Skip to main content
Log in

Abrupt population changes along smooth environmental gradients

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Populations often exhibit abrupt changes in abundance associated with a smooth, continuous change in some component of their environment, with the abruptness usually attributed to inter-specific interactions or physical extremes. This paper presents a spatially explicit single-species population model in which intra-specific interactions alone are responsible for such an abrupt change. The essential mechanism involves cooperation in both colonization (through enhanced recruitment near other individuals) and mortality (protection through a “safety-in-numbers” interaction). Large fluctuations in population density would likely be observable near the transition region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bertness, M. D. and E. Grosholz, 1985. Population dynamics of the ribbed mussel,Geukensia demissa: the costs and benefits of an aggregated distribution.Oecologia 67, 192–204.

    Article  Google Scholar 

  • Connell, J. H., 1975. Some mechanisms producing structure in natural communities: a model and evidence from field experiments. InEcology and Evolution of Communities, M. L. Cody and J. Diamond (Eds), pp. 460–490. Cambridge MA: Belknap Press.

    Google Scholar 

  • Dayton P. K. 1971. Competition, disturbance, and community organisation: the provision and subsequent utilisation of space in a rocky intertidal community.Ecol. Monographs,41, 351–389.

    Article  Google Scholar 

  • Denny, M. W. 1987. Lift as a mechanism of patch initiation in mussel beds.Exp. Marine Biol. Ecol. 113, 231–245.

    Article  Google Scholar 

  • Denny, M. W., T. L. Daniel, and M. A. R. Koehl. 1985. Mechanical limits to size in wave-swept organisms.Ecol. Monographs 55, 69–102.

    Article  Google Scholar 

  • de Roos, A. M., E. McCauley, and W. G. Wilson, 1991. Mobility versus density-limited predator-prey dynamics on different spatial scales.Proc. Roy. Soc. London Ser. B 246, 117–122.

    Google Scholar 

  • Durrett R. 1988.Lecture Notes on Particle Systems and Percolation. Pacific Grove, CA: Wadsworth & Brooks/Cole Advanced Book & Software.

    MATH  Google Scholar 

  • Efford, I. E. 1970. Recruitment to sedentary marine populations as exemplified by the sand crab,Emerita analoga (Decapoda, Hippidae).Crustaceana 18, 293–308.

    Article  Google Scholar 

  • Gurney, W. S. C., and R. M. Nisbet. 1978a Predator-prey fluctuations in patchy environments.Amer. Naturalist 112, 1075–1090.

    Article  Google Scholar 

  • Gurney, W. S. C. and R. M. Nisbet. 1978b. Single species population fluctuations in patchy environments.J. Animal Ecol. 47, 85–102.

    Article  Google Scholar 

  • Haken, H. 1983.Synergetics: An Introduction. Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology, 3rd rev. ed. Berlin: Springer-Verlag.

    MATH  Google Scholar 

  • Harada, Y. and Y. Iwasa. 1994. Lattice population dynamics for plants with dispersing seeds and vegetative propagation.Res. Population Ecol.,36, 237–249.

    Google Scholar 

  • Hastings, A. and K. Higgins, 1994. Persistence of transients in spatially structured ecological models.Science 263, 1133–1136.

    Google Scholar 

  • Huang, K. 1987.Statistical Mechanics, New York: Wiley.

    MATH  Google Scholar 

  • Hughes, T. P. 1994. Catastrophes phase shifts and large-scale degradation of a Caribbean coral reef.Science 265, 1547–1551.

    Google Scholar 

  • Keddy, P. A. 1985. Wave disturbances in lakeshores and the within-lake distribution of Ontario's Atlantic coastal plain flora.Canadian J. Botany 63, 656–660.

    Article  Google Scholar 

  • Klein, M. J. 1974. Historical origins of the van der Waals equation. InVan der Waals Centennial Conference on Statistical Mechanics, C. Prins (Ed.). Amsterdam: North-Holland.

    Google Scholar 

  • Kooijman, S. A. L. M. 1993.Dynamic Energy Budgets in Biological Systems: Theory and Applications in Ecotoxicology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kooijman, S. A. L. M. and J. J. M. Bedaux. 1995. Analysis of toxicity tests onDaphnia survival and reproduction. Preprint.

  • Levin, S. A. and R. T. Paine. 1974. Disturbance, patch formation and community structure.Proc. Natl. Acad. Sci. U.S.A. 71, 2744–2747.

    Article  MATH  Google Scholar 

  • Lewis, J. R. 1964.The Ecology of Rocky Shores. London: English Universities Press.

    Google Scholar 

  • Lubchencko, J. and B. A. Menge. 1978. Community development and persistence in a low rocky intertidal community.Ecol. Monographs 59 67–94.

    Article  Google Scholar 

  • Ludwig, D., D. D. Jones, and C. S. Holling. 1978. Qualitative analysis of insect outbreak systems: the spruce budworm and forest.J. Animal Ecol. 47, 315–332.

    Article  Google Scholar 

  • Marsh, C. P., 1986. Rocky intertidal community organisation: the impact of avian predators on mussel recruitment.Ecology 67, 771–786.

    Article  Google Scholar 

  • Matsuda, H., N. Ogita, A. Sasaki, and K. Sato. 1992. Statistical mechanics of population.Prog. Theor. Phys. 88, 1035–1049.

    Article  Google Scholar 

  • Maxwell, J. C. 1875. On the dynamic evidence of the molecular composition of bodies.Nature 11, 357–374.

    Google Scholar 

  • May, R. M. 1977. Thresholds and breakpoints in ecosystems with a multiplicity of stable states.Nature 269, 471–477.

    Article  Google Scholar 

  • McCauley, E., W. G. Wilson, and A. M. de Roos. 1993 Dynamics of agen-structured and spatially structured predator-prey interactions individual-based models and population-level formulations.Amer. Naturatlist 142, 412–442.

    Article  Google Scholar 

  • Menge, B. A. 1976. Organization of the New England rocky intertidal community: role of predation competition, and environmental heterogeneity.Ecol. Monographs,46, 355–393.

    Article  Google Scholar 

  • Murray, J. D. 1989.Mathematical Biology. Heidelberg: Springer-Verlag.

    MATH  Google Scholar 

  • Nielsen, C. 1987. Distribution of stream-edge vegetation along a gradient of current velocity.J. Ecol. 75, 513–522.

    Article  Google Scholar 

  • Nisbet, R. M. and W. S. C. Gurney. 1982.Modeling Fluctuating Populations. Chichester: Wiley.

    Google Scholar 

  • Nisbet, R. M. and L. Onyiah. 1994. Population dynamic consequences of competition within and between age-classes.J. Math. Biol.,32, 329–344.

    Article  MATH  Google Scholar 

  • Nisbet, R. M., A. H. Ross, and A. J. Brooks. 1995. Empirically based dynamic energy budget models: theory and an application to ecotoxicology.Nonlinear World, in press.

  • Noble, I. 1993. A model of the responses of ecotones to climate change.Ecol. Appl. 3, 396–403.

    Google Scholar 

  • Noy-Meir, I. 1975. Stability of grazing systems: an application of predator-prey graphs.J. Ecol. 63, 459–481.

    Article  Google Scholar 

  • Paine, R. T. and S. A. Levin. 1981. Intertidal landscapes: disturbance and the dynamics of pattern.Ecol. Monographs 51, 145–178.

    Article  Google Scholar 

  • Robles, C. 1987. Predator foraging characteristics and prey population structure on a sheltered shore.Ecology 68, 1502–1514.

    Article  Google Scholar 

  • Robles, C. 1994. Changing recruitment rates in constant species assemblages: implications for predation theory in intertidal communities. Unpublished.

  • Roughgarden, J., S. D. Gaines, and H. P. Possingham. 1988. Recruitment dynamics in complex life cycles.Science 241, 1460–1466.

    MathSciNet  Google Scholar 

  • Sato, K. and Y. Iwasa. 1993. Modeling of wave regeneration in subalpine Abies forests: population dynamics with spatial structure.Ecology 74, 1538–1550.

    Article  Google Scholar 

  • Schlögl, F. 1972. Chemical reaction models for non-equilibrium phase transitions.Z. Phys. 253, 147–161.

    Article  Google Scholar 

  • Slatyer, R. O. and I. Noble. 1992. InLandscape Boundaries: Consequences for Biotic Diversity and Ecological Flows, A. J. Hansen and F. di Castri, (Eds), pp. 346–359. New York: Springer-Verlag.

    Google Scholar 

  • Wilson, W. G. and W. G. Laidlaw, 1992. Microscopic-based fluid flow invasion simulations.J. Statist. Phys. 66, 1165–1176.

    Article  MATH  Google Scholar 

  • Wilson, W. G. and R. M. Nisbet. 1996. Cooperation and competition along smooth environmmental gradients. Unpublished.

  • Wilson, W. G. and C. A. Vause. 1989. Ferromagneticq=4,5 Potts models on the two-dimensional Penrose and square lattices.Phys. Rev. B 39 4651.

    Article  Google Scholar 

  • Wolfram, S. 1983. Statistical mechanics of cellular automata,Rev. Mod. Phys. 55, 601–644.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, W.G., Nisbet, R.M., Ross, A.H. et al. Abrupt population changes along smooth environmental gradients. Bltn Mathcal Biology 58, 907–922 (1996). https://doi.org/10.1007/BF02459489

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459489

Keywords

Navigation