AgI-type solid electrolytes

https://doi.org/10.1016/0079-6786(76)90001-7Get rights and content

First page preview

First page preview
Click to open first page preview

References (183)

  • J. Krug et al.

    Z. Naturforsch.

    (1952)
  • J. Nölting

    Ber. Bunsenges. physik. Chem.

    (1963)
  • W. Jost

    Diffusion in Solids, Liquids, Gases

    (1960)
  • J.K. Aboagye et al.

    Phys. Rev.

    (1975)
  • C. Tubandt et al.

    Z. physik. Chem.

    (1914)
    C. Tubandt et al.

    Z. physik. Chem.

    (1914)
  • C. Tubandt

    Leitfähigkeit und Überführungszahlen in festen Elektrolyten

  • C. Tubandt et al.

    Z. physik. Chem.

    (1934)
  • L.W. Strock

    Z. physik. Chem.

    (1934)
    L.W. Strock

    Z. physik. Chem.

    (1936)
  • S. Hoshino

    J. Phys. Soc. Japan

    (1957)
  • W. Jost

    J. Chem. Phys.

    (1971)
  • W. van Gool

    Relationship between Structure and Anomalously Fast Ion Diffusion

  • H. Rickert

    Z. physik. Chem. NF

    (1960)
  • W. Bührer et al.

    Helv. Phys. Acta

    (1974)
  • A.F. Wright and B.E.F. Fender, submitted to J. Phys....
  • G. Eckold, K. Funke, R.E. Lechner, and J. Kalus, submitted to Phys. Letters A and to J. Phys. Chem....
  • W. van Gool

    J. Solid State Chem.

    (1973)
  • W. van Gool et al.

    J. Solid State Chem.

    (1973)
  • R.D. Armstrong et al.

    J. Solid State Chem.

    (1973)
  • T.H. Etsell et al.

    Chem. Rev.

    (1970)
  • A. Magistris et al.

    Z. Naturforsch.

    (1972)
  • K. Shahi et al.

    phys. stat. sol. (a)

    (1975)
  • C. Wagner

    Progress in Solid State Chemistry

    (1972)
  • K. Funke et al.

    Ber. Bunsenges. physik. Chem.

    (1972)
  • T. Kaneda et al.

    Phys. Rev. Letters

    (1972)
  • L.J. Graham et al.

    J. Appl. Phys.

    (1975)
  • J. Tejeda et al.

    J. Electron. Spectrosc. and Relat. Phenom.

    (1974)
  • T. Takahashi

    J. Appl. Elchem.

    (1973)
  • K. Funke et al.

    Nachr. Akad. Wiss. Göttingen

    (1969)
    W. Jost et al.

    Z. Naturforsch.

    (1970)
    K. Funke et al.

    Ber. Bunsenges. physik. Chem.

    (1971)
  • C. Clemen and K. Funke, submitted to Ber. Bunsenges. physik....
  • G. Eckold et al.

    Z. Naturforsch.

    (1973)
  • U. Börges, private...
  • P. Brüesch et al.

    phys. stat. sol. (a)

    (1975)
  • R.C. Hanson et al.

    phys. stat. Sol (b)

    (1975)
  • T. Springer

    Springer Tracts in Modern Physics

    (1972)
  • K. Funke et al.

    Solid State Comm.

    (1974)
  • M.J. Rice et al.

    J. Solid State Chem.

    (1972)
  • B.A. Huberman et al.

    Phys. Rev. Letters

    (1974)
  • A. Kvist et al.

    Z. Naturforsch.

    (1968)
  • K.H. Lieser

    Z. physik. Chem. NF

    (1956)
  • D.O. Raleigh

    J. Appl. Phys.

    (1970)
  • Cited by (231)

    • Density functional study on Ag<inf>8-x</inf>Cu<inf>x</inf>I<inf>8</inf> (0≤x≤8)

      2021, Physica B: Condensed Matter
      Citation Excerpt :

      γ-phase of AgI has the zinc blende structure which resembles wurtzite structure. The α-AgI phase is known to be the best superionic conductors and therefore studied a lot [7]. Transition of AgI from β→α increases the conductivity nearly 3 times [8–13].

    • Silver-ion dynamics close to the superionic phase transition of γ −RbAg<inf>4</inf>I<inf>5</inf> with segregated Ag<sup>+</sup>

      2019, Physica B: Condensed Matter
      Citation Excerpt :

      The AgI-based solid ionic conductors are the most common physical model for the cation motion in solid state [1,2].

    • The effect of the nanodiamonds additive on ionic conductivity of silver iodide

      2019, Materials Today: Proceedings
      Citation Excerpt :

      Silver iodide has long attracted attention because its α–AgI superionic modification stable at temperatures 147–555 °C has an extremely high ionic conductivity σ ∼1.3 S/cm at 147 °C with low activation energy [1].

    View all citing articles on Scopus
    View full text