  CAS  ADS  Google Scholar 

  48. G. Gnanaprakash, S. Mahadevan, T. Jayakumar, P. Kalyanasundaram, J. Philip, B. Raj, Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles. Mater. Chem. Phys. 103, 168–175 (2007). https://doi.org/10.1016/J.MATCHEMPHYS.2007.02.011

    Article  CAS  Google Scholar 

  49. N. Mohamad Nor, K. Abdul Razak, S.C. Tan, R. Noordin, Properties of surface functionalized iron oxide nanoparticles (ferrofluid) conjugated antibody for lateral flow immunoassay application. J. Alloys Compd. 53, 100–106 (2012). https://doi.org/10.1016/J.JALLCOM.2012.05.053

    Article  Google Scholar 

  50. T. Ahn, J.H. Kim, H.M. Yang, J.W. Lee, J.D. Kim, Formation pathways of magnetite nanoparticles by coprecipitation method. J. Phys. Chem. C. 116, 6069–6076 (2012). https://doi.org/10.1021/JP211843G/SUPPL_FILE/JP211843G_SI_001.PDF

    Article  CAS  Google Scholar 

  51. N.H. Abdullah, Z. Zainal, S. Silong, M.I.M. Tahir, K.B. Tan, S.K. Chang, Synthesis of zinc sulphide nanoparticles from thermal decomposition of zinc N-ethyl cyclohexyl dithiocarbamate complex. Mater. Chem. Phys. 173, 33–41 (2016). https://doi.org/10.1016/J.MATCHEMPHYS.2016.01.034

    Article  CAS  Google Scholar 

  52. N.H. Abdullah, Z. Zainal, S. Silong, M.I.M. Tahir, K.B. Tan, S.K. Chang, Thermal decomposition synthesis of nanorods bismuth sulphide from bismuth N-ethyl cyclohexyl dithiocarbamate complex. Thermochim. Acta. 632, 37–45 (2016). https://doi.org/10.1016/J.TCA.2016.03.001

    Article  CAS  Google Scholar 

  53. V. Ranjithkumar, S. Sangeetha, S. Vairam, Synthesis of magnetic activated carbon/α-Fe2O3 nanocomposite and its application in the removal of acid yellow 17 dye from water. J. Hazard. Mater. 273, 127–135 (2014). https://doi.org/10.1016/J.JHAZMAT.2014.03.034

    Article  CAS  PubMed  Google Scholar 

  54. J.R. Jeong, S.J. Lee, J.D. Kim, S.C. Shin, Magnetic properties of γ-Fe2O3 nanoparticles made by coprecipitation method. Phys. Status Solidi. 241, 1593–1596 (2004). https://doi.org/10.1002/PSSB.200304549

    Article  CAS  Google Scholar 

  55. M. Gonzales-Weimuller, M. Zeisberger, K.M. Krishnan, Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J. Magn. Magn. Mater. 321, 1947–1950 (2009). https://doi.org/10.1016/J.JMMM.2008.12.017

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. T. Hyeon, Su Seong Lee, J. Park, Y. Chung, Hyon Bin Na, Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 123, 12798–12801 (2001). https://doi.org/10.1021/JA016812S/SUPPL_FILE/JA016812S_S1.PDF

    Article  CAS  PubMed  Google Scholar 

  57. J. Park, E. Lee, N.M. Hwang, M. Kang, C.K. Sung, Y. Hwang, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, T. Hyeon, One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew. Chem. Int. Ed. Engl. 44, 2872–2877 (2005). https://doi.org/10.1002/ANIE.200461665

    Article  CAS  Google Scholar 

  58. Brinker, J. C. & Scherer, G. W. (eds.), Sol-gel science: the physics and chemistry of sol-gel processing (Academic Press, Inc., 1990), pp. 1–16.

  59. M. Niederberger, Nonaqueous sol-gel routes to metal oxide nanoparticles. Acc. Chem. Res. 40, 793–800 (2007). https://doi.org/10.1021/AR600035E

    Article  CAS  PubMed  Google Scholar 

  60. O. Karaagac, H. Kockar, S. Beyaz, T. Tanrisever, A simple way to synthesize superparamagnetic iron oxide nanoparticles in air atmosphere: iron ion concentration effect. IEEE Trans. Magn. 46, 3978–3983 (2010). https://doi.org/10.1109/TMAG.2010.2076824

    Article  CAS  ADS  Google Scholar 

  61. W. Dong, C. Zhu, Use of ethylene oxide in the sol–gel synthesis of α-Fe2O3 nanoparticles from Fe(III) salts. J. Mater. Chem. 12, 1676–1683 (2002). https://doi.org/10.1039/B200773H

    Article  CAS  Google Scholar 

  62. M. Raileanu, M. Crisan, C. Petrache, D. Crisan, M. Zaharescu, Fe2 O3-SiO2 nanocomposites obtained by different sol-gel routes. J. Optoelectron. Adv. Mater. 5, 693–698 (2003)

    CAS  Google Scholar 

  63. S.H. Feng, G.H. Li, Hydrothermal and solvothermal syntheses, in Modern Inorganic Synthetic Chemistry. (Elsevier, Amsterdam, 2017), pp.73–104

    Chapter  Google Scholar 

  64. H. Erdemi, A. Baykal, Dielectric properties of triethylene glycol-stabilized Mn1−xZnxFe2O4 nanoparticles. Mater. Chem. Phys. 165, 156–167 (2015). https://doi.org/10.1016/J.MATCHEMPHYS.2015.09.011

    Article  CAS  Google Scholar 

  65. J. Liu, L. Wang, J. Wang, L. Zhang, Simple solvothermal synthesis of hydrophobic magnetic monodispersed Fe3O4 nanoparticles. Mater. Res. Bull. 48, 416–421 (2013). https://doi.org/10.1016/J.MATERRESBULL.2012.10.060

    Article  CAS  Google Scholar 

  66. B. Veriansyah, J.D. Kim, B.K. Min, J. Kim, Continuous synthesis of magnetite nanoparticles in supercritical methanol. Mater. Lett. 64, 2197–2200 (2010). https://doi.org/10.1016/J.MATLET.2010.07.018

    Article  CAS  Google Scholar 

  67. X.M. Liu, J.K. Kim, Solvothermal synthesis and magnetic properties of magnetite nanoplatelets. Mater. Lett. 63, 428–430 (2009). https://doi.org/10.1016/J.MATLET.2008.11.001

    Article  CAS  Google Scholar 

  68. Y. Hou, J. Yu, S. Gao, Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticles. J. Mater. Chem. 13, 1983–1987 (2003). https://doi.org/10.1039/B305526D

    Article  CAS  Google Scholar 

  69. J. Liang, H. Ma, W. Luo, S. Wang, Synthesis of magnetite submicrospheres with tunable size and superparamagnetism by a facile polyol process. Mater. Chem. Phys. 139, 383–388 (2013). https://doi.org/10.1016/J.MATCHEMPHYS.2012.10.027

    Article  CAS  Google Scholar 

  70. S. Thimmaiah, M. Rajamathi, N. Singh, P. Bera, F. Meldrum, N. Chandrasekhar, R. Seshadri, A solvothermal route to capped nanoparticles of γ-Fe2O3 and CoFe2O4. J. Mater. Chem. 11, 3215–3221 (2001). https://doi.org/10.1039/B104070G

    Article  CAS  Google Scholar 

  71. S. Si, C. Li, X. Wang, D. Yu, Q. Peng, Y. Li, Magnetic monodisperse Fe3O4 nanoparticles. Cryst. Growth Des. 5, 391–393 (2005). https://doi.org/10.1021/CG0497905

    Article  CAS  Google Scholar 

  72. W. Wu, R. Hao, F. Liu, X. Su, Y. Hou, Single-crystalline α-Fe2O3 nanostructures: controlled synthesis and high-index plane-enhanced photodegradation by visible light. J. Mater. Chem. A 1, 6888–6894 (2013). https://doi.org/10.1039/C3TA10886D

    Article  CAS  Google Scholar 

  73. F. Hu, K.W. MacRenaris, E.A. Waters, T. Liang, E.A. Schultz-Sikma, A.L. Eckermann, T.J. Meade, Ultrasmall, water-soluble magnetite nanoparticles with high relaxivity for magnetic resonance imaging. J. Phys. Chem. C 113, 20855–20860 (2009). https://doi.org/10.1021/JP907216G/SUPPL_FILE/JP907216G_SI_001.PDF

    Article  CAS  Google Scholar 

  74. M. Abbas, B. Parvatheeswara Rao, S.M. Naga, M. Takahashi, C. Kim, Synthesis of high magnetization hydrophilic magnetite (Fe3O4) nanoparticles in single reaction—surfactantless polyol process. Ceram. Int. 39, 7605–7611 (2013). https://doi.org/10.1016/J.CERAMINT.2013.03.015

    Article  CAS  Google Scholar 

  75. F. Dang, N. Enomoto, J. Hojo, K. Enpuku, Sonochemical synthesis of monodispersed magnetite nanoparticles by using an ethanol–water mixed solvent. Ultrason. Sonochem. 16, 649–654 (2009). https://doi.org/10.1016/j.ultsonch.2008.11.003

    Article  CAS  PubMed  Google Scholar 

  76. G. Marchegiani, P. Imperatori, A. Mari, L. Pilloni, A. Chiolerio, P. Allia, P. Tiberto, L. Suber, Sonochemical synthesis of versatile hydrophilic magnetite nanoparticles. Ultrason. Sonochem. 19, 877–882 (2012). https://doi.org/10.1016/J.ULTSONCH.2011.12.007

    Article  CAS  PubMed  Google Scholar 

  77. R. Abu Mukh-Qasem, A. Gedanken, Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles. J. Colloid Interface Sci. 284, 489–494 (2005). https://doi.org/10.1016/J.JCIS.2004.10.073

    Article  CAS  PubMed  ADS  Google Scholar 

  78. A. Hassanjani-Roshan, M.R. Vaezi, A. Shokuhfar, Z. Rajabali, Synthesis of iron oxide nanoparticles via sonochemical method and their characterization. Particuology 9, 95–99 (2011). https://doi.org/10.1016/J.PARTIC.2010.05.013

    Article  CAS  Google Scholar 

  79. G.Q. Zhang, H.P. Wu, M.Y. Ge, Q.K. Jiang, L.Y. Chen, J.M. Yao, Ultrasonic-assisted preparation of monodisperse iron oxide nanoparticles. Mater. Lett. 61, 2204–2207 (2007). https://doi.org/10.1016/J.MATLET.2006.08.051

    Article  CAS  Google Scholar 

  80. R. Vijayakumar, Y. Koltypin, I. Felner, A. Gedanken, Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Mater. Sci. Eng. A 286, 101–105 (2000). https://doi.org/10.1016/S0921-5093(00)00647-X

    Article  Google Scholar 

  81. Z. Mo, C. Zhang, R. Guo, S. Meng, J. Zhang, Synthesis of Fe3O4 nanoparticles using controlled ammonia vapor diffusion under ultrasonic irradiation. Ind. Eng. Chem. Res. 50, 3534–3539 (2011). https://doi.org/10.1021/IE101683X

    Article  CAS  Google Scholar 

  82. M.A. Malik, M.Y. Wani, M.A. Hashim, Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials: 1st nano update. Arab. J. Chem. 5, 397–417 (2012). https://doi.org/10.1016/J.ARABJC.2010.09.027

    Article  CAS  Google Scholar 

  83. M.A. López-Quintela, Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control. Curr. Opin. Colloid Interface Sci. 8, 137–144 (2003). https://doi.org/10.1016/S1359-0294(03)00019-0

    Article  CAS  Google Scholar 

  84. V.M. Ovando-Medina, E. Mendizábal, R.D. Peralta, Kinetics modeling of microemulsion copolymerization. Polym. Bull. 54, 129–140 (2005). https://doi.org/10.1007/S00289-005-0369-2

    Article  CAS  Google Scholar 

  85. F. Sharifianjazi, M. Moradi, N. Parvin, A. Nemati, A. Jafari Rad, N. Sheysi, A. Abouchenari, A. Mohammadi, S. Karbasi, Z. Ahmadi, A. Esmaeilkhanian, M. Irani, A. Pakseresht, S. Sahmani, M. Shahedi Asl, Magnetic CoFe2O4 nanoparticles doped with metal ions: a review. Ceram. Int. 46, 18391–18412 (2020). https://doi.org/10.1016/J.CERAMINT.2020.04.202

    Article  CAS  Google Scholar 

  86. R. Hufschmid, H. Arami, R.M. Ferguson, M. Gonzales, E. Teeman, L.N. Brush, N.D. Browning, K.M. Krishnan, Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 7, 11142–11154 (2015). https://doi.org/10.1039/C5NR01651G

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  87. S. Santra, R. Tapec, N. Theodoropoulou, J. Dobson, A. Hebard, W. Tan, Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17, 2900–2906 (2001). https://doi.org/10.1021/LA0008636

    Article  CAS  Google Scholar 

  88. J.A. López-Pérez, M.A. López-Quintela, J. Mira, J. Rivas, Preparation of magnetic fluids with particles obtained in microemulsions. IEEE Trans. Magn. 33, 4359–4362 (1997). https://doi.org/10.1109/20.620446

    Article  ADS  Google Scholar 

  89. T. Aubert, F. Grasset, S. Mornet, E. Duguet, O. Cador, S. Cordier, Y. Molard, V. Demange, M. Mortier, H. Haneda, Functional silica nanoparticles synthesized by water-in-oil microemulsion processes. J. Colloid Interface Sci. 341, 201–208 (2010). https://doi.org/10.1016/J.JCIS.2009.09.064

    Article  CAS  PubMed  ADS  Google Scholar 

  90. M.P. Pileni, Reverse micelles as microreactors. J. Phys. Chem. 97, 6961–6973 (2002). https://doi.org/10.1021/J100129A008

    Article  Google Scholar 

  91. M.P. Pileni, The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat. Mater. 2, 145–150 (2003). https://doi.org/10.1038/nmat817

    Article  CAS  PubMed  ADS  Google Scholar 

  92. A.B. Chin, I.I. Yaacob, Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart’s procedure. J. Mater. Process. Technol. 191, 235–237 (2007). https://doi.org/10.1016/J.JMATPROTEC.2007.03.011

    Article  CAS  Google Scholar 

  93. D. Kovář, A. Malá, J. Mlčochová, M. Kalina, Z. Fohlerová, A. Hlaváček, Z. Farka, P. Skládal, Z. Starčuk, R. Jiřík, O. Slabý, J. Hubálek, Preparation and characterisation of highly stable iron oxide nanoparticles for magnetic resonance imaging. J. Nanomater. (2017). https://doi.org/10.1155/2017/7859289

    Article  Google Scholar 

  94. J. Wang, B. Zhang, L. Wang, M. Wang, F. Gao, One-pot synthesis of water-soluble superparamagnetic iron oxide nanoparticles and their MRI contrast effects in the mouse brains. Mater. Sci. Eng. C. Mater. Biol. Appl. 48, 416–423 (2015). https://doi.org/10.1016/J.MSEC.2014.12.026

    Article  CAS  PubMed  Google Scholar 

  95. L. Xiao, J. Li, D.F. Brougham, E.K. Fox, N. Feliu, A. Bushmelev, A. Schmidt, N. Mertens, F. Kiessling, M. Valldor, B. Fadeel, S. Mathur, Water-soluble superparamagnetic magnetite nanoparticles with biocompatible coating for enhanced magnetic resonance imaging. ACS Nano 5, 6315–6324 (2011). https://doi.org/10.1021/NN201348S/SUPPL_FILE/NN201348S_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  96. A. Tavakoli, M. Sohrabi, A. Kargari, A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem. Papers 61, 151–170 (2007). https://doi.org/10.2478/S11696-007-0014-7

    Article  CAS  Google Scholar 

  97. C. Okoli, M. Sanchez-Dominguez, M. Boutonnet, S. Järås, C. Civera, C. Solans, G.R. Kuttuva, Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles. Langmuir 28, 8479–8485 (2012). https://doi.org/10.1021/LA300599Q/SUPPL_FILE/LA300599Q_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  98. R. Bhateria, R. Singh, A review on nanotechnological application of magnetic iron oxides for heavy metal removal. J. Water Process Eng. 31, 100845 (2019). https://doi.org/10.1016/j.jwpe.2019.100845

    Article  Google Scholar 

  99. Y.P. Sun, X. Qin Li, J. Cao, W. Xian Zhang, H.P. Wang, Characterization of zero-valent iron nanoparticles. Adv. Colloid Interface Sci. 120, 47–56 (2006). https://doi.org/10.1016/J.CIS.2006.03.001

    Article  CAS  PubMed  Google Scholar 

  100. Wahajuddin, S. Arora, Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int. J. Nanomed. 7, 3445–3471 (2012). https://doi.org/10.2147/IJN.S30320

    Article  CAS  Google Scholar 

  101. L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S.-T. Lee, Z. Liu, Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew. Chem. Int. Ed. 50, 7385–7390 (2011). https://doi.org/10.1002/anie.201101447

    Article  CAS  Google Scholar 

  102. Q. Feng, Y. Liu, J. Huang, K. Chen, J. Huang, K. Xiao, Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci. Rep. 8, 2082 (2018). https://doi.org/10.1038/s41598-018-19628-z

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  103. Y.-X.J. Wang, S.M. Hussain, G.P. Krestin, Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur. Radiol. 11, 2319–2331 (2001). https://doi.org/10.1007/s003300100908

    Article  CAS  PubMed  Google Scholar 

  104. M. Nikzamir, A. Akbarzadeh, Y. Panahi, An overview on nanoparticles used in biomedicine and their cytotoxicity. J. Drug Deliv. Sci. Technol. 61, 102316 (2021). https://doi.org/10.1016/j.jddst.2020.102316

    Article  CAS  Google Scholar 

  105. Y. Liu, K. Ai, L. Lu, Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114, 5057–5115 (2014). https://doi.org/10.1021/cr400407a

    Article  CAS  PubMed  ADS  Google Scholar 

  106. O.A. Noqta, A.A. Aziz, I.A. Usman, M. Bououdina, Recent advances in iron oxide nanoparticles (IONPs): synthesis and surface modification for biomedical applications. J. Supercond. Nov. Magn. 32, 779–795 (2019). https://doi.org/10.1007/S10948-018-4939-6/FIGURES/8

    Article  CAS  Google Scholar 

  107. E. Peng, F. Wang, J.M. Xue, Nanostructured magnetic nanocomposites as MRI contrast agents. J. Mater. Chem. B. 3, 2241–2276 (2015). https://doi.org/10.1039/C4TB02023E

    Article  CAS  PubMed  Google Scholar 

  108. L. Ding, Y. Hu, Y. Luo, J. Zhu, Y. Wu, Z. Yu, X. Cao, C. Peng, X. Shi, R. Guo, LAPONITE®-stabilized iron oxide nanoparticles for in vivo MR imaging of tumors. Biomater. Sci. 4, 474–482 (2016). https://doi.org/10.1039/C5BM00508F

    Article  CAS  PubMed  Google Scholar 

  109. C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E.G. Walsh, J.R. Morgan, Y.E. Chin, S. Sun, Au-Fe3O4 dumbbell nanoparticles as dual-functional probes. Angew. Chem. Int. Ed. Engl. 47, 173 (2008). https://doi.org/10.1002/ANIE.200704392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. R. Bardhan, W. Chen, C. Perez-Torres, M. Bartels, R.M. Huschka, L.L. Zhao, E. Morosan, R.G. Pautler, A. Joshi, N.J. Halas, Nanoshells with targeted simultaneous enhancement of magnetic and optical imaging and photothermal therapeutic response. Adv. Funct. Mater. 19, 3901–3909 (2009). https://doi.org/10.1002/ADFM.200901235

    Article  CAS  Google Scholar 

  111. Y.T. Lim, M.Y. Cho, J.K. Kim, S. Hwangbo, B.H. Chung, Plasmonic magnetic nanostructure for bimodal imaging and photonic-based therapy of cancer cells. ChemBioChem 8, 2204–2209 (2007). https://doi.org/10.1002/CBIC.200700416

    Article  CAS  PubMed  Google Scholar 

  112. J. Lee, J. Yang, H. Ko, S.J. Oh, J. Kang, J.H. Son, K. Lee, S.W. Lee, H.G. Yoon, J.S. Suh, Y.M. Huh, S. Haam, Multifunctional magnetic gold nanocomposites: human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy. Adv. Funct. Mater. 18, 258–264 (2008). https://doi.org/10.1002/ADFM.200700482

    Article  CAS  Google Scholar 

  113. I. García, J. Gallo, N. Genicio, D. Padro, S. Penadés, Magnetic glyconanoparticles as a versatile platform for selective immunolabeling and imaging of cells. Bioconjug. Chem. 22, 264–273 (2011). https://doi.org/10.1021/BC1003923

    Article  PubMed  Google Scholar 

  114. Y. Cui, X.S. Zheng, B. Ren, R. Wang, J. Zhang, N.S. Xia, Z.Q. Tian, Au@organosilica multifunctional nanoparticles for the multimodal imaging. Chem. Sci. 2, 1463–1469 (2011). https://doi.org/10.1039/C1SC00242B

    Article  CAS  Google Scholar 

  115. L.L. Ma, M.D. Feldman, J.M. Tam, A.S. Paranjape, K.K. Cheruku, T.A. Larson, J.O. Tam, D.R. Ingram, V. Paramita, J.W. Villard, J.T. Jenkins, T. Wang, G.D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T.E. Milner, K.P. Johnston, Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy. ACS Nano 3, 2686 (2009). https://doi.org/10.1021/NN900440E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. V. Dinca, L.E. Sima, L. Rusen, A. Bonciu, T. Lippert, M. Dinescu, M. Farsari, Bio-interfaces engineering using laser-based methods for controlled regulation of mesenchymal stem cell response in vitro. Recent Adv. Biopolym. (2016). https://doi.org/10.5772/61516

    Article  Google Scholar 

  117. S. Karamipour, M.S. Sadjadi, N. Farhadyar, Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@Au core-shell for targeted drug delivery application. Spectrochim. Acta. A 148, 146–155 (2015). https://doi.org/10.1016/J.SAA.2015.03.078

    Article  CAS  ADS  Google Scholar 

  118. R. Tietze, J. Zaloga, H. Unterweger, S. Lyer, R.P. Friedrich, C. Janko, M. Pöttler, S. Dürr, C. Alexiou, Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. Commun. 468, 463–470 (2015). https://doi.org/10.1016/J.BBRC.2015.08.022

    Article  CAS  PubMed  Google Scholar 

  119. N.S. Elbialy, M.M. Fathy, W.M. Khalil, Doxorubicin loaded magnetic gold nanoparticles for in vivo targeted drug delivery. Int. J. Pharm. 490, 190–199 (2015). https://doi.org/10.1016/J.IJPHARM.2015.05.032

    Article  CAS  PubMed  Google Scholar 

  120. F. Mohammad, N.A. Yusof, Doxorubicin-loaded magnetic gold nanoshells for a combination therapy of hyperthermia and drug delivery. J. Colloid Interface Sci. 434, 89–97 (2014). https://doi.org/10.1016/J.JCIS.2014.07.025

    Article  CAS  PubMed  ADS  Google Scholar 

  121. A. Fu, R.J. Wilson, B.R. Smith, J. Mullenix, C. Earhart, D. Akin, S. Guccione, S.X. Wang, S.S. Gambhir, Fluorescent magnetic nanoparticles for magnetically enhanced cancer imaging and targeting in living subjects. ACS Nano 6, 6862–6869 (2012). https://doi.org/10.1021/NN301670A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sethi, M. & Chakarvarti, S. K. Hyperthermia techniques for cancer treatment: A review. Int J Pharmtech Res 8, 292–299 (2015).

    Google Scholar 

  123. M. Jeun, Y.J. Kim, K.H. Park, S.H. Paek, S. Bae, Physical contribution of Néel and Brown relaxation to interpreting intracellular hyperthermia characteristics using superparamagnetic nanofluids. J. Nanosci. Nanotechnol. 13, 5719–5725 (2013). https://doi.org/10.1166/JNN.2013.7524

    Article  CAS  PubMed  Google Scholar 

  124. S.A. Shah, D.B. Reeves, R.M. Ferguson, J.B. Weaver, K.M. Krishnan, Mixed Brownian alignment and Néel rotations in superparamagnetic iron oxide nanoparticle suspensions driven by an ac field. Phys. Rev. B (2015). https://doi.org/10.1103/PHYSREVB.92.094438

    Article  Google Scholar 

  125. C. Haase, U. Nowak, Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles. Phys. Rev. B 85, 045435 (2012). https://doi.org/10.1103/PHYSREVB.85.045435/FIGURES/6/MEDIUM

    Article  ADS  Google Scholar 

  126. T.L. Kalber, K.L. Ordidge, P. Southern, M.R. Loebinger, P.G. Kyrtatos, Q.A. Pankhurst, M.F. Lythgoe, S.M. Janes, Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles. Int. J. Nanomed. 11, 1973–1983 (2016). https://doi.org/10.2147/IJN.S94255

    Article  CAS  Google Scholar 

  127. Y. Yang, S. Ren, X. Zhang, Y. Yu, C. Liu, J. Yang, L. Miao, Safety and efficacy of PLGA(Ag-Fe3O4)-coated dental implants in inhibiting bacteria adherence and osteogenic inducement under a magnetic field. Int. J. Nanomed. 13, 3751–3762 (2018). https://doi.org/10.2147/IJN.S159860

    Article  CAS  Google Scholar 

  128. N. Thomas, S. Blake, C. Morris, D.R. Moles, Autism and primary care dentistry: parents’ experiences of taking children with autism or working diagnosis of autism for dental examinations. Int. J. Paediatr. Dent. 28, 226–238 (2018). https://doi.org/10.1111/ipd.12345

    Article  PubMed  Google Scholar 

  129. S. Sudenthiran, V.A. Ganesh, S. Harinee, M. Jacob, Impact of smart electronic devices in contemporary dentistry- ‘tech-knowledge-Y’ in dentistry. J. Acad. Dent. Educ. 3, 6 (2017). https://doi.org/10.18311/jade/2017/20964

    Article  Google Scholar 

  130. P.K.P. Sreenivasalu, C.P. Dora, R. Swami, V.C. Jasthi, P.N. Shiroorkar, S. Nagaraja, S.M.B. Asdaq, M.K. Anwer, Nanomaterials in dentistry: current applications and future scope. Nanomaterials 12, 1676 (2022). https://doi.org/10.3390/nano12101676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. L.K. Foong, M.M. Foroughi, A.F. Mirhosseini, M. Safaei, S. Jahani, M. Mostafavi, N. Ebrahimpoor, M. Sharifi, R.S. Varma, M. Khatami, Applications of nano-materials in diverse dentistry regimes. RSC Adv. 10, 15430–15460 (2020). https://doi.org/10.1039/D0RA00762E

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  132. R. Ahmad, K. Ansari, Chemically treated Lawsonia inermis seeds powder (CTLISP): an eco-friendly adsorbent for the removal of brilliant green dye from aqueous solution. Groundw. Sustain. Dev. (2020). https://doi.org/10.1016/j.gsd.2020.100417

    Article  Google Scholar 

  133. R. Ahmad, K. Ansari, M.O. Ejaz, Enhanced sequestration of heavy metals from aqueous solution on polyacrylamide grafted with cell@Fe3O4 nanocomposite. Emergent Mater. (2022). https://doi.org/10.1007/s42247-021-00338-8

    Article  Google Scholar 

  134. Z. Iqbal, M.S. Tanweer, M. Alam, Recent advances in adsorptive removal of wastewater pollutants by chemically modified metal oxides: a review. J. Water Process Eng. 46, 102641 (2022). https://doi.org/10.1016/j.jwpe.2022.102641

    Article  Google Scholar 

  135. M.S. Tanweer, Z. Iqbal, M. Alam, Experimental insights into mesoporous polyaniline-based nanocomposites for anionic and cationic dye removal. Langmuir 38, 8837–8853 (2022). https://doi.org/10.1021/acs.langmuir.2c00889

    Article  CAS  PubMed  Google Scholar 

  136. S. Ahmad, M.S. Tanweer, T.A. Mir, M. Alam, S. Ikram, J.N. Sheikh, Antimicrobial gum based hydrogels as adsorbents for the removal of organic and inorganic pollutants. J. Water Process Eng. 51, 103377 (2023). https://doi.org/10.1016/j.jwpe.2022.103377

    Article  Google Scholar 

  137. P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metals toxicity and the environment. Mol. Clin. Environ. 101, 133 (2012). https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  Google Scholar 

  138. R. Ahmad, K. Ansari, Novel in-situ fabrication of L-methionine functionalized bionanocomposite for adsorption of amido black 10B dye. Process Biochem. 119, 48–57 (2022). https://doi.org/10.1016/J.PROCBIO.2022.05.015

    Article  CAS  Google Scholar 

  139. R. Ahmad, K. Ansari, Fabrication of alginate@silver nanoparticles (Alg@AgNPs) bionanocomposite for the sequestration of crystal violet dye from aqueous solution. Int. J. Biol. Macromol. 218, 157–167 (2022). https://doi.org/10.1016/j.ijbiomac.2022.07.092

    Article  CAS  PubMed  Google Scholar 

  140. R. Ahmad, K. Ansari, Enhanced sequestration of methylene blue and crystal violet dye onto green synthesis of pectin modified hybrid (Pect/AILP-Kal) nanocomposite. Process Biochem. 111, 132–143 (2021). https://doi.org/10.1016/J.PROCBIO.2021.10.009

    Article  CAS  Google Scholar 

  141. S. Ali, M.S. Tanweer, M. Alam, Kinetic, isothermal, thermodynamic and adsorption studies on Mentha piperita using ICP-OES. Surf. Interfaces 19, 100516 (2020). https://doi.org/10.1016/j.surfin.2020.100516

    Article  CAS  Google Scholar 

  142. R. Ahmad, K. Ansari, Comparative study for adsorption of congo red and methylene blue dye on chitosan modified hybrid nanocomposite. Process Biochem. 108, 90–102 (2021). https://doi.org/10.1016/j.procbio.2021.05.013

    Article  CAS  Google Scholar 

  143. R. Ahmad, K. Ansari, Polyacrylamide-grafted Actinidia deliciosa peels powder (PGADP) for the sequestration of crystal violet dye: isotherms, kinetics and thermodynamic studies. Appl. Water Sci. 10, 195 (2020). https://doi.org/10.1007/s13201-020-01263-7

    Article  CAS  ADS  Google Scholar 

  144. M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew, K.N. Beeregowda, Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7, 60 (2014). https://doi.org/10.2478/INTOX-2014-0009

    Article  PubMed  PubMed Central  Google Scholar 

  145. A.V. Samrot, C.S. Sahithya, A. Jenifer Selvarani, S. Pachiyappan, S.U. Suresh Kumar, Int. J. Nanomed. 14, 8105–8119 (2019). https://doi.org/10.2147/IJN.S214236

    Article  CAS  Google Scholar 

  146. Y. Wanna, A. Chindaduang, G. Tumcharern, D. Phromyothin, S. Porntheerapat, J. Nukeaw, H. Hofmann, S. Pratontep, Efficiency of SPIONs functionalized with polyethylene glycol bis(amine) for heavy metal removal. J. Magn. Magn. Mater. 414, 32–37 (2016). https://doi.org/10.1016/J.JMMM.2016.04.064

    Article  CAS  ADS  Google Scholar 

  147. M.E.-S. Goher, M.M. Emara, M.H. Abdo, N.M. Refaat Mah, A.M. Abdel-Sata, A.S. El-Shamy, Cadmium removal from aqueous solution using superparamagnetic iron oxide nanosorbents on Amberlite IR 120 H support. J. Appl. Sci. 17, 296–305 (2017). https://doi.org/10.3923/JAS.2017.296.305

    Article  ADS  Google Scholar 

  148. S.C.N. Tang, I.M.C. Lo, Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res. 47, 2613–2632 (2013). https://doi.org/10.1016/J.WATRES.2013.02.039

    Article  CAS  PubMed  Google Scholar 

  149. M. Gil-Díaz, P. Pinilla, J. Alonso, M.C. Lobo, Viability of a nanoremediation process in single or multi-metal(loid) contaminated soils. J. Hazard. Mater. 321, 812–819 (2017). https://doi.org/10.1016/J.JHAZMAT.2016.09.071

    Article  PubMed  Google Scholar 

  150. X. Zhao, W. Liu, Z. Cai, B. Han, T. Qian, D. Zhao, An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res. 100, 245–266 (2016). https://doi.org/10.1016/J.WATRES.2016.05.019

    Article  CAS  PubMed  Google Scholar 

  151. A. Rónavári, M. Balázs, P. Tolmacsov, C. Molnár, I. Kiss, Á. Kukovecz, Z. Kónya, Impact of the morphology and reactivity of nanoscale zero-valent iron (NZVI) on dechlorinating bacteria. Water Res. 95, 165–173 (2016). https://doi.org/10.1016/j.watres.2016.03.019

    Article  CAS  PubMed  Google Scholar 

  152. O.A. Attallah, M.A. Al-Ghobashy, M. Nebsen, M.Y. Salem, Removal of cationic and anionic dyes from aqueous solution with magnetite/pectin and magnetite/silica/pectin hybrid nanocomposites: kinetic, isotherm and mechanism analysis. RSC Adv. 6, 11461–11480 (2016). https://doi.org/10.1039/C5RA23452B

    Article  CAS  ADS  Google Scholar 

  153. A.V. Samrot, N. Shobana, P. Durga Sruthi, C.S. Sahithya, Utilization of chitosan-coated superparamagnetic iron oxide nanoparticles for chromium removal. Appl. Water Sci. 8, 1–9 (2018). https://doi.org/10.1007/S13201-018-0841-4/FIGURES/9

    Article  CAS  Google Scholar 

  154. Q. Bai, J. Wang, S. Xing, Y. Ma, X. Bao, Crystal orientation and crystal structure of paramagnetic α-Al under a pulsed electromagnetic field. Sci. Rep. (2020). https://doi.org/10.1038/S41598-020-67352-4

    Article  PubMed  PubMed Central  Google Scholar 

  155. L.F. Peffi Ferreira, T. Mazzi De Oliveira, S.H. Toma, M.M. Toyama, K. Araki, L.H. Avanzi, Superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with lipase Candida antarctica A for biodiesel synthesis. RSC Adv. 10, 38490–38496 (2020). https://doi.org/10.1039/D0RA06215D

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  156. J. Dulińska-Litewka, A. Łazarczyk, P. Hałubiec, O. Szafrański, K. Karnas, A. Karewicz, Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Mater. (Basel, Switzerland) (2019). https://doi.org/10.3390/MA12040617

    Article  Google Scholar 

  157. M. Suciu, C.M. Ionescu, A. Ciorita, S.C. Tripon, D. Nica, H. Al-Salami, L. Barbu-Tudoran, Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements. Beilstein J. Nanotechnol. 11, 1092 (2020). https://doi.org/10.3762/BJNANO.11.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. C.C. Shen, H.J. Liang, C.C. Wang, M.H. Liao, T.R. Jan, Iron oxide nanoparticles suppressed T helper 1 cell-mediated immunity in a murine model of delayed-type hypersensitivity. Int. J. Nanomed. 7, 2729–2737 (2012). https://doi.org/10.2147/IJN.S31054

    Article  CAS  Google Scholar 

  159. E.J. Van Den Bos, A. Wagner, H. Mahrholdt, R.B. Thompson, Y. Morimoto, B.S. Sutton, R.M. Judd, D.A. Taylor, Improved efficacy of stem cell labeling for magnetic resonance imaging studies by the use of cationic liposomes. Cell Transpl. 12, 743–756 (2003). https://doi.org/10.3727/000000003108747352

    Article  Google Scholar 

  160. H.A. Jeng, J. Swanson, Toxicity of metal oxide nanoparticles in mammalian cells. J. Environ. Sci. Health. A 41, 2699–2711 (2006). https://doi.org/10.1080/10934520600966177

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (Khalid Ansari) is highly thankful to UGC-New Delhi for providing financial assistance.

Funding

Funding was provided by UGC-DAE Consortium for Scientific Research, University Grants Commission Khalid Ansari.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Ansari.

Ethics declarations

Conflict of interest

The authors declare that they don’t have any conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, K., Ahmad, R., Tanweer, M.S. et al. Magnetic Iron Oxide Nanoparticles as a Tool for the Advancement of Biomedical and Environmental Application: A Review. Biomedical Materials & Devices 2, 139–157 (2024). https://doi.org/10.1007/s44174-023-00091-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44174-023-00091-y

Keywords

Navigation