Review
Gallium antimonide device related properties

https://doi.org/10.1016/0038-1101(93)90002-8Get rights and content

Abstract

The physical properties of GaSb are briefly presented and the device implications reviewed. GaSb is a direct gap semiconductor (0.72 eV) capable of being doped either p or n type with good mobilities and it has significant electro-optical potential in the near IR range. As a substrate, or active layer, GaSb can be employed in conjunction with many semiconductors such as (AlGa)Sb or In(AsSb) and has interesting heterojunction potential for detectors and lasers and quantum well structures.

References (139)

  • S.K. Haywood et al.

    GaSb/InAs heterojunctions grown by MOVPE

    J. Cryst. Growth

    (1991)
  • M. Lakrimi et al.

    GaSb/InAs heterojunctions grown by MOVPE: effect of gas switching sequences on interface quality

    J. Cryst. Growth

    (1991)
  • A. Giani et al.

    Growth and characterization of metal-organic vapour phase epitaxial Ga1-xInxAsySb1-y quaternary layers

    Mater. Sci. Engng

    (1991)
  • R. Bonnot et al.

    Lateral growth on GaSb(111)B and GaSb(001) by metal-organic chemical vapour deposition

    Mater. Sci. Engng

    (1991)
  • Y.K. Su et al.

    Heteroepitaxial growth of gallium antimonide on GaAs by low pressure MOVPE

    Solid-St. Electron.

    (1991)
  • T.H. Glisson et al.

    Energy bandgap and Lattice constant contours of III–V quaternary alloys

    J. Electron. Mater.

    (1978)
  • W. Both et al.

    Thermal resistivity of quaternary solid solutions InGaSbAs and GaAlSbAs lattice-matched to GaSb

    Electron. Lett.

    (1990)
  • E. Tournié et al.

    2.5 μm GaInAsSb lattice-matched to GaSb by liquid phase epitaxy

    J. appl. Phys.

    (1990)
  • C. Alibert et al.

    Refractive indices of AlSb and GaSb-lattice-matched AlxGa1-xAsySb1-y in the transparent wavelength region

    J. appl. Phys.

    (1991)
  • R.C. Sharma et al.

    Thermodynamic analysis and phase equilibria calculations for the InSb and GaSb systems

    J. Electron. Mater.

    (1987)
  • N.N. Sirota

    Heats of formation and temperatures and heats of fusion of compounds A(III) B(V)

  • K. Nakashima

    Electrical and optical studies in gallium antimonide

    Jap. J. appl. Phys.

    (1981)
  • R.P. Nanavati et al.

    Reverse characteristics of GaSb tunnel diodes

  • F.H. Pollak et al.

    Band structure of GaAs, GaP, InP, and AlSb: the k.p method

    J. Phys. Soc. Japan

    (1966)
  • C. Alibert et al.

    Modulation-spectroscopy study of the Ga1-xAlxSb band structure

    Phys. Rev. B

    (1983)
  • M.E. Lee et al.

    A detailed Hall-effect analysis of sulfur-doped gallium antimonide grown by molecular-beam epitaxy

    J. appl. Phys.

    (1990)
  • O. Madelung
  • S. Subbanna et al.

    N-type doping of gallium antimonide and aluminum antimonide grown by molecular beam epitaxy using lead telluride as a tellurium dopant source

    J. Electron. Mater.

    (1988)
  • M. Yano et al.

    Molecular beam epitaxy of GaSb and GaSbxAs1-x

    Jap. J. appl. Phys

    (1978)
  • Y. Zhu et al.

    DX-center-like traps and persistent photoconductivity in Te-doped AlxGa1-xSb on GaSb

    J. appl. Phys.

    (1988)
  • I. Poole et al.

    Deep donors in GaSb grown by molecular beam epitaxy

    Appl. Phys. Lett.

    (1990)
  • S.M. Newstead et al.

    n-type (Pb) Te doping of GaAs and AlxGa1-xSb grown by molecular beam epitaxy

    J. appl. Phys.

    (1989)
  • S.J. Eglash et al.

    MBE growth of GaInAsSb/AlGaAsSb double heterostructures for infrared lasers

    J. Cryst. Growth

    (1991)
  • T.H. Chin et al.

    Te doping study in molecular beam epitaxy growth of GaSb using Sb2Te3

    Appl. Phys. Lett.

    (1990)
  • T.D. McLean et al.

    Summary abstract: controlled n-type doping of GaSb

    J. Vac. Sci. Technol.

    (1986)
  • I. Poole et al.

    Sulphur doping behavior of gallium antimonide grown by molecular beam epitaxy

    J. appl. Phys.

    (1988)
  • C.W. Wilmsen

    Chemical composition and formation of thermal and anodic oxide/III–V compound semiconductor interfaces

    J. Vac. Sci. Technol.

    (1981)
  • Y. Takeda et al.

    Growth temperature dependence of intrinsic and extrinsic acceptor concentration in (Ga,Al)Sb evaluated by C-V characteristics of metal-insulator-semiconductor structures

    J. appl. Phys.

    (1985)
  • S.W. Teare et al.

    Electromigration of Ga and Sb during anodization of Al/GaSb structures

    J. appl. Phys.

    (1990)
  • J.B.B. Oliveira et al.

    Properties of AuZn ohmic contacts to p-GaSb

    J. appl. Phys.

    (1989)
  • C.H. Heinz

    Ohmic contacts to p- and n-type GaSb

    Int. J. Electron.

    (1983)
  • S.A. Walters et al.

    Metals on cleaved gallium antimonide: Schottky barriers and interface reactions

    J. Vac. Sci. Technol.

    (1988)
  • S. Tiwari et al.

    Empirical fit to band discontinuities and barrier heights in III–V alloy systems

    Appl. Phys. Lett.

    (1992)
  • Y.K. Su et al.

    The effect of annealing temperature on electrical properties of Pd/n-GaSb Schottky contacts

    J. appl. Phys.

    (1990)
  • I. Poole et al.

    In situ Schottky contacts to molecular-beam epitaxially grown gallium antimonide

    J. appl. Phys.

    (1987)
  • A.Y. Polyakov et al.

    Schottky barriers of various metals on Al0.5Ga0.5As0.05Sb0.95 and the influence of hydrogen and sulfur treatments on the properties

    J. appl. Phys.

    (1992)
  • J.G. Buglass et al.

    A controllable etchant for fabrication of GaSb devices

    J. electrochem. Soc.

    (1986)
  • S.J. Pearton et al.

    Reactive ion etching of GaAs, AlGaAs and GaSb in Cl2 and SiCl4

    J. Vac. Sci. Technol.

    (1990)
  • A.Y. Polyakov et al.

    Hydrogen treatment effect on shallow and deep centers in GaSb

  • A.Y. Polyakov, M. Stam, A.G. Milnes, A.E. Bochkarev and S.J. Pearton, DX-like centers in Al0.5Ga0.5As0.05Sb0.95, J....
  • Cited by (0)

    View full text