Thermal conductivity of silicon, germanium, III–V compounds and III–V alloys

https://doi.org/10.1016/0038-1101(67)90069-XGet rights and content

Abstract

The thermal conductivities as a function of temperature for silicon, germanium, gallium arsenide, indium phosphide, indium arsenide, indium antimonide, gallium phosphide, aluminum antimonide and gallium antimonide are presented. Also included are the thermal conductivities of the mixed III–V compounds: indium arsenide-phosphide, gallium-indium arsenide and gallium arsenide-phosphide. These data are derived from the publications listed in the bibliography and represent the author's selection of the “most probable” values. A brief phenomenological discussion of the mechanisms involved in thermal conduction is presented.

Résumé

On présente les conductivités thermiques en fonction de la température des matériaux suivants: silicium, germanium, arséniure de gallium, phosphure d'indium, arséniure d'indium, antimoniure d'indium, phosphure de gallium, antimoniure d'aluminium et antimoniure de gallium. On inclut aussi les conductivités thermiques des composés mixtes III–V: arséniure-phosphure d'indium, arséniure de gallium-indium et arséniure-phosphure de gallium. Ces données sont dérivées d'articles publiés qui sont inscrits dans la bibliographie et représentent le choix des valeurs “les plus probables” d'après l'auteur. Une brève discussion des phénomènes du mécanisme compris dans la conduction thermique est présenté.

Zusammenfassung

Die Wärmeleitfähigkeit als Funktion der Temperatur wird für Silizium, Germanium, Galliumarsenid, Indiumphosphid, Indiumarsenid, Indiumantimonid, Galliumphosphid, Aluminiumantimonid und Galliumantimonid angegeben. Auch die Wärmeleitfähigkeiten der gemischten III–V-Verbindungen Indium-Arsenidphosphid, Gallium-Indiumarsenid und Gallium-Arsenidphosphid sind eingeschlossen. Die Daten sind den im Literaturverzeichnis zusammengestellten Veröffentlichungen entnommen und stellen die Auswahl jener Werte dar, welche dem Autor am wahrscheinlichsten erscheinen. Eine kurze phänomenologische Diskussion der Mechanismen, die für den Wärmetransport verantwortlich sind, wird gegeben.

References (19)

  • J.C. Thompson et al.

    J. Phys. Chem. Solids

    (1961)
  • C.J. Glassbrenner et al.

    Phys. Rev.

    (1964)
  • H.R. Shanks et al.

    Phys. Rev.

    (1963)
  • R.G. Morris et al.

    J. appl. Phys.

    (1963)
  • B. Abeles et al.

    Phys. Rev.

    (1962)
  • D.S. Beers et al.
  • M.G. Holland
  • R.D. Morris et al.

    Phys. Rev.

    (1961)
  • B. Abeles et al.

    J. appl. Phys.

    (1960)
There are more references available in the full text version of this article.

Cited by (250)

  • Plasmon-enhanced distributed Bragg reflectors

    2022, Infrared Physics and Technology
    Citation Excerpt :

    Specifically, plasmon-enhanced DBRs may be suitable for integration with resonant-cavity LEDs, photodiodes, and reflection modulators, while VCSEL applications ultimately require higher reflectance than can be achieved in plasmon-enhanced DBRs. The reduction in thickness and the number of interfaces may further benefit devices containing plasmon-enhanced DBRs by reducing thermal resistance, though this may be offset by the decreased thermal conductivity of highly-doped InAsSb compared to AlAsSb [31,32]. In conclusion, we have simulated the performance of plasmon-enhanced distributed Bragg reflectors and empirically demonstrated such a mirror in III-V materials.

View all citing articles on Scopus

Present address (temporary): Department of the Navy, Office of Naval Research, Branch Office, London.

View full text