Feynman path integrals: Some exact results and applications

https://doi.org/10.1016/0370-1573(86)90029-3Get rights and content

Abstract

The status of exactly solvable problems within the path integral formulation of non-relativistic quantum mechanics is reviewed. Some applications of these exact results are presented.

References (217)

  • C. DeWitt-Morette

    Ann. Phys.

    (1976)
  • J.V. Narlikar et al.

    Phys. Reports

    (1983)
  • B.J.B. Crowley

    Phys. Reports

    (1980)
  • T. Koeling et al.

    Phys. Reports

    (1975)
  • D.C. Khandekar et al.

    J. Math. Phys.

    (1975)
  • R. Dashen

    J. Math. Phys.

    (1979)
  • R. Dashen

    Optics Lett.

    (1984)
  • D.C. Khandekar et al.

    Lett. Math. Phys.

    (1981)
  • A.K. Dhara et al.

    J. Math. Phys.

    (1983)
  • G.J. Papadopoulos

    J. Phys.

    (1974)
  • R.P. Feynman

    Rev. Mod. Phys.

    (1948)
  • R.P. Feynman

    Quantum Electrodynamics

    (1962)
  • J.M. Gelfand et al.

    J. Math. Phys.

    (1960)
  • S.G. Brush

    Rev. Mod. Phys.

    (1961)
  • F.W. Wiegel

    Phys. Reports

    (1975)
  • E.S. Abers et al.

    Phys. Reports

    (1974)
  • A. Nevue

    Phys. Reports

    (1976)
  • J.L. Gervais et al.

    Phys. Reports

    (1975)
  • S. Coleman

    Uses of Instantons in The Whys of Subnuclear Physics

  • W.J. Miller

    J. Chem. Phys.

    (1975)
  • S. Levit et al.

    Ann. Phys.

    (1975)
  • R.P. Feynman et al.

    Quantum Mechanics and Path Integrals

    (1965)
  • R.P. Feynman

    Statistical Mechanics: A Set of Lectures

  • L.S. Schulman

    Techniques and Applications of Path Integration

    (1981)
  • M.M. Mizrahi

    J. Math. Phys.

    (1976)
  • A. Truman

    J. Math. Phys.

    (1976)
    A. Truman

    J. Math. Phys.

    (1977)
    A. Truman

    J. Math. Phys.

    (1978)
  • C. DeWitt-Morette

    Comm. Math. Phys.

    (1972)
  • C. DeWitt-Morete et al.

    Phys. Reports

    (1979)
  • Y. Choquet-Bruhat et al.

    Analysis, Manifolds and Physics

    (1982)
  • H. Hostler

    J. Math. Phys.

    (1964)
  • I.H. Duru et al.

    Phys. Lett.

    (1979)
  • D.C. Khandekar et al.

    J. Phys.

    (1972)
  • L.S. Schulman

    Phys. Rev. Lett.

    (1982)
  • J. Adamowski et al.

    J. Math. Phys.

    (1983)
  • D.C. Khandekar et al.

    Phys. Rev.

    (1985)
  • D.P.L. Castrigiano et al.

    Phys. Lett.

    (1984)
  • D.C. Khandekar et al.

    J. Phys. A

    (1985)
  • C. Garrod

    Rev. Mod. Phys.

    (1966)
  • H. Davis
  • R.H. Cameron

    J. Math. and Phys.

    (1960)
  • F.A. Berezin

    Sov. Phys. Usp.

    (1980)
  • J.B. Keller et al.

    The Am. Math. Month.

    (1975)
  • J.H. Van Vleck

    P. Nat. Acad. of Sciences

    (1928)
  • W. Pauli

    Ausgewahlte Kapitel Der Feldquantisierung

    Lecture notes Zurich

    (1952)
  • I. Fujiwara

    Progr. Theor. Phys.

    (1959)
  • G. Dangelmayer et al.

    Ann. Phys.

    (1978)
    M.V. Berry et al.

    Rep. Prog. Phys.

    (1972)
  • Cited by (152)

    • Low temperature acoustic polaron localization

      2013, Physica B: Condensed Matter
      Citation Excerpt :

      Feynman used his path integral formalism and a variational principle to develop an all coupling approximation for the polaron ground state [12]. Its extension to finite temperatures appeared first by Osaka [13,14], and more recently by Castrigiano et al. [15–17]. Recently the polaron problem has gained new interest as it could play a role in explaining the properties of the high Tc superconductors [18].

    View all citing articles on Scopus
    View full text