Elsevier

Methods in Enzymology

Volume 98, 1983, Pages 98-134
Methods in Enzymology

[10] Glycosyltransferases involved in elongation of N-glycosidically linked oligosaccharides of the complex or N-acetyllactosamine type

https://doi.org/10.1016/0076-6879(83)98143-0Get rights and content

Publisher Summary

This chapter discusses the glycosyltransferases that carry out the elongation of complex N-glycosyl oligosaccharides. Glycoproteins contain high-mannose oligosaccharides, complex oligosaccharides, or both. The (Man)5(GlcNAc)2-Asn intermediate is the starting point for all complex N-glycosyl oligosaccharides. A series of Golgi apparatus-localized glycosyltransferases and α-mannosidases act on this compound to produce several classes of complex structures. The key enzyme in the initiation of complex oligosaccharide synthesis is called UDP-GlcNAc: α-D-mannoside βl-2-N-acetylglucosaminyltransferase I (GlcNAc-transferase I). GlcNAc-transferase I adds a GlcNAc in βl-2 linkage to the Man-αl-3 arm of the 5-Man intermediate. This enzyme must act before the last two Man residues are removed by highly specific α-mannosidases to yield the (Man)3(GlcNAc)2-Asn core present in all complex oligosaccharides. The Golgi apparatus is the cellular site where not only N-glycosyl oligosaccharides receive their more terminal sugars, but also Ser(Thr)-GalNAc oligosaccharides, xylosyl-serine oligosaccharides, and hydroxylysine-galactose oligosaccharides.

References (83)

  • J. Montreuil

    Adv. Carbohydr. Chem. Biochem.

    (1980)
  • T. Tai et al.

    J. Biol. Chem.

    (1977)
  • C.-J. Liang et al.

    J. Biol. Chem.

    (1979)
  • M.N. Fukuda et al.

    J. Biol. Chem.

    (1979)
  • N. Harpaz et al.

    J. Biol. Chem.

    (1980)
  • N. Harpaz et al.

    J. Biol. Chem.

    (1980)
  • I. Tabas et al.

    J. Biol. Chem.

    (1978)
  • S. Narasimhan

    J. Biol. Chem.

    (1982)
  • G.D. Longmore et al.

    Carbohydr. Res.

    (1982)
  • J.-P. Prieels et al.

    J. Biol. Chem.

    (1981)
  • P.H. Johnson et al.

    Biochem. Biophys. Res. Commun.

    (1981)
  • R. Barker et al.

    J. Biol. Chem.

    (1972)
  • C.R. Geren et al.

    Arch. Biochem. Biophys.

    (1976)
  • B.T. Sheares et al.

    J. Biol. Chem.

    (1982)
  • J.C. Paulson et al.

    J. Biol. Chem.

    (1977)
  • J.C. Paulson et al.

    J. Biol. Chem.

    (1977)
  • D.H. Van den Eijnden et al.

    J. Biol. Chem.

    (1981)
  • H. Schachter
  • L. Warren

    J. Biol. Chem.

    (1959)
  • R.G. Spiro

    J. Biol. Chem.

    (1964)
  • C.-C. Huang et al.

    Carbohydr. Res.

    (1970)
  • T. Tai et al.

    J. Biol. Chem.

    (1975)
  • S. Narasimhan et al.

    J. Biol. Chem.

    (1980)
  • C.L. Oppenheimer et al.

    J. Biol. Chem.

    (1981)
  • P.J. Letts et al.

    Biochim. Biophys. Acta

    (1974)
  • P.J. Letts et al.

    Biochim. Biophys. Acta

    (1974)
  • A. Baxter et al.

    Anal. Biochem.

    (1979)
  • J.P. Durham et al.

    Clin. Chim. Acta

    (1979)
  • M. Schwyzer et al.

    J. Biol. Chem.

    (1977)
  • I.R. Johnston et al.

    J. Biol. Chem.

    (1966)
  • J.R. Munro et al.

    Arch. Biochem. Biophys.

    (1975)
  • S. Narasimhan et al.

    J. Biol. Chem.

    (1977)
  • C. Gottlieb et al.

    J. Biol. Chem.

    (1975)
  • C.L. Oppenheimer et al.

    J. Biol. Chem.

    (1981)
  • H. Schachter et al.

    J. Biol. Chem.

    (1970)
  • U. Brodbeck et al.

    J. Biol. Chem.

    (1966)
  • D.H. Van den Eijnden et al.

    Biochem. Biophys. Res. Commun.

    (1980)
  • J.R. Wilson et al.

    Biochem. Biophys. Res. Commun.

    (1976)
  • I. Jabbal et al.

    J. Biol. Chem.

    (1971)
  • D.K. Struck et al.
  • R. Kornfeld et al.
  • Cited by (34)

    • The production of biopharmaceuticals in plant systems

      2009, Biotechnology Advances
      Citation Excerpt :

      Many different factors may influence the distribution of glycoforms produced on a protein such as the polypeptide itself, the glycosylation site in the polypeptide, the host cell, and the environment of the host cell (Dwek, 1996). On the level of the individual cell, the microheterogeneity of the N-glycans on a given protein depends on glycosylation enzyme levels, their competition for a common substrate, substrate availability, and controls at the level of substrate specificity (e.g., critical sugar residues which turn enzyme activity on or off, branch specificity, and the role of the polypeptide in the glycoprotein substrate) (Schachter et al., 1983). In recombinantly produced proteins, cultivation conditions such as ammonia concentration, glucose concentration, presence or absence of serum, concentration of nucleotide-sugars, and pH are known to influence glycosylation of the protein (Bailey et al., 1998).

    • Use of synthetic oligosaccharide substrate analogs to map the active sites of N-acetylglucosaminyltransferases I and II

      2003, Methods in Enzymology
      Citation Excerpt :

      The second stage begins with the transfer of Glc3Man9GlcNAc2 from Glc3Man9GlcNAc2-pyrophosphate-dolichol to an Asn residue of the nascent glycoprotein followed by processing to Man5GlcNAc2-Asn-X. The third stage occurs primarily in the Golgi apparatus and starts when UDP-GlcNAc:α3-d-mannoside β1,2-N-acetylglucosaminyltransferase I (GlcNAc-T I, EC 2.4.1.101) transfers a GlcNAc residue in β1,2 linkage to the Man-α1,3 arm of Man5GlcNAc2-Asn-X, followed by the removal of two mannose residues by α3,6-mannosidase II to form the substrate for UDP-GlcNAc:α6-d-mannoside β1,2-N-acetylglucosaminyltransferase II (GlcNAc-T II, EC 2.4.1.143) (Fig. 1).6 GlcNAc-T II transfers GlcNAc in β1,2 linkage to the Man-α1,6 arm of the product of α3,6-mannosidase II (Fig. 1).

    View all citing articles on Scopus
    View full text