Elsevier

Solid-State Electronics

Volume 39, Issue 10, October 1996, Pages 1409-1422
Solid-State Electronics

Review paper
Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review

https://doi.org/10.1016/0038-1101(96)00045-7Get rights and content

Abstract

Silicon carbide (SiC), a material long known with potential for high-temperature, high-power, high-frequency, and radiation hardened applications, has emerged as the most mature of the wide-bandgap (2.0 eV ≲ Eg ≲ 7.0 eV) semiconductors since the release of commercial 6HSiC bulk substrates in 1991 and 4HSiC substrates in 1994. Following a brief introduction to SiC material properties, the status of SiC in terms of bulk crystal growth, unit device fabrication processes, device performance, circuits and sensors is discussed. Emphasis is placed upon demonstrated high-temperature applications, such as power transistors and rectifiers, turbine engine combustion monitoring, temperature sensors, analog and digital circuitry, flame detectors, and accelerometers. While individual device performances have been impressive (e.g. 4HSiC MESFETs with fmax of 42 GHz and over 2.8 W mm−1 power density; 4HSiC static induction transistors with 225 W power output at 600 MHz, 47% power added efficiency (PAE), and 200 V forward blocking voltage), material defects in SiC, in particular micropipe defects, remain the primary impediment to wide-spread application in commercial markets. Micropipe defect densities have been reduced from near the 1000 cm−2 order of magnitude in 1992 to 3.5 cm−2 at the research level in 1995.

References (256)

  • G. Pensl et al.

    Phys. B

    (1993)
  • R.G. Humphreys et al.

    Solid St. Commun.

    (1981)
  • P. Flatresse et al.

    Solid-St. Electron.

    (1995)
  • H.M. Hobgood et al.

    J. Cryst. Growth

    (1994)
  • Yu.M. Tairov et al.

    J. Cryst. Growth

    (1978)
  • Yu.M. Tairov et al.

    J. Cryst. Growth

    (1981)
  • D.L. Barrett et al.

    J. Cryst. Growth

    (1991)
  • D.L. Barrett et al.

    J. Cryst. Growth

    (1993)
  • Y.C. Wang et al.

    J. Electron. Mater.

    (1991)
  • R.F. Davis

    J. Cryst. Growth

    (1994)
  • A. Heft et al.

    Mater. Sci. Engng B

    (1995)
  • S. Ahmed et al.

    Appl. Phys. Lett.

    (1994)
  • W. Wesch et al.

    Nucl. Instrum. Meth. Phys. Res. B

    (1995)
  • D.E. Cusack et al.
  • S.J. Cloyd

    More electric aircraft initiative

  • P.L. Dreike et al.

    IEEE Trans. Comput. Hybrids, Man. Tech. A

    (1994)
  • M. Tajima
  • D.M. Fleetwood

    IEEE Trans. Nucl. Sci.

    (1988)
  • J.W. Palmour et al.
  • R.J. Trew et al.
  • J.M. McGarrity et al.

    IEEE Trans. Nucl. Sci.

    (1992)
  • Cree Research, Inc., 2810 Meridian Parkway, Durham, NC...
  • Advanced Technology Materials, Inc., 7 Commerce Drive, Danbury, CT...
  • T. George et al.

    J. Electron. Mater.

    (1995)
  • W.M. Yim et al.

    J. Appl. Phys.

    (1973)
  • J. Edmond et al.
  • H.J. Round

    Elect. World

    (1907)
  • W. Shockley
  • G.B. Dubrovskii

    Sov. Phys. Solid St.

    (1972)
  • T. Tachibana et al.

    J. Appl. Phys.

    (1990)
  • V. Shields et al.
  • I. Golecki et al.
  • J. Anthony Powell et al.

    NASA Tech. Briefs

    (1995)
  • H.S. Kong et al.

    Appl. Phys. Lett.

    (1986)
  • M.A. Tischler et al.
  • Ch. Gaberstroh et al.

    J. Appl. Phys.

    (1994)
  • R.S. Muller et al.
  • W.V. Muench et al.

    J. Appl. Phys.

    (1977)
  • W.V. Muench et al.

    J. Appl. Phys.

    (1977)
  • B.J. Baliga
  • D. Morelli et al.
  • G.A. Slack

    J. Appl. Phys.

    (1964)
  • N.T. Son et al.

    Appl. Phys. Lett.

    (1995)
  • W.J. Schaffer et al.
  • S. Yoshida
  • M. Yamanaka et al.

    J. Appl. Phys.

    (1987)
  • D.J. Larkin et al.
  • L. Patrick et al.

    Phys. Rev. B

    (1970)
  • Cited by (1289)

    View all citing articles on Scopus
    View full text