Heat and mass transfer in vertical tubular bubble absorbers for ammonia-water absorption refrigeration systemsTransfert de chaleur et de masse dans les absorbeurs tubulaires verticaux de bulles pour les systèmes frigorifiques à absorption ammoniac-eau

https://doi.org/10.1016/0140-7007(84)90004-5Get rights and content

Abstract

A model is developed for calculation of simultaneous heat and mass transfer processes in vertical bubble absorbers as used for ammonia-water absorption refrigeration systems. Some preliminary experiments have been performed in an absorber without heat removal. The results from these experiments are compared with the literature and give a first indication about the methods for prediction of the absorption process. Experiments have also been performed with simultaneous heat removal. The internal diameters of the absorbers tested were 10.0, 15.3, and 20.5 mm. The mass transfer coefficients resulting from these experiments are correlated by a modified Sherwood relation. An interative procedure is presented which allows design of vertical tubular bubble absorbers for ammonia-water absorption refrigeration systems.

Résumé

On a mis au point un modèle en vue du calcul des transferts simultanés de chaleur et de masse dans des absorbeurs tubulaires verticaux de bulles à utiliser dans les réfrigérateurs à absorption ammoniac-eau. La forme de l'absorbeur est présentée Fig. 1 et le schéma de principe Fig. 2.

On a réalisé des expériences préliminaires en utilisant un absorbeur adiabatique, mais la plupart des expériences utilisaient une circulation annulaire de méthanol refroidi pour éliminer la chaleur de l'absorbeur. L'écoulement de gaz dans l'absorbeur passait de l'écoulement mousseux à l'écoulement diphasique intermédiaire et finalement à l'écoulement à bulles. Les tubes de l'absorbeur essayés avaient un alésage de 10.0, 15,3 et 20,5 mm et environ 1 m de long.

La chute de pression mesurée par unité de longueur est comparée par de diverses équations de prévision au tableau 1 et la fraction de vide est comparée tableau 2. Le coefficient global de transfert de chaleur est donné par l'équation (12) et le coefficient pelliculaire intérieur par léquation (16). Le coefficient de transfert de masse est corrélé par l'équation (20) l'effet de la hauteur du tube étant défini, pour le domaine expérimental donné, par l'équation (26).

References (17)

  • D.J. Nicklin

    Two phase bubble flow

    Chemical Engineering Science

    (1962)
  • W.J. Beek

    Stofoverdracht door beweeglijke grensvlakken

  • H. Brauer

    Grundlagen der Einphasen- und Mehrphasenströmungen

    (1971)
  • J.C. Charpentier

    What's new in absorption with chemical reaction?

    Transactions of the Institution of Chemical Engineers

    (1982)
  • A.K. Chesters

    Stroming en warmteoverdracht

    (1976)
  • G.A. Gregory et al.

    Physical and chemical mass transfer in horizontal cocurrent gas-liquid slug flow

    Chemical Engineering Journal

    (1971)
  • R.K. Horn

    Messungen zum Wärme- und Stoffübergang am Rieselfilm

  • G.A. Hughmark et al.

    Holdup and pressure drop with gas-liquid flow in a vertical pipe

    AlChE J

    (1961)
There are more references available in the full text version of this article.

Cited by (39)

  • Numerical simulation and experiment for R124-DMAC bubble absorption process in a vertical tubular absorber

    2019, International Journal of Thermal Sciences
    Citation Excerpt :

    Heat and mass transfer performances of the bubble absorption process had been researched by some scholars. The researches were mainly focused on two kinds of structures, plate-type absorber [8–12] and tubular absorber [13–17], with NH3/H2O, NH3/LiNO3 or NH3/(LiNO3+H2O) as working fluids. Research results showed that the key parameters affecting heat and mass transfer performance of bubble absorption process were refrigerant vapor and absorption solution flow rates, absorption solution temperature and mass fraction, absorption pressure, cooling-water temperature and flow rate.

  • Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review

    2018, Applied Energy
    Citation Excerpt :

    Interest on the investigation of the bubble absorption process for absorption systems has also been increasing in the last years. Researchers have focussed on the description and explanation of the phenomena that take place in the absorption and the way to improve it in an effort to contribute to the technological development of absorption systems for refrigeration or heating [84–101]. Documents reported in the open literature include sensitivity studies of the heat and mass transfer processes in bubble absorbers with different mixtures by analysing the effect of the absorption heat removal [85], internal tube diameter [85], solution flow [85–87,94,96,98,100,101], inlet solution temperature [84,86,88,96–98,100,101], solution concentration [85–87,92–98,100,101], solution side pressure [85–87,96], coolant flow [87,94,101], coolant temperature [87,94,101], inlet vapour temperature [88], inlet gas orifice size [90,91,98–101], inlet vapour flow [90,91,94–96,98,100,101].

  • Development of bubble absorption refrigeration technology: A review

    2018, Renewable and Sustainable Energy Reviews
  • Heat and mass transfer characteristics of R124-DMAC bubble absorption in a vertical tube absorber

    2017, Experimental Thermal and Fluid Science
    Citation Excerpt :

    However, increases of solution temperature and mass fraction or cooling medium temperature had negative effects on the absorber performance. For the vertical tubular bubble absorber, the heat and mass transfer processes with ammonia-water as working pairs were also investigated by experiments and modeled analyses [25–29]. Generally, three kinds of flow patterns, churn, slug and bubble flow patterns would be formed in the absorber because the bubbles were constrained by tube wall.

View all citing articles on Scopus
View full text